
I. INTRODUCTION

SHARING and distributing digital multimedia over networks
is becoming popular these days due to recent developments

in network and multimedia technologies, and this raises the
fundamental and critical issue of protecting multimedia content
from illegal alteration and unauthorized redistribution. To
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differently fingerprinted copies of the same content [1], [2].
To support multimedia forensics, digital fingerprinting should
resist multiuser collusion as well as attacks by a single adver-
sary [3]–[5]. In the literature, techniques from a wide range
of disciplines (e.g., error correcting codes [6], finite projective
geometry [7], and combinatorial theories [8]) were used to
design anticollusion multimedia fingerprints. In group-oriented
fingerprint design [9], prior knowledge of the potential collu-
sion pattern was utilized to improve collusion resistance. These
prior works explored the unique features of multimedia, jointly
considered fingerprint design and embedding, and seamlessly
embedded fingerprints into the host signal using the traditional
data hiding technique for multimedia.

being caught by the digital rights enforcer. Since no colluder
is willing to take a larger risk than the others, attackers usually
agree to distribute the risk evenly among themselves. Such at-
tacks are referred to as fair collusion attacks. During collusion,
each attacker ensures that he or she is not taking a higher risk
than the others, and achieving fairness of the attack is an impor-
tant issue during collusion.

Most prior work in the literature assumed that colluders re-
ceive fingerprinted copies of the same quality and emphasized
the analysis of collusion strategies and effectiveness. In [10] and
[11], collusion attacks were modeled as averaging attacks fol-
lowed by the addition of noise. In [12], collusion attacks were
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The work in [16] investigated how colluders can achieve fair-
ness of collusion when they receive copies of different resolu-
tions due to network and device heterogeneity, and analyzed the
constraints on, and the effectiveness of, fair collusion on scal-
able multimedia fingerprinting.

These prior works on collusion attacks assumed that all
colluders keep the agreement to share the same risk during
collusion—they provide one another with correct information
on their fingerprinted signals and use the copies received from
the content owner during collusion. However, the assumption
of fair play may not always hold. Some selfish colluders may
break the fairness agreement with others and try to further
lower their risk of being caught. For example, they may process
their fingerprinted signals before collusion and use the pro-
cessed copies instead of the originally received ones during
collusion. When a colluder breaks the fairness agreement, he
or she does not necessarily increase others’ risk: he or she
merely reduces his or her own risk and, therefore, reduces his
or her relative risk with respect to the other colluders. In some
scenarios, the selfish colluder does increase the other attackers’
absolute risk and we call his or her behavior malicious. The
existence of selfish colluders raises complex dynamics for
multiuser collusion. From the traitor-tracing perspective, it is
important to study this problem of traitors within traitors in
digital fingerprinting and understand the attackers’ behavior
during collusion to minimize their own risk and protect their
own interest. This investigation of the traitor-within-traitor
dynamics helps build a complete model of multiuser collusion
and enables to offer stronger protection of multimedia.

As the first work on the analysis of the colluder dynamics,
this paper investigates the possible strategies that the selfish col-
luders can use to minimize their own risk, and evaluates their
performance. The rest of the paper is organized as follows. We
begin in Section II with the introduction of digital fingerprinting
systems and the dynamics among attackers during collusion.
In Section III, we investigate the strategies for the selfish col-
luders to reduce the energy of the embedded fingerprints before
multiuser collusion, which further reduce the selfish colluders’
probability of being detected. Section IV studies the problem of
traitors within traitors in scalable fingerprinting systems when
attackers receive copies of different resolutions, and investigates
how a selfish colluder can change the resolution of his or her
fingerprinted copy to reduce the risk of being captured. Conclu-
sions are drawn in Section V.

II. SYSTEM MODEL

A. Digital Fingerprinting Systems for Multimedia Forensics

1) Fingerprint Embedding: Spread-spectrum embedding has
been widely used in multimedia fingerprinting systems due to
its robustness against many attacks [1], [17]. In additive spread-
spectrum embedding for video applications, for the th frame in
the video sequence represented by a vector of length , the
content owner generates a unique fingerprint of length
for each user in the system. The fingerprinted copy that is
distributed to is ,

where and are the th components of

the fingerprinted frame , the host signal and the finger-

print vector , respectively. is the just-noticeable dif-
ference from human visual models [17], and it is used to control
the energy and achieve the imperceptibility of the embedded fin-
gerprints. Finally, the content owner transmits to each user
the fingerprinted frames .

In this paper, we consider orthogonal fingerprint modulation
[15], [8] and assume that the total number of users is much
smaller than the length of the embedded fingerprints. With or-
thogonal modulation, fingerprints for different users are orthog-
onal to each other and have equal energy (i.e., for user and

)

(1)

where is the Dirac–Delta function. It equals to 1 if and
only if and 0 otherwise. depends on the finger-
print’s length and where is a constant.
To resist intracontent collusion attacks on video watermarking
[18], [19], in each fingerprinted copy , the fingerprints

and that are embedded in adjacent frames and
, respectively, correlate with each other. The correlation be-

tween and depends on the similarity between the
two host frames and , similar to the work in [20].

2) Multiuser Collusion Attacks: During collusion, the col-
luders collect all of the fingerprinted copies that they received,
apply the multiuser collusion function to these copies, and gen-
erate a new copy in which the originally embedded fingerprints
are removed or attenuated. A recent investigation in [15] showed
that under the constraints that the colluded copies from different
collusion have the same perceptual quality, the performance of
nonlinear collusion attacks is similar to that of the averaging
attack. Thus, it suffices to consider averaging-based collusion
only.

3) Fingerprint Detection and Colluder Identification: In this
paper, we consider a nonblind detection scenario, where the host
signal is available to the detector and is first removed from the
test copy before fingerprint detection and colluder identifica-
tion. Once the content owner discovers the existence of an illegal
copy in the market, for each frame in the colluded copy, the
detector first extracts the fingerprint .
Then, he or she calculates the similarity between the extracted
fingerprint and each original fingerprint , com-
pares a predetermined threshold , and outputs the estimated
identities of the colluders .

The correlation-based detector is widely used in the litera-
ture to measure the similarity between the extracted fingerprint
and the original fingerprint [1], [8], [15]. For each user , fol-
lowing the thresholding detection strategy in [15], the detector
calculates the detection statistics:

(2)

where is the Euclidean norm of . For a given

threshold , the estimated colluder set is .
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Fig. 2. Simulation results of temporal filtering on sequence “carphone.” The length of the embedded fingerprints is 159608. Assume that there are a total of
K = 150 colluders and there is only one selfish colluder u . Colluder u does not process his or her received copy before multiuser collusion. f� g are the
solution of (10) and " is chosen to satisfy PSNR � 40 dB for all frames. (a) PSNR of the newly generated copy f ~X g compared with the originally received
fingerprinted frames fX g. (b) The selfish colluder’s probability of being detected P . (c) Comparison of u ’s probability of being detected with the
selfish colluder u ’s probability of being detected.

the selfish colluder does not process his or her copy before
multiuser collusion.

Fig. 2(a) compares the perceptual quality of , and
Fig. 2(b) plots the selfish colluder ’s probability of being
detected when take different values. A selfish colluder
can reduce his or her own probability of being detected by tem-
porally filtering his or her fingerprinted copy before multiuser
collusion. By choosing of smaller values, the selfish
colluder has a smaller probability of being detected while sacri-
ficing the quality of the newly generated copy. Therefore, during
precollusion processing, the selfish colluder has to consider the
tradeoff between the risk and the perceptual quality.

In Fig. 2(c), we consider two colluders—the selfish colluder
and another colluder , who does not process his or her

copy before collusion, and compare their probabilities of being
detected. From Fig. 2(c), precollusion processing makes
take a higher risk of being detected than and increases the
relative risk taken by when compared with that of .

To address the tradeoff between perceptual quality and the
risk, a selfish colluder should choose as in (10). We
compare the solution of in (10) for different sequences.
We choose four representative video sequences: “miss america”
that has large smooth regions and slow motion, “carphone” and
“foreman” that are moderately complicated, and “flower” whose

Fig. 3. � in (10) for different sequences. " is chosen to satisfy
PSNR �40 dB for all frames in f ~X g.

high-frequency band has a lot of energy and the camera moves
quickly. We choose the threshold in (10) such that

dB for all frames in . Fig. 3 shows the solutions of
(10) for various sequences. From Fig. 3, for sequences that have
slow motion (“miss america”), a selfish colluder can choose

with small values (e.g., around 0), without significant
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quality degradation; for sequences that have moderate motion
(ÒcarphoneÓand ÒforemanÓ), is around 0.5; while for se-
quences with fast movement (ÒßowerÓ), a selÞsh colluder has to
choose large (e.g., larger than 0.9), to ensure the high
quality of the newly generated frames.

IV. TRAITORS WITHIN TRAITORS IN SCALABLE

FINGERPRINTINGSYSTEMS

In scalable multimedia coding systems, for the same multi-
media content, different users receive copies of different resolu-
tions and quality, depending on each userÕs available bandwidth
and computation constraints. In scalable multimedia coding and
Þngerprinting systems, in addition to applying temporalÞltering
to the received frames, a selÞsh colluder can also change the res-
olution of his or herÞngerprinted copy before multiuser collu-
sion. In this section, we investigate how selÞsh colluders behave
before multiuser collusion in scalable multimediaÞngerprinting
systems, and analyze their performance.

A. Temporally Scalable Video Coding Systems

Scalable video coding is widely used to accommodate
heterogenous networks and users with different computation
capability [22]. As an example, we consider temporally scalable
video coding, which provides multiple versions of the same
video with different temporal resolutions or frame rates. In
addition, we use layered video coding to decompose the video
sequence into nonoverlapping bit streams of different priority.
The base layer contains the most important information of the
video content, provides the roughest resolution of the video,
and is received by all users in the systems. The enhancement
layers contain less important information, gradually reÞnes the
reconstructed video at the decoderÕs side, and are only received
by users who have sufÞcient bandwidth and computation
capability.

Without loss of generality, this paper considers a temporally
scalable video coding system with three-layer scalability: the
base layer of the highest priority, the enhancement layer 1 of
medium priority, and the enhancement layer 2 of the lowest pri-
ority. Similar to that in [16], a simple implementation of the tem-
poral scalability is used in this paper where different frames are
encoded in different layers. For example, with MPEG-2 video
coding, the base layer may contain all of the I frames, the en-
hancement layer 1 contains all of the P frames, and the enhance-
ment layer 2 contains all of the B frames. Assume that
and are the sets containing the indices of the frames that are
encoded in the base layer, enhancement layer 1, and enhance-
ment layer 2, respectively.

We let contain the indices of the frames that user
receives. DeÞne as the subgroup of
users who subscribe to copies of low quality and receive the
base-layer bit stream only;
is the subgroup of users who subscribe to copies of medium
quality and receive both the base layer and the enhancement
layer 1; and is the sub-
group of users who subscribe to copies of high quality and re-
ceive all three layers. and are mutually exclu-

Fig. 4. Two-stage collusion attacks on scalableÞngerprinting systems.

sive, and is the total number of
users.

B. Scalable Fingerprinting Systems

1) Fingerprint Embedding: With the temporally scal-
able video coding systems in Section IV-A, theÞngerprint
embedding at the content ownerÕs side is similar to that in
Section II-A1. For each user in the system, and for each frame
that he or she subscribes to, the content owner generates
a uniqueÞngerprint and additively embeds it into the host
signal using spreading-spectrum embedding techniques [17].
Adjacent frames in each distributed copy are embedded with
correlatedÞngerprints to combat intracontent collusion attacks
[19], and we consider orthogonalÞngerprint modulation in this
paper.

2) Collusion Attacks:Assume that there are a total of
colluders and SC is the set containing their indices. WeÞrst
consider the scenario where all colluders are willing to share
the same risk and they provide one another correct information
about theirÞngerprinted copies during collusion. From [16], to
generate a colluded copy of high quality while still achieving
fairness of collusion, the attackers apply the two-stage collusion,
as shown in Fig. 4.

During collusion, the colludersÞrst divide themselves into
three nonoverlapping subgroups
contains the indices of the colluders who receive the base layer
bit stream only; includes
the indices of the colluders who receive the base layer and the
enhancement layer 1; and

is the set containing the indices of the colluders who
receive all three layers. and are the number of
colluders in subgroups and , respectively, and

.
Secondly, the colluders apply the intragroup collusion at-

tacks: for colluders who receive the base layer only, they average
theirÞngerprinted copies and generate
for each frame in the base layer; for colluders
who receive both the base layer and the enhancement
layer 1, they average their received copies and generate

for each frame
in the base layer and the enhancement layer 1; and for those
colluders who receive all three layers, they average their copies
and generate for all frames in the
video sequence.
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TABLE I
CONSTRAINTS ON COLLUSION TO ACHIEVE FAIRNESS OF THE ATTACK

TABLE II
SELECTION OF COLLUSION PARAMETERS TO ACHIEVE FAIRNESS OF THE ATTACK

Define as the set containing the indices of the frames in
the colluded copy. For simplicity,

and they correspond to the scenarios where the col-
luded copy has the lowest, medium, and highest frame rates, re-
spectively. Finally, the colluders apply the intergroup collusion
attacks to generate the colluded copy . For each frame

in the base layer, where
and . For each frame

in the enhancement layer 1, ,
where . For each frame in
enhancement layer 2, . is additive noise to
further hinder detection.

3) Fingerprint Detection and Colluder Identification: Same
as in [16], this paper considers a simple detector that uses
fingerprints extracted from all layers collectively to identify
colluders. For each user , the detector first calculates

, where contains the indices of the
frames received by user , and contains the indices of
the frames in the colluded copy. Following the thresholding
detection strategy in [15], after extracting the fingerprint

from the colluded frame , the detector calculates

. Given
a predetermined threshold , the estimated colluder set is

.
4) Constraints on Multiuser Collusion to Achieve Fairness:

Under the assumption that all colluders are willing to share the
same risk and give each other correct information about their
received copies, the colluders choose the collusion parameters,
including and to ensure that all col-
luders are equally likely to be detected. Given the simple de-
tector in Section IV-B3, Tables I and II list the constraints on
collusion and the selection of the collusion parameters, respec-
tively, to achieve fairness in three different scenarios, where the
colluded copy has the highest, medium, and lowest frame

rates, respectively. Detailed derivation is available in [16] and
not repeated here. In Tables I and II, , and are
the lengths of the fingerprints embedded in the base layer, en-
hancement layer 1, and enhancement layer 2, respectively. From
Table I, generating a colluded copy of higher quality puts more
severe constraints on collusion to achieve fairness.

C. Changing the Resolution of the Fingerprinted Copies
Before Collusion

Assume that contains the indices of the frames that
a selfish colluder subscribed to, and are
the fingerprinted frames that he or she received from the
content owner. Before collusion, processes his or her
received copy and generates another copy , whose

temporal resolution is different from that of . Assume

that contains the indices of the frames in and
. During collusion, uses the newly generated

copy , instead of . For simplicity,
in this section, we assume that the selfish colluders only change
the resolution of their received copies and do not further apply
temporal filtering during precollusion processing.

We consider a simple scenario where
. We assume that there is only one selfish

colluder who changes the frame rate of his or her copy
before multiuser collusion, and our analysis can be extended
to complicated scenarios where there are multiple selfish col-
luders.

For a selfish colluder who changes the temporal resolu-
tion of his or her copy during precollusion processing, we de-

fine the processing parameter as , where
contains the indices of the frames that received from

the content owner and contains the indices of the frames in
the newly generated copy . If , the selfish


