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Abstract—Multimedia security systems have many users with
different objectives and they influence each other’s performance
and decisions. Behavior forensics analyzes how users with con-
flicting interests interact with and respond to each other. Such
investigation enables a thorough understanding of multimedia se-
curity systems and helps the digital rights enforcer offer stronger
protection of multimedia. This paper analyzes the dynamics
among attackers during multiuser collusion. The colluders share
not only the profit from the redistribution of multimedia but also
the risk of being detected by the content owner, and an important
issue in collusion is fairness of the attack (i.e., whether all attackers
share the same risk) (e.g., whether they have the same probability
of being detected). While they might agree so, some selfish col-
luders may break their fair-play agreement in order to further
lower their risk. This paper investigates the problem of “traitors
within traitors” in multimedia forensics, in an effort to formulate
the dynamics among attackers and understand their behavior to
minimize their own risk and protect their own interests. As the
first work on the analysis of this colluder dynamics, this paper
explores some possible strategies that a selfish colluder can use
to minimize his or her probability of being caught. We show that
processing his or her fingerprinted copy before multiuser collusion
helps a selfish colluder further lower his or her risk, especially
when the colluded copy has high resolution and good quality.
This paper also investigates the optimal precollusion processing
strategies for selfish colluders to minimize their risk under the
quality constraints.

Index Terms—Behavior forensic, fairness, multiuser collusion,
risk minimization, traitors within traitors.

I. INTRODUCTION

SHARING and distributing digital multimedia over networks
is becoming popular these days due to recent developments

in network and multimedia technologies, and this raises the
fundamental and critical issue of protecting multimedia content
from illegal alteration and unauthorized redistribution. To
trace traitors and identify the source of the illicit copy, the
emerging digital fingerprinting technology uniquely labels
each distributed copy with identification information. However,
the uniqueness of each distributed copy also enables several
attackers to collectively mount attacks and remove traces of
the identifying fingerprints by combining information from
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differently fingerprinted copies of the same content [1], [2].
To support multimedia forensics, digital fingerprinting should
resist multiuser collusion as well as attacks by a single adver-
sary [3]–[5]. In the literature, techniques from a wide range
of disciplines (e.g., error correcting codes [6], finite projective
geometry [7], and combinatorial theories [8]) were used to
design anticollusion multimedia fingerprints. In group-oriented
fingerprint design [9], prior knowledge of the potential collu-
sion pattern was utilized to improve collusion resistance. These
prior works explored the unique features of multimedia, jointly
considered fingerprint design and embedding, and seamlessly
embedded fingerprints into the host signal using the traditional
data hiding technique for multimedia.

In multimedia fingerprinting systems, different users have
different goals and objectives, and they influence each other’s
decisions and performance. Behavior forensics formulates the
dynamics among attackers during collusion and the dynamics
between the colluders and the detector, and investigates how
users interact with and respond to each other. Such investigation
enables the digital rights enforcer to have a better understanding
of the multimedia fingerprinting systems (e.g., how attackers be-
have during collusion, which information of the collusion can
help improve the detection performance, etc.). It helps the dig-
ital rights enforcer offer stronger protection of multimedia con-
tent.

During multiuser collusion, attackers share not only the profit
from the illegal redistribution of multimedia but also the risk of
being caught by the digital rights enforcer. Since no colluder
is willing to take a larger risk than the others, attackers usually
agree to distribute the risk evenly among themselves. Such at-
tacks are referred to as fair collusion attacks. During collusion,
each attacker ensures that he or she is not taking a higher risk
than the others, and achieving fairness of the attack is an impor-
tant issue during collusion.

Most prior work in the literature assumed that colluders re-
ceive fingerprinted copies of the same quality and emphasized
the analysis of collusion strategies and effectiveness. In [10] and
[11], collusion attacks were modeled as averaging attacks fol-
lowed by the addition of noise. In [12], collusion attacks were
generalized to linear shift-invariant filtering followed by addi-
tive noise. Several types of collusion attacks were studied in
[2], including a few nonlinear collusion attacks, and detailed
analysis of linear and nonlinear collusion attacks on orthog-
onal fingerprints was provided in [13]. The Gradient attack was
proposed in [14], which uses the combination of several basic
nonlinear collusion attacks in [13] during collusion. The work
in [15] evaluated the collusion resistance of multimedia finger-
prints as a function of system parameters, including fingerprint
length, the total number of users, and the system requirements.
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The work in [16] investigated how colluders can achieve fair-
ness of collusion when they receive copies of different resolu-
tions due to network and device heterogeneity, and analyzed the
constraints on, and the effectiveness of, fair collusion on scal-
able multimedia fingerprinting.

These prior works on collusion attacks assumed that all
colluders keep the agreement to share the same risk during
collusion—they provide one another with correct information
on their fingerprinted signals and use the copies received from
the content owner during collusion. However, the assumption
of fair play may not always hold. Some selfish colluders may
break the fairness agreement with others and try to further
lower their risk of being caught. For example, they may process
their fingerprinted signals before collusion and use the pro-
cessed copies instead of the originally received ones during
collusion. When a colluder breaks the fairness agreement, he
or she does not necessarily increase others’ risk: he or she
merely reduces his or her own risk and, therefore, reduces his
or her relative risk with respect to the other colluders. In some
scenarios, the selfish colluder does increase the other attackers’
absolute risk and we call his or her behavior malicious. The
existence of selfish colluders raises complex dynamics for
multiuser collusion. From the traitor-tracing perspective, it is
important to study this problem of traitors within traitors in
digital fingerprinting and understand the attackers’ behavior
during collusion to minimize their own risk and protect their
own interest. This investigation of the traitor-within-traitor
dynamics helps build a complete model of multiuser collusion
and enables to offer stronger protection of multimedia.

As the first work on the analysis of the colluder dynamics,
this paper investigates the possible strategies that the selfish col-
luders can use to minimize their own risk, and evaluates their
performance. The rest of the paper is organized as follows. We
begin in Section II with the introduction of digital fingerprinting
systems and the dynamics among attackers during collusion.
In Section III, we investigate the strategies for the selfish col-
luders to reduce the energy of the embedded fingerprints before
multiuser collusion, which further reduce the selfish colluders’
probability of being detected. Section IV studies the problem of
traitors within traitors in scalable fingerprinting systems when
attackers receive copies of different resolutions, and investigates
how a selfish colluder can change the resolution of his or her
fingerprinted copy to reduce the risk of being captured. Conclu-
sions are drawn in Section V.

II. SYSTEM MODEL

A. Digital Fingerprinting Systems for Multimedia Forensics

1) Fingerprint Embedding: Spread-spectrum embedding has
been widely used in multimedia fingerprinting systems due to
its robustness against many attacks [1], [17]. In additive spread-
spectrum embedding for video applications, for the th frame in
the video sequence represented by a vector of length , the
content owner generates a unique fingerprint of length
for each user in the system. The fingerprinted copy that is
distributed to is ,

where and are the th components of

the fingerprinted frame , the host signal and the finger-

print vector , respectively. is the just-noticeable dif-
ference from human visual models [17], and it is used to control
the energy and achieve the imperceptibility of the embedded fin-
gerprints. Finally, the content owner transmits to each user
the fingerprinted frames .

In this paper, we consider orthogonal fingerprint modulation
[15], [8] and assume that the total number of users is much
smaller than the length of the embedded fingerprints. With or-
thogonal modulation, fingerprints for different users are orthog-
onal to each other and have equal energy (i.e., for user and

)

(1)

where is the Dirac–Delta function. It equals to 1 if and
only if and 0 otherwise. depends on the finger-
print’s length and where is a constant.
To resist intracontent collusion attacks on video watermarking
[18], [19], in each fingerprinted copy , the fingerprints

and that are embedded in adjacent frames and
, respectively, correlate with each other. The correlation be-

tween and depends on the similarity between the
two host frames and , similar to the work in [20].

2) Multiuser Collusion Attacks: During collusion, the col-
luders collect all of the fingerprinted copies that they received,
apply the multiuser collusion function to these copies, and gen-
erate a new copy in which the originally embedded fingerprints
are removed or attenuated. A recent investigation in [15] showed
that under the constraints that the colluded copies from different
collusion have the same perceptual quality, the performance of
nonlinear collusion attacks is similar to that of the averaging
attack. Thus, it suffices to consider averaging-based collusion
only.

3) Fingerprint Detection and Colluder Identification: In this
paper, we consider a nonblind detection scenario, where the host
signal is available to the detector and is first removed from the
test copy before fingerprint detection and colluder identifica-
tion. Once the content owner discovers the existence of an illegal
copy in the market, for each frame in the colluded copy, the
detector first extracts the fingerprint .
Then, he or she calculates the similarity between the extracted
fingerprint and each original fingerprint , com-
pares a predetermined threshold , and outputs the estimated
identities of the colluders .

The correlation-based detector is widely used in the litera-
ture to measure the similarity between the extracted fingerprint
and the original fingerprint [1], [8], [15]. For each user , fol-
lowing the thresholding detection strategy in [15], the detector
calculates the detection statistics:

(2)

where is the Euclidean norm of . For a given

threshold , the estimated colluder set is .
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B. Traitors Within Traitors and the Dynamics Among Attackers
During Collusion

During collusion, the attackers not only share the profit from
the illegal redistribution of multimedia content, they also share
the risk of being detected by the digital rights enforcer. Since no
one is willing to take a higher risk than the others, they usually
apply fair collusion and distribute the risk evenly among them-
selves. Therefore, fairness is a very important issue that the at-
tackers need to address during collusion. Each attacker makes
sure that he or she has the same probability of being detected as
others. To achieve fairness of collusion, all attackers are required
to provide one another with correct information about their re-
ceived copies. Then, the colluders adjust the collusion param-
eters accordingly to ensure that the risk is evenly distributed
among all attackers.

Most prior work assumed that all colluders keep their fair col-
lusion agreement and give each other correct information about
their fingerprinted signals. During collusion, colluders use the
copies that they received from the content owner. In reality,
some colluders might be selfish and break their fair-play agree-
ment. They still wish to participate in and profit from collusion,
while they do not want to take any risk of being detected by
the digital rights enforcer. To achieve this goal, they may lie to
other attackers about their fingerprinted copies. For example,
they may process their fingerprinted signals before multiuser
collusion and use the processed copies instead of the originally
received ones during collusion. The selfish colluders’ goal is
to minimize their own risk while still profiting from collusion.
Therefore, during precollusion processing, the selfish colluders
select the most effective strategy to reduce their risk. Mean-
while, in order to profit from collusion, the selfish colluders wish
that others cannot detect their precollusion processing behavior
and will not exclude them from collusion. This requires that the
processed copy be perceptually similar to the originally received
one and puts stringent quality constraints on precollusion pro-
cessing.1

Depending on the precollusion processing strategies as well
as the total number of selfish colluders, in some scenarios, pre-
collusion can increase the absolute risk of other attackers (i.e.,
their probability of being detected) and it is not only selfish but
also malicious. In other scenarios, precollusion processing may
have a negligible impact on other colluders’ probability of being
caught. Another possibility is that precollusion processing de-
creases the other colluders’ absolute risk. Nevertheless, prec-
ollusion processing reduces the selfish colluders’ risk, makes
other attackers have a higher probability of being detected than
the selfish colluders and, therefore, increases the relative risk
taken by other attackers when compared with that of the selfish
colluders. Meanwhile, other attackers are not aware of such pre-
collusion processing and the increase in their relative risk. It is
obviously a selfish behavior.

With the existence of selfish colluders, attackers do not trust
each other and this distrust forbids them to collude. To con-
tinue the collusion attack, the colluders must share something

1In order to avoid being detected by their fellow attackers, selfish colluders
should also ensure that the processed copy is statistically similar to the originally
received one. We plan to investigate this issue in the future.

in common that enables them to detect and identify selfish col-
luders and exclude them from collusion, force everyone to keep
their agreement during collusion, and establish the trust among
themselves. If all colluders process their received copies before
collusion and each acts individually, it corresponds to the sce-
nario where a colluder trusts no one but himself or herself. As
such, it is impossible to establish the trust among attackers that
are required to continue the collusion attack, and such a group
of attackers cannot collude. In this paper, we consider the sce-
nario where most colluders keep their agreement of sharing the
risk with others and there are only a few selfish colluders who
might process their fingerprinted copies before collusion. In this
scenario, those attackers who keep their agreement can collab-
orate with each other to detect and identify selfish colluders.

This paper studies this problem of “traitors within traitors”
in multimedia forensics and formulates this dynamics among
attackers during collusion. As the first work on understanding
the colluders’ behavior to minimize their own risk and protect
their own interest, in this paper, we illustrate our framework with
a few possible precollusion processing strategies, analyze their
performance, and identify the best one for selfish colluders to
minimize their risk under quality constraints. Another important
issue in this behavior dynamics formulation is to explore the
strategies for other attackers to detect such selfish behavior and
evaluate their performance. We will investigate this issue in the
future.

Game theory is one fundamental tool to formulate the traitor-
within-traitor behavior forensics. Such a game-theoretic frame-
work would include the definition of cost functions and the
derivation of strategy that maximizes the payoff function. One
may ask whether there exists an equilibrium and how the equi-
librium strategies can be established, which we plan to explore
in the future.

C. Performance Criteria

To measure the effectiveness of precollusion processing in re-
ducing the selfish colluder’s probability of being detected, we
use the probability that a colluder is captured and
the probability that an innocent user is falsely accused as
the performance criteria. For a fixed , we compare a selfish
colluder’s probability of being detected in two scenarios: when
the selfish colluder does not apply precollusion processing (i.e.,
he or she is willing to share the risk with other colluders), and
when the selfish colluder processes his or her fingerprinted copy
before collusion. From the selfish colluder’s point of view, pre-
collusion processing is more effective when the difference be-
tween these two probabilities is larger.

To measure the effect of precollusion processing on the per-
ceptual quality of the fingerprinted copies, we use the commonly
used mean square error (MSE) between the newly generated
copy and the originally received one , or equiva-
lently, the PSNR in image and video applications.

III. TEMPORAL FRAME FILTERING DURING

PRECOLLUSION PROCESSING

For a selfish colluder to further reduce his or her own prob-
ability of being detected, one possible solution is to attenuate
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Fig. 1. Applying temporal frame averaging during precollusion processing.

the energy of the embedded fingerprints before multiuser collu-
sion. An example is to replace each segment of the fingerprinted
signal with another, a seemingly similar segment from different
regions of the content (e.g., averaging or swapping consecutive
frames of similar content [18]).

In this section, we take the temporal filtering of adjacent
frames as an example, and analyze its effects on the selfish
colluder’s probability of being detected as well as the percep-
tual quality of the fingerprinted copies. We consider a simple
scenario where all users receive fingerprinted copies of the
same quality. When different users receive copies of different
quality, the analysis is similar and not repeated.

A. Precollusion Processing Using Temporal Filtering

In this paper, we assume that the selfish colluder uses a
simple linear interpolation-based frame average during pre-
collusion processing. A selfish colluder can also apply more
complicated motion-based interpolation [21], and the anal-
ysis will be similar. For a selfish colluder , assume that

are the fingerprinted frames that he or she

received from the content owner, and and
are three consecutive frames. As shown in Fig. 1, for each
frame linearly combines the current frame , the

previous frame , and the next frame with weights
and , respectively, and generates a new

frame , where

(3)

In (3), , and
. For simplicity, we let

, and give equal weights to the two neighboring frames
and . repeats this process for every frame in

the sequence and generates . When

and it corresponds to the scenario where
does not process his or her copy before collusion.

We assume that there is only one selfish colluder and other
colluders do not discover his or her precollusion processing ac-
tions. The analysis is similar when there are multiple selfish col-
luders and is not repeated here. In this scenario, under the aver-
aging collusion, the th frame in the colluded copy is shown in
(4) at the bottom of the page, where is additive noise.

B. Performance Analysis and Selection of the Optimal Weight
Vector

During precollusion processing, the selfish colluder wishes
to generate a new copy of high quality and minimize his or her
own risk of being detected. In this section, we first analyze the
quality of the newly generated frames and calculate the
selfish colluder’s probability of being detected, and then study
the selection of the optimal weight vector .

1) Perceptual Quality: If is generated as in (3), then

the MSE between and is

where

(5)

In (5), is the Euclidean norm of , and

is the correlation between and .
From (5), a larger implies a smaller . Conse-
quently, from the perceptual quality’s point of view,
should choose a larger . Compared with has
the best possible quality when and does not
apply precollusion processing.

2) Probability of Being Detected: Given the colluded copy
as in (4), the fingerprint extracted from the th frame is

shown in (6) at the bottom of the page, where contains terms
that are independent of the embedded fingerprints .

With orthogonal fingerprint modulation as in Section II-A1,
given the colluder set SC and the index of the selfish colluder

(4)

(6)
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, if the detection noise is i.i.d. and follows Gaussian dis-
tribution , it is straightforward to show that the detec-
tion statistics in (2) are independent Gaussian with mar-
ginal distribution . The detection statistics have zero
mean for an innocent user and positive mean for a guilty col-
luder. Consequently, given a user , the probability of ac-
cusing him or her if he or she is innocent is ,
and the probability of capturing him or her if he or she is guilty is

. here is the Gaussian tail func-
tion and is the predetermined threshold. For a fixed , the
selfish colluder has a smaller probability of being detected
when is smaller, and minimizing his or her probability of
being detected is equivalent to minimizing the mean of his or
her detection statistics.

For the selfish colluder , is shown in (7) at
the bottom of the page. is the Euclidean norm of

is the correlation between

and , and is the correlation be-

tween and . From the fingerprint design

in Section II-A1,

and . Thus, if
are fixed, is a nonde-

creasing function of and is minimized when .
Consequently, from the risk minimization’s point of view, a
smaller is preferred.

3) Selection of the Optimal Weight Vector: From the above
analysis, we have seen that during precollusion processing, a
selfish colluder should choose larger weights to min-
imize the perceptual distortion introduced into his or her fin-
gerprinted copy; while smaller weights are preferred
to minimize his or her risk of being captured. A selfish col-
luder wishes to minimize his or her probability of being detected
while still maintaining good quality of the fingerprinted copies.
Thus, for a selfish colluder , the selection of the weight
vector can be modeled as

(8)

where is the constraint on perceptual distortion. In our model
of temporal filtering, for different frames is selected
independently. Thus, minimizing over the entire video se-
quence is equivalent to minimizing in (7) for each frame

independently. Therefore, the optimization problem in (8) is
equivalent to: for each frame

(9)

Given as defined in (5), we can show that the solution to (9)
is

(10)

By using as in (10) during temporal filtering, a selfish
colluder minimizes his or her own probability of being detected
and ensures that the newly generated frames have small percep-
tual distortion when compared with the originally
received ones.

C. Simulation Results

In our simulations, we use the first 40 frames in sequence
“carphone” as an example. At the content owner’s side, we
adopt the human visual model-based spread-spectrum em-
bedding [17], and embed fingerprints in the discrete cosine
transform (DCT) domain. We generate independent vec-
tors from Gaussian distribution , and then apply
Gram–Schmidt orthogonalization to produce fingerprints that
satisfy (1) strictly. In each fingerprinted copy, similar to the
work in [19] and [20], fingerprints embedded in adjacent frames
are correlated with each other, and the correlation depends on
the similarity between the two host frames.

At the colluders’ side, we assume that there are a total of 150
colluders. For simplicity, we assume that there is only one selfish
colluder and he or she applies temporal filtering to his or her
received copy as in (3) during precollusion processing. In our
simulations, we adjust the power of the noise term in (6)
such that . Other values will give the same
trend.

Fig. 2 shows the simulation results. For each frame,
is defined as the peak signal-to-noise ratio (PSNR) of

compared to . In Fig. 2, are the solution of (10)
and is chosen to satisfy dB for all frames.
In our simulations, we consider four different scenarios where

, and , respec-
tively. Note that corresponds to the scenario where

where

(7)
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Fig. 2. Simulation results of temporal filtering on sequence “carphone.” The length of the embedded fingerprints is 159608. Assume that there are a total of
K = 150 colluders and there is only one selfish colluder u . Colluder u does not process his or her received copy before multiuser collusion. f� g are the
solution of (10) and " is chosen to satisfy PSNR � 40 dB for all frames. (a) PSNR of the newly generated copy f ~X g compared with the originally received
fingerprinted frames fX g. (b) The selfish colluder’s probability of being detected P . (c) Comparison of u ’s probability of being detected with the
selfish colluder u ’s probability of being detected.

the selfish colluder does not process his or her copy before
multiuser collusion.

Fig. 2(a) compares the perceptual quality of , and
Fig. 2(b) plots the selfish colluder ’s probability of being
detected when take different values. A selfish colluder
can reduce his or her own probability of being detected by tem-
porally filtering his or her fingerprinted copy before multiuser
collusion. By choosing of smaller values, the selfish
colluder has a smaller probability of being detected while sacri-
ficing the quality of the newly generated copy. Therefore, during
precollusion processing, the selfish colluder has to consider the
tradeoff between the risk and the perceptual quality.

In Fig. 2(c), we consider two colluders—the selfish colluder
and another colluder , who does not process his or her

copy before collusion, and compare their probabilities of being
detected. From Fig. 2(c), precollusion processing makes
take a higher risk of being detected than and increases the
relative risk taken by when compared with that of .

To address the tradeoff between perceptual quality and the
risk, a selfish colluder should choose as in (10). We
compare the solution of in (10) for different sequences.
We choose four representative video sequences: “miss america”
that has large smooth regions and slow motion, “carphone” and
“foreman” that are moderately complicated, and “flower” whose

Fig. 3. � in (10) for different sequences. " is chosen to satisfy
PSNR �40 dB for all frames in f ~X g.

high-frequency band has a lot of energy and the camera moves
quickly. We choose the threshold in (10) such that

dB for all frames in . Fig. 3 shows the solutions of
(10) for various sequences. From Fig. 3, for sequences that have
slow motion (“miss america”), a selfish colluder can choose

with small values (e.g., around 0), without significant
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quality degradation; for sequences that have moderate motion
(“carphone” and “foreman”), is around 0.5; while for se-
quences with fast movement (“flower”), a selfish colluder has to
choose large (e.g., larger than 0.9), to ensure the high
quality of the newly generated frames.

IV. TRAITORS WITHIN TRAITORS IN SCALABLE

FINGERPRINTING SYSTEMS

In scalable multimedia coding systems, for the same multi-
media content, different users receive copies of different resolu-
tions and quality, depending on each user’s available bandwidth
and computation constraints. In scalable multimedia coding and
fingerprinting systems, in addition to applying temporal filtering
to the received frames, a selfish colluder can also change the res-
olution of his or her fingerprinted copy before multiuser collu-
sion. In this section, we investigate how selfish colluders behave
before multiuser collusion in scalable multimedia fingerprinting
systems, and analyze their performance.

A. Temporally Scalable Video Coding Systems

Scalable video coding is widely used to accommodate
heterogenous networks and users with different computation
capability [22]. As an example, we consider temporally scalable
video coding, which provides multiple versions of the same
video with different temporal resolutions or frame rates. In
addition, we use layered video coding to decompose the video
sequence into nonoverlapping bit streams of different priority.
The base layer contains the most important information of the
video content, provides the roughest resolution of the video,
and is received by all users in the systems. The enhancement
layers contain less important information, gradually refines the
reconstructed video at the decoder’s side, and are only received
by users who have sufficient bandwidth and computation
capability.

Without loss of generality, this paper considers a temporally
scalable video coding system with three-layer scalability: the
base layer of the highest priority, the enhancement layer 1 of
medium priority, and the enhancement layer 2 of the lowest pri-
ority. Similar to that in [16], a simple implementation of the tem-
poral scalability is used in this paper where different frames are
encoded in different layers. For example, with MPEG-2 video
coding, the base layer may contain all of the I frames, the en-
hancement layer 1 contains all of the P frames, and the enhance-
ment layer 2 contains all of the B frames. Assume that
and are the sets containing the indices of the frames that are
encoded in the base layer, enhancement layer 1, and enhance-
ment layer 2, respectively.

We let contain the indices of the frames that user
receives. Define as the subgroup of
users who subscribe to copies of low quality and receive the

base-layer bit stream only;
is the subgroup of users who subscribe to copies of medium
quality and receive both the base layer and the enhancement

layer 1; and is the sub-
group of users who subscribe to copies of high quality and re-
ceive all three layers. and are mutually exclu-

Fig. 4. Two-stage collusion attacks on scalable fingerprinting systems.

sive, and is the total number of
users.

B. Scalable Fingerprinting Systems

1) Fingerprint Embedding: With the temporally scal-
able video coding systems in Section IV-A, the fingerprint
embedding at the content owner’s side is similar to that in
Section II-A1. For each user in the system, and for each frame
that he or she subscribes to, the content owner generates
a unique fingerprint and additively embeds it into the host
signal using spreading-spectrum embedding techniques [17].
Adjacent frames in each distributed copy are embedded with
correlated fingerprints to combat intracontent collusion attacks
[19], and we consider orthogonal fingerprint modulation in this
paper.

2) Collusion Attacks: Assume that there are a total of
colluders and SC is the set containing their indices. We first
consider the scenario where all colluders are willing to share
the same risk and they provide one another correct information
about their fingerprinted copies during collusion. From [16], to
generate a colluded copy of high quality while still achieving
fairness of collusion, the attackers apply the two-stage collusion,
as shown in Fig. 4.

During collusion, the colluders first divide themselves into

three nonoverlapping subgroups
contains the indices of the colluders who receive the base layer

bit stream only; includes
the indices of the colluders who receive the base layer and the

enhancement layer 1; and
is the set containing the indices of the colluders who

receive all three layers. and are the number of
colluders in subgroups and , respectively, and

.
Secondly, the colluders apply the intragroup collusion at-

tacks: for colluders who receive the base layer only, they average
their fingerprinted copies and generate
for each frame in the base layer; for colluders
who receive both the base layer and the enhancement
layer 1, they average their received copies and generate

for each frame
in the base layer and the enhancement layer 1; and for those
colluders who receive all three layers, they average their copies
and generate for all frames in the
video sequence.
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TABLE I
CONSTRAINTS ON COLLUSION TO ACHIEVE FAIRNESS OF THE ATTACK

TABLE II
SELECTION OF COLLUSION PARAMETERS TO ACHIEVE FAIRNESS OF THE ATTACK

Define as the set containing the indices of the frames in
the colluded copy. For simplicity,

and they correspond to the scenarios where the col-
luded copy has the lowest, medium, and highest frame rates, re-
spectively. Finally, the colluders apply the intergroup collusion
attacks to generate the colluded copy . For each frame

in the base layer, where
and . For each frame

in the enhancement layer 1, ,
where . For each frame in
enhancement layer 2, . is additive noise to
further hinder detection.

3) Fingerprint Detection and Colluder Identification: Same
as in [16], this paper considers a simple detector that uses
fingerprints extracted from all layers collectively to identify
colluders. For each user , the detector first calculates

, where contains the indices of the
frames received by user , and contains the indices of
the frames in the colluded copy. Following the thresholding
detection strategy in [15], after extracting the fingerprint

from the colluded frame , the detector calculates

. Given
a predetermined threshold , the estimated colluder set is

.
4) Constraints on Multiuser Collusion to Achieve Fairness:

Under the assumption that all colluders are willing to share the
same risk and give each other correct information about their
received copies, the colluders choose the collusion parameters,
including and to ensure that all col-
luders are equally likely to be detected. Given the simple de-
tector in Section IV-B3, Tables I and II list the constraints on
collusion and the selection of the collusion parameters, respec-
tively, to achieve fairness in three different scenarios, where the
colluded copy has the highest, medium, and lowest frame

rates, respectively. Detailed derivation is available in [16] and
not repeated here. In Tables I and II, , and are
the lengths of the fingerprints embedded in the base layer, en-
hancement layer 1, and enhancement layer 2, respectively. From
Table I, generating a colluded copy of higher quality puts more
severe constraints on collusion to achieve fairness.

C. Changing the Resolution of the Fingerprinted Copies
Before Collusion

Assume that contains the indices of the frames that
a selfish colluder subscribed to, and are
the fingerprinted frames that he or she received from the
content owner. Before collusion, processes his or her
received copy and generates another copy , whose

temporal resolution is different from that of . Assume

that contains the indices of the frames in and
. During collusion, uses the newly generated

copy , instead of . For simplicity,
in this section, we assume that the selfish colluders only change
the resolution of their received copies and do not further apply
temporal filtering during precollusion processing.

We consider a simple scenario where
. We assume that there is only one selfish

colluder who changes the frame rate of his or her copy
before multiuser collusion, and our analysis can be extended
to complicated scenarios where there are multiple selfish col-
luders.

For a selfish colluder who changes the temporal resolu-
tion of his or her copy during precollusion processing, we de-

fine the processing parameter as , where
contains the indices of the frames that received from

the content owner and contains the indices of the frames in
the newly generated copy . If , the selfish
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Fig. 5. Example of increasing the temporal resolution during precollusion pro-
cessing. F = F and ~F = F [ F [ F .

colluder subscribes to a lower quality version and he or
she increases the frame rate during precollusion processing. If

, the selfish colluder subscribes to a higher
quality version and he or she reduces the temporal resolution
before multiuser collusion.

1) Increasing the Resolution Before Multiuser Collusion: In
this type of precollusion processing, a selfish colluder sub-
scribes to a copy of a lower frame rate and generates a copy
of higher resolution before collusion. Without loss of gener-
ality, in this section, we consider the example in Fig. 5 where
the processing parameter is

. In this example, the selfish colluder receives
the fingerprinted base layer only, and generates a copy
with all three layers before collusion. He or she then tells the
other colluders that is the copy that he or
she received.

a) Precollusion processing of the fingerprinted copy: We
assume that for every frame in the base layer
that received, the selfish colluder simply duplicates

in the newly generated copy and let . also

needs to forge frames in the enhancement layers

that he or she did not receive. Assume that and are
two adjacent frames in the base layer that received. To
forge a frame in the enhancement layers where

, we consider a simple linear interpolation-based
method and let , where

and . Other complicated
algorithms (e.g., motion-based interpolation [21]) can be used
to improve the quality of the forged frames, and the analysis will
be similar.

b) Perceptual quality constraints: To increase the frame
rate of the fingerprinted copy, the selfish colluder has to generate
frames in the enhancement layers that he or she did not receive
from the content owner. To cover up the fact he or she processed
the copy before collusion and make other colluders believe him
or her, the selfish colluder must ensure that the forged enhance-
ment layers have high quality.

In this section, we examine the perceptual quality of the
forged enhancement layers and study the quality constraints.
We consider the example in Fig. 5 with processing parameter

, and use the above linear
interpolation-based method.

For a selfish colluder in subgroup and for a frame
in the enhancement layers, define as the

Fig. 6. Quality of the enhancement layers that are forged by the selfish col-
luder during precollusion processing. The processing parameter is CP =
(F ; F [ F [ F ), where F = f1; 5; 9; . . .g; F = f3; 7; 11; . . .g and
F = f2; 4; 6; 8; . . .g.

fingerprinted frame that would have received if he or
she had subscribed to frame . In our simulations, we choose

as the ground truth and use the PSNR of when com-

pared with to measure the perceptual quality of the forged
frames in the enhancement layers.

Fig. 6 shows the results on the first 40 frames of sequence
“miss america,” “carphone,” and “flower.” From Fig. 6, for se-
quence “miss america” with flat regions and slow motion, the
selfish colluder can forge enhancement layers of high quality.
For sequence “flower” that has fast movement, the selfish col-
luder can only generate low-quality and blurred enhancement
layers. Therefore, due to the quality constraints, for complicated
sequences with fast movement, the selfish colluder might not be
able to apply this type of precollusion processing and increase
the temporal resolution before multiuser collusion.2

c) Selfish colluder’s probability of being detected: To ana-
lyze the effectiveness of this precollusion processing in reducing
a selfish colluder’s risk, we compare his or her probability of
being detected when the selfish colluder increases the temporal
resolution with that when the selfish colluder does not process
his or her fingerprinted copy before collusion. Without loss of
generality, we assume that the selfish colluder processes his or
her copy as in Fig. 5 with parameter

, and use this example to analyze the impact of resolution
change on the selfish colluder’s probability of being detected.

Scenario 1: Without Precollusion Processing: We first
consider the scenario where does not apply precollusion
processing, and we assume that
contains the indices of the colluders who subscribe to copies
of the lowest resolution and only receive the base layer from
the content owner;
contains the indices of the colluders who receive both the base
layer and the enhancement layer 1 from the content owner; and

2Motion-based interpolation [21] can be used to improve the quality. How-
ever, for some sequences with fast movement and complex scene composition
(e.g., “football” and “flower”), even with motion-based interpolation, the selfish
colluder still may not be able to forge enhancement layers of good enough
quality to use. Therefore, for those complicated sequences, the selfish colluders
may not be able to increase the resolution of their fingerprinted copies before
multiuser collusion.
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contains the indices
of the colluders who receive all three layers from the content
owner. and are the number of colluders in

and , respectively.
Given and , the colluders

first check the constraints in Table I, and then choose the
collusion parameters and according to
Table II. In this scenario, for each frame in the base
layer, the extracted fingerprint is

(11)

where is additive noise.
Following the detection procedure in Section IV-B3, the

detector observes that only received the fingerprinted
base layer from the content owner and, therefore, the detector
will only use fingerprints extracted from the base layer to
decide if is involved in collusion. The detector calculates

, compares

it with the predetermined threshold , and decides if is
a colluder. From the analysis in [16], with orthogonal modu-
lation, given the colluder set SC and the extracted fingerprint
as in (11), if the detection noise is i.i.d. Gaussian ,
the detection statistics follow distribution:

where

(12)

where ’s probability of being detected is
, where is the Gaussian tail function. In this

scenario, all colluders share the same risk and their probability
of being detected is equal to .

Scenario 2: With Precollusion Processing: We then con-
sider the scenario where increases the frame rate before
multiuser collusion and assume that
contains the indices of the colluders who tell others that they

received the base layer only;
is the set containing the indices of the colluders who

tell others that they received both the base layer and enhance-

ment layer 1; and
is the set containing the indices of the colluders who tell others
that they received all three layers. Define and as

the number of colluders in and , respectively.
If is the only selfish colluder and the processing param-

eter is , then we have

and . Conse-
quently, and . If
other colluders do not discover ’s precollusion processing,
they assume that the extracted fingerprints from all threes layers

will be used by the detector to determine whether is a
colluder. Under this assumption, the colluders analyze each at-
tacker’s detection statistics and follow Table II to choose the
collusion parameters.

As an example, assume that the colluders decide to gen-
erate a colluded copy including all frames in the base layer
and the enhancement layer 1, and and

satisfy the constraint
listed in

Table I. Following the analysis in [16], under the assumption
that fingerprints extracted from both layers would be used
by the detector to identify , other colluders estimate that

’s detection statistics have mean

(13)

where and are the lengths of the fingerprints embedded
in the base layer and the enhancement layer 1, respectively.
They choose the collusion parameters such that is equal to
the means of other colluders’ detection statistics. From Table II,
the selected parameters are

and (14)

Then, the colluders generate the colluded copy as in
Section IV-B2.

During the colluder identification process, since only
received the fingerprinted base layer from the content owner,
the detector only uses fingerprints extracted from the base layer
to decide if is a colluder. The extracted fingerprint from
frame in the base layer is

(15)

With orthogonal fingerprint modulation, given the colluder set
SC, the index of the selfish colluder , and the precollusion pro-
cessing parameter , if follows
Gaussian distribution and using the same analysis as
in [16], we can show that

and

where

(16)
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For colluder who does not process his or her copy
before collusion, following the same analysis, we can show
that his or her detection statistics follow Gaussian distri-
bution , where

, and his or her probability of being
detected is .

Note that in (13) does not equal in (16), and the
colluders make an error in estimating the mean of ’s de-
tection statistics. This is due to ’s precollusion processing
behavior, and this estimation error helps the selfish colluder fur-
ther lower his or her risk of being detected.

From (12) and (16), for fixed and , comparing the selfish
colluder’s probability of being detected in these two scenarios
is equivalent to comparing in (12) with in (16). For
fair comparison, if the constraints in Table I are satisfied, we fix
the frame rate of the colluded copy and let .

To compare the values of the two means, we consider the
following scalable fingerprinting systems. We observe that for
typical video sequences such as “miss america,” “carphone,”
and “foreman,” each frame has approximately 3000–7000 em-
beddable coefficients, depending on the characteristics of the
sequences. As an example, we assume that the length of the
embedded fingerprints in each frame is 5000, and we test on
a total of 40 frames. We choose

and as an example of the tem-
poral scalability, and the lengths of the fingerprints embedded
in the base layer, enhancement layer 1 and enhancement layer
2 are and , respec-
tively. We assume that there are a total of users and

. We first generate a unique
vector following Gaussian distribution for each user,
and then apply Gram–Schmidt orthogonalization to ensure that
the assigned fingerprints satisfy (1) strictly.

We assume that there are a total of colluders,
and are on the line as shown in (17) at the
bottom of the page. Line (17) is the boundary of one of the con-
straints in Table I to achieve fairness of collusion when gener-
ating a colluded copy of the highest resolution. Other values of

and give the same trend.
Assume that there is only one selfish colluder and

. Fig. 7 compares in (12)
with in (16) when and take
different values on line (17). In Fig. 7, a given value of cor-
responds to a unique point on line (17) and, therefore, a unique
triplet . In Fig. 7(a), , and
the colluded copy has the highest resolution; and in Fig. 7(b),

, and the colluded copy only contains frames in
the base layer. From Fig. 7, increasing the resolution of his

Fig. 7. Comparison of� in (12) and ~� in (16) when (K ;K ;K )
takes different values on line (17). (a) F = F [ F [ F . (b)
F = F . (jF j; jF j; jF j) = (10; 10;20), and (N ;N ;N ) =
(50000;50000;100000). There are M = 450 users and a total of K = 150
colluders. Assume that there is only one selfish colluder and the processing
parameter is CP = (F ; F [ F [ F ). Each K on the x axis
corresponds to a unique point on line (17).

or her fingerprinted copy before multiuser collusion can help the
selfish colluder further reduce his or her probability of being de-
tected when the colluded copy is of high quality; while it cannot
lower the selfish colluder’s risk when the colluders decide to
generate a copy of the lowest frame rate. This is because when

, no matter how many frames that claims that
he or she has received, only those in the base layer are used to
generate the colluded copy, and those frames are the ones that

received from the content owner. In this scenario, other
colluders correctly estimate the mean of ’s detection sta-
tistics during collusion, and increasing the frame rate cannot

(17)
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Fig. 8. Example of reducing the frame rate before multiuser collusion.F =
F [ F [ F and ~F = F .

help the selfish colluder further reduce his or her risk. To gener-
alize, increasing the temporal resolution is effective in reducing
a selfish colluder ’s probability of being captured only if

.
2) Reducing the Resolution Before Multiuser Collusion: In

this type of precollusion processing, a selfish colluder receives a
copy of higher resolution and tells other colluders that he or she
only has a copy of lower quality. Shown in Fig. 8 is an example,
where subscribes to all three layers while claiming that
he or she only has the fingerprinted base layer. In this example,

simply drops frames in the two enhancement layers during
precollusion processing.

When reducing the frame rate of his or her fingerprinted copy,
the selfish colluder does not need to forge any frames and, there-
fore, he or she does not need to worry about the quality con-
straints. In this scenario, the analysis of the selfish colluder’s
risk of being detected is similar to that in Section IV-C1 and
omitted.

Fig. 9 compares the means of the selfish colluder’s detection
statistics when he or she drops frames in the enhancement layers
with that when he or she does not apply precollusion processing.
The setup of the scalable fingerprinting system in Fig. 9 is the
same as that in Fig. 7. Similarly, each in Fig. 9 represents
one point on Line (17) and a unique triplet.
The precollusion processing parameter is

. and in Fig. 9(a) and
(b), respectively. From Fig. 9, similar to that in Fig. 7, when the
colluded copy has high resolution, the selfish colluder can sig-
nificantly reduce his or her own probability of being detected by
reducing the frame rate before multiuser collusion; while when
the colluded copy has low resolution, it cannot further lower the
selfish colluder’s risk. In general, reducing the temporal reso-
lution before collusion can further reduce the selfish colluder’s
risk only when .

D. Performance Comparison of Different Strategies

In the scalable fingerprinting system in Section IV-B, each
selfish colluder has two choices when modifying the resolu-
tion of his or her fingerprinted copy before collusion. For ex-
ample, for a selfish colluder who receives all three
layers from the content owner, during precollusion processing,

can drop the received enhancement layer 2 before collu-
sion and tell other attackers that he or she has a medium-quality
fingerprinted copy. can also drop both enhancement layers
and claim that he or she has the base layer only. This section

Fig. 9. Comparison of the means of the selfish colluder’s detection statistics
when he or she reduces the frame rate during precollusion processing with that
when he or she does not process his or her copy before multiuser collusion.
(a)F = F [F [F . (b)F = F . (jF j; jF j; jF j) = (10; 10;20) and
(N ;N ;N ) = (50000;50000;100000). There are a total of M = 450
users in the system and a total of K = 150 colluders. Each K represents a
unique point on line (17). CP = (F [ F [ F ; F ).

compares the effectiveness of different precollusion processing
strategies in reducing the selfish colluder’s risk, assuming that
the quality constraints are satisfied and other colluders do not
discover the precollusion processing behavior.

From the analysis in the previous section, neither increasing
nor reducing the temporal resolution can further reduce the
selfish colluder’s probability of being detected when the col-
luded copy only contains frames in the base layer. Therefore,
in this section, we consider scenarios where the colluded copy
includes at least one enhancement layer and is equal to
either or .

Our simulation setup is similar to that in Section IV-C1.
We assume that each frame has 5000 embeddable coefficients
and we test on a total of 40 frames. We consider a temporally
scalable video coding system with

and , and the lengths of the
fingerprints embedded in the base-layer enhancement layer
1 and enhancement layer 2 are
and , respectively. We further assume that
there are a total of users in the system, and

. For each user, a unique vector
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Fig. 10. Performance comparison of different precollusion processing
strategies for selfish colluders in SC . (a) F = F [ F , (b) F =
F [ F [ F . (jF j; jF j; jF j) = (10; 10;20) and (N ;N ;N ) =
(50000;50000;100000). Assume that there are a total of M = 450 users
and jU j = jU j = jU j = 150. The total number of colluders is
K = 150 and there is only one selfish colluder. Each value of K represents a
unique (K ;K ;K ) on line (17). P = 0:01 is fixed by selecting the
appropriate threshold h in the simulation runs.

is first generated from distribution with ,
and Gram–Schmidt orthogonalization is applied to let (1) hold
strictly for the assigned fingerprints.

During collusion, we assume that there are a total of
colluders and takes different values on line
(17). We further assume that the additive noise in (6) follows
distribution with . In our simulations, we
assume that there is only one selfish colluder and other
colluders do not discover his or her precollusion processing.

1) For Selfish Colluders in Subgroup : For a selfish col-
luder who receives the base layer only, can increase
the frame rate of his or her fingerprinted copy with two different
parameters and

. In this section, we compare the effectiveness of these
two strategies in reducing ’s probability of being caught

.

We fix the probability of accusing a given innocent user
as 0.01, and compare of different precollusion pro-

cessing parameters. Fig. 10 shows our simulation results when
takes different values on line (17), and each

corresponds to a unique point on that line.
and in Fig. 10(a) and (b), respectively.
From the selfish colluder’s point of view, when ,
the two processing parameters have the same performance. If

gives
the selfish colluder a smaller probability of being detected
than . Therefore, under the quality
constraints, a selfish colluder in should pretend to have
received all three layers from the content owner in order to
minimize his or her risk.

In Fig. 11, we consider two colluders: who increase the
resolution of his or her copy during precollusion processing and

who does not process his or her copy before collusion, and
compare their probabilities of being detected by the fingerprint
detector. and . From
Fig. 11, precollusion processing makes have a much larger
probability of being detected than , and increases ’s
relative risk when compared with . It is certainly a selfish
behavior.

2) For Selfish Colluders in Subgroup : For a selfish
colluder who receives the base layer and the en-
hancement layer 1 from the content owner, can increase
the resolution of his or her copy with parameter

during precollusion processing. can
also drop his or her fingerprinted enhancement layer 1 with pa-
rameter .

From the simulation results shown in Fig. 12(a), when the
colluded copy has a medium temporal resolution and

, dropping the enhancement layer 1 with parameter
reduces ’s probability of being detected, while increasing
the resolution with parameter cannot further lower the
selfish colluder’s risk. From Fig. 12(b), when the colluded copy
includes all three layers and , both
and can reduce ’s probability of being captured,
while gives a smaller chance to be detected than

.
Consequently, in order for a selfish colluder in subgroup

to minimize his or her own risk, when the colluders plan
to generate a colluded copy of medium temporal resolution, the
selfish colluder should drop the enhancement layer 1 before
multiuser collusion; and when the colluders plan to generate a
colluded copy containing all three layers, the selfish colluder
should increase the resolution of his or her fingerprinted copy
with parameter .

Fig. 13 investigates the impact of precollusion processing
on other colluders’ probability of being detected. In Fig. 13,
there are ten selfish colluders who use the same parameter

during precollusion processing,
and they process their fingerprinted copies independently. We
consider two colluders—a selfish colluder and another
colluder who does not apply precollusion processing.
In this scenario, precollusion processing not only reduces the
selfish colluders’ absolute risk, it also decreases other attackers’
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Fig. 11. Comparison of different colluders’ probabilities of being detected when selfish colluders exist. (a) F = F [ F . (b) F = F [ F [ F . u
is a selfish colluder, and u does not process his or her copy before multiuser collusion. CP = (F ; F [ F [ F ). The simulation setup is the same as
in Fig. 10.

Fig. 12. Performance comparison of different precollusion processing
strategies for selfish colluders in SC . (a) F = F [ F . (b)
F = F [ F [ F . (jF j; jF j; jF j) = (10; 10;20) and
(N ;N ;N ) = (50000;50000;100000). Assume that there are a
total of M = 450 users and jU j = jU j = jU j = 150 K = 150,
and assume that there is only one selfish colluder. Each K corresponds to a
unique triplet (K ;K ;K ) on line (17). We select the threshold to fix
P = 0:01.

probability of being detected. However, from Fig. 13(b), such
precollusion processing makes take a much smaller

Fig. 13. Impact of precollusion processing on other colluders’ probability of
being detected.u is a selfish colluder and colluderu does not process his
or her copy before collusion. (a) u ’s probability of being detected (P ).
(b) Comparison of u ’s probability of being detected with that of u . The
simulation setup is the same as that in Fig. 12(b). There are ten selfish colluders
who select the same parameter (F [F ; F [F [F ) during precollusion
processing, while each processes his or her copy independently. The colluded
copy has the highest temporal resolution with F = F [ F [ F .

chance of being caught than and increases other colluders’
relative risk with respect to the selfish colluders. Therefore, it is
still a selfish behavior.
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Fig. 14. Performance comparison of different precollusion processing
strategies for selfish colluders in SC . (a) F = F [ F . (b)F =
F [ F [ F . (jF j; jF j; jF j) = (10; 10;20) and (N ;N ;N ) =
(50000;50000;100000).M = 450 and jU j = jU j = jU j = 150.
The total number of colluders is K = 150 and assume that there is only one
selfish colluder. Each K corresponds to a unique triplet (K ;K ;K )
on line (17). The threshold h is selected to fix P = 0:01.

3) For Selfish Colluders in : For a selfish colluder
in subgroup who receives all three layers, during prec-
ollusion processing, can reduce the frame rate of his or
her fingerprinted copy with two different parameters

and .
As shown in Fig. 14(a), when the colluded copy has medium

resolution, using further reduces ’s probability of
being detected, while does not change his or her risk.
From Fig. 14(b), if the colluders generate a high-resolution col-
luded copy, both strategies lower the selfish colluder’s proba-
bility of being captured and of is smaller than
of . Consequently, from the selfish colluder’s point of
view, dropping both enhancement layers before multiuser col-
lusion is preferred for a selfish colluder in subgroup to
minimize his or her risk of being detected.

For colluder , who does not process his or her received
copy before collusion, Fig. 15 shows the impact of the selfish
colluders’ precollusion processing on ’s probability of
being detected when the total number of selfish colluders varies.

Fig. 15. For colluder u , who does not apply precollusion processing,
u ’s probability of being detected has a different number of selfish colluders.
The simulation setup is the same as in Fig. 14(a) and F = F [ F . All
selfish colluders select the same parameter CP = (F [F [F ; F ), while
each processes his or her own copy independently.

In Fig. 15, all selfish colluders select the same precollusion
processing parameter , while
each processes his or her fingerprinted copy independently.
From Fig. 15, dropping enhancement layers before collusion
increases others’ probability of being detected, and has a
larger probability of being detected when there are more selfish
colluders. In this example, precollusion processing is not only
selfish, but also malicious.

E. Simulation Results on Real Video

We test the effectiveness of changing the resolution of the
fingerprinted copy before collusion on real videos, assuming
that the quality constraints are satisfied. We choose the first 40
frames of sequence “car phone” as an example. Similar to that in
Section IV-C1, we consider a temporally scalable video coding
system with and

. The lengths of the fingerprints embedded
in the base layer, enhancement layer 1, and enhancement layer
2 are , and , respec-
tively. We assume that the total number of users is
and . We adopt the human
visual model-based spread-spectrum embedding in [17], and
embed the fingerprints in the DCT domain. We first generate
independent vectors following distribution , and then
apply Gram–Schmidt orthogonalization to let the assigned fin-
gerprints be strictly orthogonal and have equal energy. In each
fingerprinted copy, similar to that in [20], fingerprints in adja-
cent frames are correlated with each other, depending on the
similarity between the host frames.

During collusion, we assume that there are a total of
colluders, and takes different values on line
(17). We consider a simple scenario where there is only one
selfish colluder who changes the resolution of his or her received
copy before collusion. Furthermore, we assume that no col-
luders discover the selfish colluder’s precollusion processing.
In our simulations, we adjust the power of the additive noise
such that for every frame in the
colluded copy.
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Fig. 16. Simulation results of changing the resolution of the received copies during precollusion processing on the first 40 frames of sequence car phone. (a)
CP = (F ; F [ F [ F ). (b): CP = (F [ F ; F ). (c): CP = (F [ F ; F [ F [ F ). (d): CP = (F [ F [ F ; F )
(jF j; jF j; jF j) = (10; 10;20). The total number of users is M = 450 and jU j = jU j = jU j = 150. There are a total of K = 150 colluders
and each K represents a unique point on line (17). P is fixed as 10 by selecting the threshold h. In (a) and (c), F = F [ F [ F . In (b) and (d),
F = F [ F .

Fig. 16 shows the simulation results. In Fig. 16(a), the selfish
colluder receives the fingerprinted base layer only and
he or she increases the frame rate with parameter

before multiuser collusion. In Fig. 16(b)
and (c), the selfish colluder receives a copy of medium reso-
lution from the content owner and the precollusion processing
parameters are and

, respectively. In Fig. 16(d), the selfish col-
luder receives from the content owner all three layers, and he
or she drops both enhancement layers during precollusion pro-
cessing. In Fig. 16(a) and (c), and the
colluded copy has the highest frame rate; and the colluded copy
has medium temporal resolution and in Fig. 16(b)
and (d).

From Fig. 16, under the quality constraints, changing the res-
olution of the fingerprinted copy can help a selfish colluder fur-
ther reduce his or her risk of being caught, especially when the
colluded copy has high resolution. The simulation results on real
videos agree with our theoretical analysis in Section IV-C, and
are comparable with the results in Section IV-D.

V. CONCLUSIONS AND DISCUSSION

In this paper, we consider the problem of traitors within
traitors in behavior forensics and formulate the dynamics
among attackers during collusion to minimize their own risk of

being detected and protect their own interest. As the first work
on the analysis of the behavior dynamics during collusion,
we investigate a few precollusion processing strategies that a
selfish colluder can use to further reduce his or her chance of
being captured by the digital rights enforcer, and analyze their
effectiveness. We also analyze the constraints on pre-collusion
processing to maintain the perceptual quality of the finger-
printed copies.

We first investigate the strategies for a selfish colluder to at-
tenuate the energy of the embedded fingerprints before collu-
sion. The selfish colluder can apply temporal filtering to his or
her copy and average adjacent frames of similar content before
multiuser collusion. We analyze its effectiveness in reducing the
selfish colluder’s risk as well as the perceptual quality of the fin-
gerprinted copy after temporal filtering. Both our analytical and
simulation results show that this temporal filtering reduces the
selfish colluder’s risk of being captured at the cost of quality
degradation. We then investigate the tradeoff between the risk
and the perceptual quality that a selfish colluder needs to ad-
dress, and derive the optimal filtering coefficients to minimize
his or her probability of being caught while maintaining good
quality of his or her fingerprinted copy.

We then consider the problem of traitors within traitors when
attackers receive fingerprinted copies of different resolutions
due to network and device heterogeneity. In such a scenario, in
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addition to temporal filtering, a selfish colluder can also change
the resolution and quality of his or her fingerprinted copy before
multiuser collusion. We show that under the quality constraints,
changing the resolution of the fingerprinted copy can help a
selfish colluder further reduce his or her probability of being
caught, especially when the colluded copy has high quality. For
traitors within traitors in scalable fingerprinting systems, we
also investigate the selection of the optimal strategy for a selfish
colluder to minimize his or her risk under the quality constraints.

The work described in this paper is an initial step toward
a thorough investigation of traitor-within-traitor behavior
forensics. This paper focuses on one aspect of precollusion pro-
cessing (i.e., the risk that colluders are detected by the content
owner). Future work might address the risk that selfish traitors
are detected by their fellow traitors, because the statistics of
their preprocessed copies differ from those of unprocessed ones.
The natural framework for such a study is a game theoretic one,
in which admissible strategies and cost functions are defined,
and the strategy that maximizes the payoff function for the
coalition is derived. Among other benefits, such a framework
would inherently address the issue of detecting selfish behavior
by the fellow colluders and seek whether there exists an equi-
librium from which no colluder has an interest to deviate—in
this case, selfish behavior would be counterproductive.
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