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Abstract—Multimedia security systems involve many users with
different objectives and users influence each other’s performance.
To have a better understanding of multimedia security systems
and offer stronger protection of multimedia, behavior forensics
formulate the dynamics among users and investigate how they in-
teract with and respond to each other. This paper analyzes the be-
havior forensics in multimedia fingerprinting and formulates the
dynamics among attackers during multi-user collusion. In partic-
ular, this paper focuses on how colluders achieve the fair play of col-
lusion and guarantee that all attackers share the same risk (i.e., the
probability of being detected). We first analyze how to distribute
the risk evenly among colluders when they receive fingerprinted
copies of scalable resolutions due to network and device hetero-
geneity. We show that generating a colluded copy of higher reso-
lution puts more severe constraints on achieving fairness. We then
analyze the effectiveness of fair collusion. Our results indicate that
the attackers take a larger risk of being captured when the colluded
copy has higher resolution, and they have to take this tradeoff into
consideration during collusion. Finally, we analyze the collusion re-
sistance of the scalable fingerprinting systems in various scenarios
with different system requirements, and evaluate the maximum
number of colluders that the fingerprinting systems can withstand.

Index Terms—Behavior forensics, collusion resistance, fairness,
scalable multiuser collusion, traitor tracing.

I. INTRODUCTION

RECENT development in multimedia processing and
network technologies has facilitated the distribution

and sharing of multimedia through networks. It is critical to
protect multimedia from illegal alteration, repackaging, and
unauthorized redistribution. Digital fingerprinting is such a
forensic tool to identify the source of the illicit copies and
trace traitors. It embeds a unique label, also known as the
digital fingerprint, in each distributed copy before distribution.
The unique fingerprint is seamlessly embedded into the host
signal using traditional data hiding techniques [1] (e.g., the
spread-spectrum embedding method [2]), and travels with
the host signal. There is a cost effective attack against digital
fingerprinting, the collusion attack, in which several attackers
combine information from differently fingerprinted copies to
remove traces of the embedded fingerprints [2]. To support
multimedia forensics, there has been a lot of work on the
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design of anticollusion multimedia fingerprints [3]–[6], which
can resist such multiuser collusion as well as common signal
processing and attacks on a single copy [7], [8].

In multimedia security systems, different users have different
goals and objectives, and they influence each other’s decisions
and performance. Therefore, it is important to study this be-
havior dynamics in multimedia fingerprinting. Behavior foren-
sics formulate the dynamics among attackers during collusion
and the dynamics between the colluders and the detector, and
investigate how users interact with and respond to each other.
Such investigation enables the digital rights enforcer to have a
better understanding of the multimedia security systems (e.g.,
how attackers behave during collusion, which information of
collusion can help improve the detection performance, etc.).
This investigation helps the digital rights enforcer offer stronger
protection of multimedia content.

We investigate the dynamics among colluders in this paper.
During multiuser collusion, colluders not only share the profit
from the illegal alteration and redistribution of multimedia, they
also share the risk of being detected. Since no one is willing
to take a higher risk than the others, the colluders demand a
fair play during collusion and require that all colluders have
the same probability of being captured. Achieving fairness of
collusion is an important issue that the colluders need to address.

Most previous work on collusion attacks on multimedia
fingerprinting assumed that all users receive fingerprinted
copies of the same resolution. In this simple scenario, achieving
fairness of collusion is trivial. For example, averaging all
fingerprinted copies with equal weights reduces the energy of
each contributing fingerprint by the same ratio, and guarantees
that all colluders have the same probability of being detected
[9]. For spread-spectrum embedding based multimedia fin-
gerprinting, the collusion attack was modeled as averaging
different copies with equal weights followed by an additive
noise in [10]. The collusion attack model was generalized
to multiple-input–single-output linear shift invariant filtering
followed by an additive Gaussian noise in [11]. Nonlinear
collusion attacks were examined and analyzed in [12] and [13].
Assuming that colluders receive fingerprinted copies of the
same resolution, all these collusion attacks ensure fairness of
collusion and guarantee the equal risk of all colluders.

In practice, due to the heterogeneity of the networks and that
of the end users’ devices, it is often required to have scalability
for rich multimedia access from anywhere using any devices.
Scalable coding and transmission enables users to recover phys-
ically meaningful information of the content even if they receive
only part of the compressed bit streams [14]. This paper investi-
gates how colluders distribute the risk evenly among themselves
and achieve fairness of collusion when they receive copies of
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Fig. 1. Three-layer scalable codec. Left: encoder, right: decoder.

different resolutions due to network and device heterogeneity.
We also analyze the effectiveness of such fair collusion in de-
feating the fingerprinting systems. We then switch our role to the
digital rights enforcer’s side and study the collusion resistance
of the scalable fingerprinting system. We evaluate the maximum
number of colluders that the embedded fingerprints can with-
stand in various scenarios with different requirements. We use
video to demonstrate a typical multimedia system and take tem-
poral scalability as an example.

The rest of the paper is organized as follows. We begin in
Section II with the introduction of the scalable video coding
and the digital fingerprinting system model. Section III inves-
tigates how to achieve fairness of collusion when attackers re-
ceive copies of different resolutions. We analyze the effective-
ness of fair collusion in removing the embedded fingerprints in
Section IV. Section V quantifies the collusion resistance of scal-
able fingerprinting systems and studies how many colluders are
enough to undermine the tracing capability of multimedia fin-
gerprints. Section VI shows the simulation results on video se-
quences, and conclusions are drawn in Section VII.

II. SYSTEM MODEL

A. Temporally Scalable Video Coding Systems

In the literature, scalable video coding is widely used to ac-
commodate heterogenous networks and devices with different
computational capability. As an example, we use layered video
coding and decompose the video content into non-overlapping
streams (layers) with different priorities [14]. The base layer
contains the most important information of the video sequence
and is received by all users in the system. The enhancement
layers gradually refine the resolution of the reconstructed copy
at the decoder’s side and are only received by those who have
sufficient bandwidth.

Fig. 1 shows the block diagrams of a three-layer scalable
codec. The encoder first down-samples the raw video and per-
forms lossy compression to generate the base layer bit stream.
Then, the encoder calculates the difference between the original
video sequence and the up-sampled base layer, and applies lossy
compression to this residue to generate the enhancement layer
bit streams. At the receiver’s side, to reconstruct a high-reso-
lution video, the decoder has to first receive and decode both
the base layer and the enhancement layer bit streams. Then the
up-sampled base layer is combined with the enhancement layer
refinements to form the high-resolution decoded video.

In this paper, we use temporally scalable video coding as an
example, which provides multiple versions of the same video
with different frame rates. Our analysis can also be applied to
other types of scalability since the scalable codec in Fig. 1 is
generic and can be used to achieve different types of scalability.
The simplest way to perform temporal decimation and temporal
interpolation is by frame skipping and by frame copying, respec-
tively. For example, temporal decimation with a ratio of 2:1 can
be achieved by discarding one frame from every two frames;
and temporal interpolation with a ratio of 1:2 can be realized by
making a copy of each frame and transmitting the two frames to
the next stage.

We consider a temporally scalable video coding system
with three-layer scalability, and use frame skipping and frame
copying to implement temporal decimation and interpolation,
respectively. In such a video coding system, different frames in
the video sequence are encoded in different layers. Define ,

, and as the sets containing the indices of the frames
that are encoded in the base layer, enhancement layer 1 and
enhancement layer 2, respectively. For example, with MPEG-2
video encoding, the base layer may contain all the I frames;
the enhancement layer 1 consists of all the P frames; and the
enhancement layer 2 includes all the B frames.1

Define as the set containing the indices of the frames
that user receives. Define
as the subgroup of users who subscribe to the lowest
resolution and receive the base layer bit stream only;

is the subgroup of
users who subscribe to the medium resolution and receive
both the base layer and the enhancement layer 1; and

is the subgroup
of users who subscribe to the highest resolution and receive all
three layers. , and are mutually exclusive, and

is the total number of users.

B. Digital Fingerprinting System and Collusion Attacks

We consider a digital fingerprinting system that consists of
three parts: fingerprint embedding, collusion attacks and fin-
gerprint detection. We use temporal scalability as an example
and analyze the fairness issue during collusion. In this scenario,
fingerprints embedded at different layers will not interfere with

1In this example, some users can only receive the I frames due to bandwidth
and computation constraints; some users might have sufficient bandwidth and
computation capability to receive and decode both I and P frames; while some
users have enough bandwidth to receive all I, P, and B frames and reconstruct a
sequence including every frame in the video.
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Fig. 2. Two trivial solutions of collusion by averaging all fingerprinted copies. Assume that Alice receives the fingerprinted copy X consisting of the

base layer only; Bob receives the fingerprinted copy X with both the base layer and the enhancement layer 1; and Carl receives the fingerprinted

copy X including all three layers. (a) Colluded copy fV g contains all three layers. (b) Colluded copy fV g includes frames in the base layer
only.

each other. Our model can also be applied to other types of scal-
ability, e.g., spatial and SNR scalability. However, with spatial
or SNR scalability, the content owner has to take special care
during fingerprint design and embedding to prevent fingerprints
at different layers from interfering each other. This issue of fin-
gerprint design and embedding is beyond the scope of this paper.

1) Fingerprint Embedding: Spread-spectrum embedding is
one of the popular data hiding techniques due to its robust-
ness against many attacks [2], [15]. For the th frame in the
video sequence represented by a vector of length , and
for each user who subscribes to frame , the content owner
generates a unique fingerprint of length . The finger-

printed frame that will be distributed to is

, where , and

are the th components of the fingerprinted frame , the host

signal and the fingerprint vector , respectively.
is the just-noticeable-difference from human visual models [15],
and it is used to control the energy and achieve the impercepti-
bility of the embedded fingerprints. Finally, the content owner
transmits to each user all the fingerprinted frames

that subscribes to.
We apply orthogonal fingerprint modulation [3], [9] and as-

sume that the total number of users is much smaller than the
length of the embedded fingerprints. For each frame in the
video sequence, with orthogonal modulation, fingerprints for
different users are orthogonal to each other and have the same
energy, i.e., for user and

(1)

where is the Dirac-Delta function. equals to 1 if and
only if and 0 otherwise. depends on the finger-
print’s length and where is a constant
where is a constant. To combat the intracontent collusion at-
tacks [16]–[19] in each distributed copy , we embed cor-

related fingerprints and in adjacent frames and
, respectively. The correlation between the two fingerprints

and depends on the similarity between the two host
frames and , similar to the work in [20], [21].

2) Collusion Attacks: The attackers apply multiuser collu-
sion attacks to remove traces of the embedded fingerprints. In
a recent investigation [9], [22], we have shown that nonlinear
collusion attacks can be modeled as the averaging attack fol-
lowed by an additive noise. Under the constraint that the col-
luded copies from different collusion attacks have the same per-
ceptual quality, different collusion attacks have approximately
identical performance. Therefore, it suffices to consider the av-
eraging based collusion only.

We consider in this paper fair collusion in which all col-
luders share the same risk and have the same probability of being
caught. When colluders receive copies of the same quality, aver-
aging all copies with the same weight reduces the energy of each
contributing fingerprint by an equal amount, and therefore, gives
each colluder the same probability of being detected. However,
achieving fairness of collusion is much more complicated when
colluders receive copies of different resolutions due to network
and device heterogeneity, especially when the attackers wish to
generate a copy of high resolution.

With the temporally scalable fingerprinting system in
Section II-B1, we consider a simple example of collusion in-
cluding three attackers: Alice who receives the base layer only,
Bob who receives the base layer and the enhancement layer 1,
and Carl who receives all three layers. Fig. 2 shows two trivial
solutions of collusion by averaging the three fingerprinted
copies. In Fig. 2(a), the colluded copy includes all three layers
and is generated as follows.

• For each frame in the base layer, the colluders
average the three copies of fingerprinted frame that they
have and generate .

• For each frame in the enhancement layer 1, the
colluders average the fingerprinted frame from Bob and
Carl, respectively, and .

• For each frame in the enhancement layer 2, frame
in the colluded copy equals to that in the copy from Carl

and let .
In the colluded copy in Fig. 2(a), the three fingerprints corre-
sponding to the three attackers have the same energy in the base
layer; while the enhancement layers contain only Bob and Carl’s
fingerprints, not the fingerprint identifying Alice. It is obvious
that among the three, Carl has the largest probability of being
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caught and Alice takes the smallest risk. Consequently, the col-
lusion in Fig. 2(a) is not fair.

In Fig. 2(b), the collusion outputs an attacked copy con-
sisting of the base layer only, and the colluded copy equals to

for each frame
in the base layer. Under the collusion in Fig. 2(b), the finger-
prints corresponding to the three attackers have the same energy
in the colluded copy, and therefore, the three attackers have the
same probability of being detected. Although the collusion in
Fig. 2(b) ensures fairness, the attacked copy has low resolution.

So the question is when there is difference in the res-
olution of fingerprinted copies due to network and device
heterogeneity, how can colluders conduct fair multiuser col-
lusion that guarantees the collective equal risk among all
attackers while still generating an attacked copy of high res-
olution. Assume that there are a total of colluders, and

is the set containing their indices. During collusion,
the colluders first divide themselves into three non-overlap-
ping subgroups: contains the
indices of the colluders who receive the base layer only;

contains the indices of
the colluders who receive the base layer and the enhancement
layer 1; and con-
tains the indices of the colluders who receive all three layers.
Define , and as the number of colluders in ,

and , respectively.
Then, the colluders apply the intragroup collusion followed

by the intergroup collusion to generate the colluded copy ,
as shown in Fig. 3.2 The colluders first apply the intragroup
collusion attacks.

• For each frame that they received, the colluders in
the subgroup generate .

• For each frame that they received,
the colluders in the subgroup generate

.
• For each frame that they re-

ceived, the colluders in the subgroup generate
.

Define as the set containing the indices of the frames that
are in the colluded copy, and

. Then, the colluders apply the intergroup collusion at-
tacks to generate the colluded copy .

• For each frame in the base layer,
. To maintain the average intensity

of the original host signal and ensure the quality of the
colluded copy, we let . Our analysis
can also be applied to other scenarios where

. To guarantee that the energy of each of the original
fingerprints is reduced, we select , , .
is the additive noise that the colluders add to to further
hinder detection.

2Note that the intragroup and intergroup collusion attacks should be adjusted
according to the type of scalability used in video coding, and they should be ap-
plied to each individual layer. For example, with SNR scalability, intragroup and
intergroup collusion should be applied to different layers which are the finger-
printed video sequences quantized with different step sizes. Then the colluders
combine the newly generated base layer and enhancement layers to produce the
final colluded copy.

Fig. 3. Intragroup and the intergroup collusion attacks.

• If and the colluded copy contains frames in the
enhancement layers, then for each frame in the
enhancement layer 1, ,
where , . is an additive noise.
Our analysis can also be extended to the more general case
of .

• If and the colluded copy contains frames in all
three layers, then for each frame in the enhance-
ment layer 2, , where is an additive
noise.

The colluders adjust the energy of the additive noises to ensure
that frames of similar content at different layers in the colluded
copy have approximately the same perceptual quality. We con-
sider challenging scenarios with a large number of colluders
(e.g., more than 100 attackers). In addition, we consider sce-
narios where the energy of the additive noise is comparable
with that of the originally embedded fingerprints and the final
colluded copy has good quality. For frame in the base layer,
frame in the enhancement layer 1, and frame in the en-
hancement layer 2 that have similar content, we can show that
this requirement can be simplified to

in the scenarios that we are interested in.
The colluders seek the collusion parameters, ,

and , to ensure that all colluders have the same proba-
bility to be captured. The detailed analysis is given in Section III.

3) Fingerprint Detection and Colluder Identification: When
the content owner discovers the unauthorized redistribution of

, he/she applies a fingerprint detection process to
identify the colluders.

With spread-spectrum embedding, depending on the absence
or presence of the host signal during the detection process, there
are two main detection scenarios, blind and non-blind detection,
respectively. In the blind detection scenario, the host signal is
not available to the detector and serves as an additional noise
during detection; while in the non-blind scenario, the host signal
is available to the detector and is first removed from the test copy
before detection. Different from other data hiding applications
where blind detection is preferred or required, in many finger-
printing applications, the fingerprint verification and colluder
identification process is usually handled by the content owner
or an authorized forensic party who can have access to the orig-
inal host signal. Therefore, a non-blind detection scenario is fea-
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sible and often preferred in multimedia fingerprinting applica-
tions [3], [9], [22].

For each frame in the colluded copy, the detector first
extracts the fingerprint . Then, fol-
lowing the thresholding detection in [9], the detector calculates
the similarity between the extracted fingerprint and

each of the original fingerprints , compares

with a threshold and outputs a set containing the estimated
indices of the colluders. Following the prior art [3], [9], [22],
we use the correlation based detection statistics to measure the
similarity between the extracted fingerprint and the original fin-
gerprint. We consider a detector that uses fingerprints extracted
from all layers collectively to identify colluders. For each user

, the detector first calculates , where
contains the indices of the frames received by user and
contains the indices of the frames in the colluded copy. Then, the
detector applies the thresholding detection in [9] and calculates

(2)

where is the Euclidean norm of . Given the

detection statistics and a pre-determined
threshold , the estimated colluder set is

.

C. Performance Criteria

Digital fingerprinting can be used in different scenarios with
different goals and different requirements [9], [22]. To evaluate
the effectiveness of the collusion attacks and the performance
of the detection statistics, we adopt the commonly used criteria
in the literature and use the following measurements.

• : probability of capturing at least one colluder.
• : probability of accusing at least one innocent user.
• : expected fraction of colluders that are successfully

captured.
• : expected fraction of innocent users that are falsely

accused.
To measure the temporal resolution of the colluded copy, we

use the total number of frames in the colluded copy
(or equivalently the frame rate of the colluded copy). ,

, and correspond
to the three scenarios where the colluded copy has the lowest,
medium and highest temporal resolution, respectively.

III. SELECTION OF THE COLLUSION PARAMETERS

IN FAIR COLLUSION

In this section, given the system model as in Section II, we
investigate how the colluders should select the collusion param-
eters to achieve fairness of collusion and still generate a high-
resolution attacked copy in scalable fingerprinting systems. We

consider the simple detector in Section II-B3 that uses the fin-
gerprints extracted from all layers collectively to identify col-
luders, and study how to guarantee that all colluders have the
same probability of being detected accordingly.

A. Analysis of the Detection Statistics

To study the selection of collusion parameters in fair collu-
sion, we first need to analyze the detection statistics and calcu-
late each attacker’s probability of being detected.

For each frame in the base layer, the extracted fin-
gerprint can be rewritten as

(3)

where , , and are the number of colluders who re-
ceive copies of low, medium, and high resolution, respectively,
and is the detection noise. If the colluded
copy contains frames in the enhancement layers, for each frame

in the enhancement layer 1

(4)

where is the detection noise. If the colluded
copy contains all three layers, for each frame in the
enhancement layer 2

(5)

where is the detection noise.
With orthogonal fingerprint modulation as in Section II-B1,

since the originally embedded fingerprints are considered
as known signals during fingerprint detection, under the as-
sumption that the colluders have reasonably good estimates of

and are i.i.d. Gaussian , it follows
that given the colluder set , the detection statistics follow
Gaussian distribution [23].

when user is innocent, and when
is guilty. For a guilty colluder , depends on the
number of frames in the colluded copy and the number frames
that receives.

1) : When the colluded copy contains
all three layers, we can show that (see (6) at the bottom of
the next page).
Define , and

as the lengths of the fingerprints
that are embedded in the base layer, enhancement layer
1 and enhancement layer 2, respectively. With orthog-
onal fingerprint modulation in Section II-B1, we have
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,

, and . Therefore,

if
if

if

(7)

2) : When the colluded copy contains frames
in the base layer and the enhancement layer 1, similar to
the above analysis,

if
if

if

(8)

3) : When the colluded copy contains frames in the
base layer only, we have

if

if

if

(9)

B. Selection of the Collusion Parameters

With the above analysis of the detection statistics, given a
threshold , for colluder whose detection statistics follow
distribution , the probability that is captured is

, where
is the Gaussian tail function. Therefore,

all colluders share the same risk and are equally likely to be
detected if and only if their detection statistics have the same
mean.

1) : When the colluded copy contains
frames in all three layers, from (7), the colluders seek

and to satisfy

(10)

Note that

(11)

In addition, let and , we
have

(12)

Plugging (11) into (12), we have

(13)

Therefore, from (11) and (13), the colluders should choose
(14), shown at the bottom of the next page.

if

if

if

(6)
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From Section II-B2, the collusion parameters are required
to be in the range of . From (14), if and
only if

(15)

Furthermore, from (14), see (16) at the bottom of the page.
Given as in (14), . Consequently, from
(16), we have , where (see (17) at the bottom
of the page). If is not empty, then there exists
at least one such that and .
Note that , so if and only if ,
which is equivalent to

(18)

To summarize, in order to generate a colluded copy with
the highest temporal resolution under the fairness con-
straints, and have to
satisfy (15) and (18), and the colluders should choose the
collusion parameters as in (14).

2) : In this scenario, the colluded copy has
medium resolution and contains frames in the base layer
and the enhancement layer 1. For colluder
and colluder who receive copies of the

highest and the medium resolution, respectively, the
overall lengths of their fingerprints in the colluded copy
are the same and equal to . In this scenario, the
collusion attacks among colluders in subgroup and

are the same as in the simple case in [13] where all
attackers receive copies of the same resolution. Therefore,
during the intergroup collusion in Fig. 3, and
let and . Such
a parameter selection not only guarantees ,
but also ensures that for each frame in the colluded copy,
the energies of these two colluders’ fingerprints

and are reduced by the same ratio. For a given
, it is equivalent to

and (19)

With the above selected parameters, for colluder
and colluder

(20)

The colluders seek such that

(21)

and (14)

(16)

and (17)
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TABLE I
CONSTRAINTS AND THE SELECTION OF COLLUSION PARAMETERS DURING COLLUSION TO ACHIEVE FAIRNESS

and the solution is

(22)
With as in (22), if and only if

(23)

Given , from (19), it is straightforward to show
that , , , .
To summarize, under the fairness constraints,

and have to satisfy
(23) if the colluders wish to generate a colluded copy of
medium temporal resolution. The colluders should choose
the collusion parameters as in (19) and (22).

3) : When the colluded copy contains frames in the
base layer only, the colluders choose
with to satisfy

(24)

and the solution is

and (25)

In this scenario, there are no constraints on
and , and the

colluders can always generate a colluded copy containing
frames in the base layer only.

C. Summary of the Parameter Selection to Achieve Fairness
During Collusion

Table I summarizes the constraints and the parameter selec-
tion during collusion to ensure fairness in three scenarios, where
the colluded copy has the highest, medium and lowest temporal
resolution, respectively. From Table I, if the colluders want to
generate a colluded copy of higher resolution, the constraints
are more severe in order to distribute the risk of being detected
evenly among all attackers.

Note that to select the collusion parameters, the colluders
need to estimate , the ratio of the lengths of the
fingerprints embedded in different layers. Since adjacent frames
in a video sequence are similar to each other and have approx-
imately the same number of embeddable coefficients, the col-
luders can use the following approximation

.

IV. EFFECTIVENESS OF FAIR COLLUSION IN UNDERMINING

THE TRAITOR TRACING CAPABILITY

In this section, we investigate the effectiveness of collusion
in defeating the scalable fingerprinting systems, assuming that
the attackers choose the collusion parameters as in Table I.

A. Statistical Analysis

Assume that there are a total of users. From the analysis
in the previous section, if the colluders select the collusion pa-
rameters as in Table I, then given a colluder set , for each
user

if
if

(26)

where is the variance of the detection noise , and the
detection statistics are independent of each



ZHAO AND LIU: BEHAVIOR FORENSICS FOR SCALABLE MULTIUSER COLLUSION 319

other due to the orthogonality of the fingerprints. In addition,
for , see (27) at the bottom of the page. Note that

(28)

Similarly, we can also show that

(29)

Therefore, under the fairness constraints, in (27) is larger
when the colluded copy has higher resolution.

Given a threshold , from (26), we can have

and

(30)

From (27) and (30), the effectiveness of fair collusion in de-
feating the scalable fingerprinting systems depends on the total
number of colluders as well as the temporal resolution of the
colluded copy . For a fixed resolution of the colluded copy

, when there are more colluders in the systems, the

colluders are less likely to be captured and the collusion attack
is more effective. For a fixed total number of colluders , when
the colluded copy has a higher resolution, the extracted finger-
print is longer and provides more information of the colluders’
identities to the detector. Therefore, the colluders have a larger
probability of being detected. During collusion, the colluders
have to take into consideration the tradeoff between the risk of
being detected and the resolution of the colluded copy.

B. Simulation Results With Ideal Gaussian Models

When simulating the scalable fingerprinting systems and
collusion attacks using ideal Gaussian models, we test on
a total of 40 frames as an example. Following the example
in Section II-A, we consider a temporally scalable coding
system where frame are encoded in the
base layer, frame are in the enhance-
ment layer 1, and the enhancement layer 2 consists of frame

. For user , he receives the base
layer only and reconstructs a fingerprinted copy of 10 frames
including frame , and frame 37. For user
who receives the base layer and the enhancement layer 1,
his fingerprinted copy includes all the 20 odd frames. User

subscribes to all three layers and receives a
fingerprinted copy of all 40 frames.

From the human visual models [15], not all coefficients are
embeddable due to imperceptibility constraints. For real video
sequences like “akiyo” and “carphone,” the number of embed-
dable coefficients in each frame varies from 3000 to 7000, de-
pending on the characteristics of the video sequences. In our
simulations, we assume that the length of the fingerprints em-
bedded in each frame is 5000, and the lengths of the finger-
prints embedded in the base layer, enhancement layer 1 and
enhancement layer 2 are , and

, respectively. We assume that there are a total
of users and . We
first generate independent vectors following Gaussian distribu-
tion with , and then apply Gram–Schmidt
orthogonalization to produce fingerprints that satisfy (1). In each
fingerprinted copy, fingerprints embedded in adjacent frames
are correlated with each other.

We assume that , , are the number
of colluders in subgroups , and , respectively.
During collusion, the colluders apply the intragroup collusion
followed by the intergroup collusion as in Fig. 3. Furthermore,
we assume that the detection noise follows Gaussian distribution
with zero mean and variance .

In Fig. 4, we fix the ratio , and
assume that the colluded copy has medium resolution and in-

if

if

if

(27)
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Fig. 4. Effectiveness of the collusion attacks on scalable fingerprinting systems. Assume that there are a total ofM = 450 users and jU j = jU j = jU j =
150. N = 50 000, N = 50 000 and N = 100 000. K : K : K = 1 : 1 : 1 and F = F [ F . � =� = 2. P = 10 in (a), and
E[F ] = 10 in (b).

cludes all the 20 odd frames. In Fig. 4(a), we select the threshold
to fix the probability of accusing at least one innocent user

as and plot the probability of capturing at least one col-
luder when the total number of colluders increases. In
Fig. 4(b), and we plot the expected fraction of
the colluders that are captured when increases. From Fig. 4,
the collusion is more effective in removing traces of the finger-
prints when there are more colluders.

We then fix the total number of colluders , and com-
pare the effectiveness of the collusion attacks when the temporal
resolution of the colluded copy changes. Define the lines
and as (see (31) and (32) at the bottom of the page), re-
spectively, as shown in Fig. 5(a). Line and Line are the
boundaries of the two constraints to achieve fairness, respec-
tively, when generating an attacked copy of the highest resolu-
tion. For a fixed , we study the effectiveness of col-
lusion when takes different values on Line

and Line , respectively. In our simulations, we assume
that the colluders generate a colluded copy of the highest pos-
sible resolution under the constraints in Table I. Fig. 5(b) plots
the regions where the colluders can generate a colluded copy

of high resolution and regions where the colluders can gen-
erate a medium resolution copy under the fairness constraints
in Table I.

Fig. 6 shows the simulation results when is fixed
and takes different values on Line (31).
In Fig. 6, a given value of corresponds to a unique point
on Line and, therefore, a unique triplet .
Fig. 6(a) shows the number of frames in the colluded copy .

when the attacked copy has medium resolution and
when attackers generate a copy including all three

layers. Fig. 6(b) shows the means of the detection statistics of the
guilty colluders. In Fig. 6(c), we select the threshold used to fix

and we compare of the collusion attacks when
the triplet takes different values on Line .
In Fig. 6(d), by selecting the threshold in the
simulation runs and we compare of the fair collusion for
different triplets on Line .

Similarly, Fig. 7 shows the simulation results when is
fixed as 150 and moves on Line (32). In
Fig. 7, each represents one point on Line and a unique

. Fig. 7(a) plots the total number of frames in

and (31)

(32)



ZHAO AND LIU: BEHAVIOR FORENSICS FOR SCALABLE MULTIUSER COLLUSION 321

Fig. 5. (a) LineAB of (31) and LineCD of (32), and (b) regions where colluders can generate a medium-resolution or a high-resolution copy while still ensuring
fairness of collusion. Assume that there are a total of M = 450 users and jU j = jU j = jU j = 150. (N ;N ;N ) = (50 000;50 000;100 000).
The total number of colluders is fixed asK = 150. The x axis is the number of colluders who receive the base layer only, and the y axis is the number of colluders
who receive all three layers. Each point in the figure represents a unique triplet (K ;K ;K ) with K = K �K �K .

Fig. 6. Simulation results of fair collusion when (K ;K ;K ) takes different values on Line AB (31). The x axis is the number of colluders who receive
all three layers K . Assume that there are a total of M = 450 users and jU j = jU j = jU j = 150. (N ;N ;N ) = (50 000;50 000;100 000).
The total number of colluders is fixed as K = 150. � =� = 2. P = 10 in (c), and E[F ] = 10 in (d).
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Fig. 7. Simulation results of fair collusion when (K ;K ;K ) takes different values on Line CD (32). The x axis is the number of colluders who receive
the base layer only K . M = 450 and jU j = jU j = jU j = 150. (N ;N ;N ) = (50 000;50 000;100 000).K = 150. � =� = 2. P = 10
in (c), and E[F ] = 10 in (d).

the colluded copy. , , and correspond
to the scenario where the colluded copy has low, medium, and
high resolution, respectively. Fig. 7(b) shows the mean of the
guilty colluders’ detection statistics. In Fig. 7(c), is fixed
as and we compare when moves
from left to right on Line . Fig. 7(d) fixes
and plots for different on Line .

From Figs. 6 and 7, when the colluded copy has higher tem-
poral resolution, the attacked copy contains more information of
the attackers’ fingerprints, and the colluders have a larger prob-
ability to be captured. It is in agreement with our statistical anal-
ysis in Section IV-A. The colluders have to consider the tradeoff
between the probability of being detected and the resolution of
the attacked copy during collusion.

Note that from Figs. 6 and 7, if we fix the total number of
colluders and the resolution of the colluded copy ,

and have larger values when is smaller (or equiv-
alently, when is larger). This is because, with fixed

and fixed , from (27)

(33)

is an increasing function of . Therefore, takes larger values
when increases, and the fair collusion attacks are less effec-
tive. The analysis is similar with fixed and
fixed .

V. RESISTANCE OF THE SCALABLE FINGERPRINTING SYSTEMS

TO COLLUSION ATTACKS

Analysis of the collusion attacks helps evaluate the traitor
tracing capacity of digital fingerprinting systems, and provide
guidance to the digital rights enforcers on the design of collu-
sion resistant fingerprinting systems [9], [10], [24]. In this sec-
tion, we analyze the collusion resistance of the scalable finger-
printing systems in Section II-B, and quantify the traitor tracing
capacity by studying , the maximum number of colluders
that the fingerprinting systems can successfully resist under the
system requirements.

A. Catch One

In the catch one scenario, the fingerprinting systems wish to
maximize the chance to capture one colluder while minimizing
the probability of falsely accusing an innocent user. An example
of such a scenario is to provide trustworthy digital evidence in
the court of law. The performance criteria in this scenario are
the probability of capturing at least one colluder and the
probability of accusing at least one innocent user . From
the detector’s point of view, the detector fails if either it does
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Fig. 8. Collusion resistance in the catch one scenario. jU j : jU j : jU j = 1 : 1 : 1 and (N ;N ;N ) = (50 000;50 000;100 000). � =� = 2.
 = 0:8 and  = 10 . In (a), there are a total of M = 450 users in the system and jU j = jU j = jU j = 150. We plot P and P versus the total
number of colluders K . (b) illustrates K and K versus the total number of users M .

not capture any of the colluders or it falsely accuses an innocent
user as a colluder. Consequently, the system requirements are

and (34)

1) Upper and Lower Bounds of : To quantify the
collusion resistance of the scalable fingerprinting system in
Section II-B and analyze , we first need to analyze and

. From (27) and (30), if we fix the probability of accusing at
least one innocent user , given the system parameters

and , the performance
of the detector in Section II-B3 depends on the number of
colluders in different subgroups and the
temporal resolution of the colluded copy . For a fixed total
number of colluders , we define

fairness constraints in Table I are satisfied (35)

and

fairness constraints in Table I are satisfied (36)

reaches the upper bound when the colluders generate
a colluded copy of the highest resolution; while is equal to

when the colluded copy contains the base layer only.
Fig. 8(a) shows an example of and when there
are a total of users and . From Fig. 8(a),
the fingerprinting system’s performance degrades when be-
comes larger. Under the requirements and

, we can see from Fig. 8(a) that when the total number

of colluders is larger than 210, and the finger-
printing systems will always fail no matter which resolution
the colluded copy has. When there are fewer than 60 attackers,

and the colluders can never bypass the detector
without being detected, even if they only generate a colluded
copy of low resolution.

In the catch one scenario, given the system parameters
and the total number of users , we

further define

and (37)

Given the parameters and
, when the total number of colluders

is smaller than , no matter what values and
take, the system requirements of (34)

are always satisfied. On the contrary, if the total number of
colluders is larger than , for all possible values of
and , the detector will always fail under the
system requirements. Therefore, and provide the
upper and lower bounds of , respectively.

From the colluders’ point of view, if colluders can collect no
more than independent copies, no matter how they col-
lude, the collusion will always fail. However, if they manage to
collect more than copies, they can be guaranteed success
even if they generate a colluded copy of the highest resolution.
From the content owner’s point of view, if he/she can ensure
that potential colluders cannot collect more than indepen-
dent copies, the fingerprinting system is essentially collusion
resistant.

Fig. 8(b) shows and as functions of the total
number of users under the system requirements
and . In Fig. 8(b),

and . From
Fig. 8(b), with thousands of users, the fingerprinting system can
withstand 50 colluders if the colluded copy has low resolution,
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and it can resist attacks with up to 150 colluders if the colluded
copy has high resolution. Furthermore, if the content owner dis-
tributes no more than 100 copies, the detection performance will
always satisfy the requirement (34) even if all users participate
in collusion. Consequently, the fingerprinting system is also col-
lusion-secure if .

In Fig. 8(b), first increases and then decreases, as the
total number of users increases. The intuitive explanation of
this behavior is the same as in [9]. When the total number of
users is small (e.g., ), even if all users participate in
collusion, the fingerprinting system can still successfully cap-
ture them with , as shown in Fig. 8(a). Therefore, when

is small, and it increases as increases. When
continues to increase, due to the energy reduction of the em-

bedded fingerprints during collusion, starts to drop when
there are more colluders, and the fingerprinting system is more
likely to make errors when identifying colluders: either it fails to
detect any colluders or falsely accuses innocents. Thus,
drops as increases when the total number of users is suffi-
ciently large.

2) Calculation of and : To calculate and
, we need to first find and . From the anal-

ysis in Section IV-A, the detector has the worst performance
when the colluded copy contains frames in the base layer only
and . In this scenario, for a guilty colluder , the
mean of his/her detection statistics is , where

is the length of the fingerprints embedded in the base layer
and is the variance of the fingerprint. Therefore, from (30),
for a given , the lower bound of is

(38)

where is the variance of the detection noise and the detection
threshold is chosen to satisfy .

To calculate the upper bound of , given and
, we define (39) and (40), shown at the bottom of the page.
From Section IV-A, for a given , is maximized when

the colluded copy has the highest possible temporal resolution

under the fairness constraints. If , then there exists
at least one triplet that satisfies the fairness
constraints in Table I for generating an attacked copy of the
highest resolution with . Therefore,
see (41), shown at the bottom of the next page. From (30),
maximizing when is equivalent to
maximizing the corresponding mean of the detection statistics

. It is also equivalent to
minimizing the denominator of , which is

.
Consequently, the optimization problem of (41) can be simpli-
fied to

(42)

with the same constraints as in (41). We can use linear program-
ming [25] to solve the optimization problem of (42), and then
calculate

(43)

If and , no matter what value the
triplet takes, the colluders cannot gen-
erate a colluded copy of the highest resolution while still
achieving fairness of collusion. However, there exists at least
one with which the colluders can generate an
attacked copy of medium resolution with and
still guarantee the equal risk of all colluders. In this scenario,
the calculation of is similar to that when and
not repeated here.

If and , to ensure that all attackers have
the same risk, the colluders can only generate a colluded copy of
the lowest resolution with . In this scenario,

.
Once we obtain and , the analysis of

and is the same as in [9] and omitted.

(39)

and

(40)
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B. Catch More

In the catch more scenario, the goal of the fingerprinting
system is to capture as many colluders as possible, though
possibly at a cost of accusing more innocent users. For this
scenario, the set of performance criteria consists of the expected
fraction of colluders that are successfully captured , and
the expected fraction of innocent users that are falsely placed
under suspicion . The system requirements for such
applications are and .

Similar to the catch one scenario, if we fix as ,
given , , and the total
number of colluders , we define

fairness constraints in Table I are satisfied (44)

and

fairness constraints in Table I are satisfied (45)

which are the upper and lower bounds of , respectively.
and are decreasing functions of since the

collusion is more effective in undermining the tracing capacity
with larger number of attackers. Then, we define

and (46)

which are the upper and lower bounds of in the catch more
scenario, respectively. The analysis of and

in the catch more scenario is similar to that in the
catch one scenario and thus omitted. It is worth mentioning that
similar to the scenario where users receive copies of the same
resolution [22], in scalable fingerprinting systems, the detection
threshold is only determined by , and is not affected
by the total number of users in the catch more scenario.

Fig. 9 shows the simulation results on the collusion resis-
tance of the fingerprinting systems in the catch more scenario.
In our simulation,
and . Fig. 9(a) plots and versus the
total number of colluders when

and . Under the requirements that
and , from Fig. 9(a), is approximately
180 and is around 70. Fig. 9(b) plots and
versus with fixed . From Fig. 9(b), the finger-
printing system can resist a few dozen to hundreds of colluders,
depending on the resolution of the colluded copy as well as the
system requirements. If the fingerprinting system can afford to
put a large fraction of innocents under suspicion, it can with-
stand more colluders.

C. Catch All

In this scenario, the fingerprints are designed to maximize
the probability of capturing all colluders, while maintaining
an acceptable amount of innocents being falsely accused.
This goal arises when the data’s security is of great concern
and any information leakage could result in serious dam-
ages. Assume that there are a total of users and a total

colluders in the system. This set of performance criteria
consists of measuring the probability of capturing all col-
luders , and the efficiency rate

that describes the
number of innocents falsely accused per colluder successfully
captured. The system requirements for these applications are

and .
Similar to the catch one scenario, given

and , for a fixed total number of colluders and
fixed , define

fairness constraints in Table I are satisfied (47)

and

fairness constraints in Table I are satisfied (48)

which are the upper and lower bounds of , respectively. We
further define

and (49)

(41)
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Fig. 9. Collusion resistance in the catch more scenario. (N ;N ;N ) = (50 000;50 000;100 000). � =� = 2. In (a), jU j = jU j = jU j =
300 and � = 0:01. We plot F and F versus the total number of colluders. In (b), � = 0:5, and we plot K and K under different
requirements of � .

Fig. 10. Collusion resistance in the catch all scenario. jU j : jU j : jU j = 1 : 1 : 1 and (N ;N ;N ) = (50 000;50 000;100 000). � =� = 2.
� = 0:99 and � = 0:01. In (a), M = 450 and jU j = jU j = jU j = 150. We plot R and R versus the total number of colluders.
(b) shows K and K versus the total number of users M .

as the upper and lower bounds of , respectively.
The analysis of and in the catch all scenario
is similar to that in the catch one scenario and not repeated.

In our simulations of the catch one scenario, we let
and

. Fig. 10(a) plots and
versus the total number of colluders when there

are users and . We consider a scenario
that is required to catch all colluders with probability larger
than 0.99 and accuse no more than on in-
nocent for every 100 colluders captured . Under
these requirements, from Fig. 10(a), the attacker should

collect more than different copies to ensure the
success of collusion, and the scalable fingerprinting system
is collusion free when there are fewer than
colluders. Fig. 10(b) shows and versus the
total number of users when and .
From Fig. 10(b), in the catch all scenario with thousands
of users, the scalable fingerprinting systems can survive
collusion by 20 to 60 attackers, depending on the resolution
of the colluded copy. It is collusion-secure if the content
owner distributes no more than 30 different copies. The
non-monotonic behavior in Fig. 10 can be explained in the
same way as in the catch one scenario.
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Fig. 11. Simulation results on the first 40 frames of sequence “carphone.” The base layer contains frame F = f1; 5; . . . ; 37g, the enhancement layer 1 contains
frame F = f3;7; . . . ; 39g, and the enhancement layer 2 contains frame F = f2; 4; . . . ; 40g. Assume that there are a total of M = 450 users and a fixed
K = 150 colluders. jU j = jU j = jU j = 150. In (a), (c), and (e), each value of K corresponds to a unique triplet (K ;K ;K ) on Line AB
(31). In (b), (d), and (f), each value of K represents a unique triplet (K ;K ;K ) on Line CD (32). P = 10 in (c) and (d), and E[F ] = 10 in
(e) and (f).

VI. SIMULATION RESULTS ON VIDEO SEQUENCES

In our simulations on real videos, we test on the first 40 frames
of sequence “carphone” as an example. Following Section II-A,
we choose , and

as an example of the temporal scala-
bility. Assume that there are a total of users and

. We adopt the human visual
model based spread-spectrum embedding in [15], and embed
the fingerprints in the DCT domain. The lengths of the em-
bedded fingerprints in the base layer, enhancement layer 1 and
enhancement layer 2 are , and

, respectively. We first generate independent
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vectors following Gaussian distribution and apply
Gram-Schmidt orthogonalization to produce fingerprints sat-
isfying the strict orthogonality and equal energy requirements
in (1). In each fingerprinted copy, the fingerprints embedded in
different frames are correlated with each other, depending on
the similarity between the host frames.

During collusion, we fix the total number of colluders as
and assume that the collusion attack is also in the

DCT domain. In our simulations, the colluders apply the intra-
group collusion attacks followed by the intergroup attacks as in
Section II-B2. We adjust the power of the additive noise such

that for every frame in
the colluded copy. In our simulations, we assume that the col-
luders generate a colluded copy of the highest possible resolu-
tion under the fairness constraints.

At the detector’s side, we consider a non-blind detection sce-
nario where the host signal is removed from the colluded copy
before colluder identification process. The detector follows the
detection process in Section II-B3 and estimates the indices of
the colluders .

Fig. 11 shows the simulation results. In Fig. 11(a), (c), and (e),
the same as in Fig. 6, the axis is the number of colluders
who receive all three layers , and each value of rep-
resents a unique triplet on Line (31). In
Fig. 11(b), (d), and (f), the same as in Fig. 7, the axis is the
number of colluders who receive the base layer only, and a given

corresponds to a triplet on Line (32).
Fig. 11(a) and (b) show the total number of frames in the col-
luded copy , and , and when the
colluded copy has the lowest, medium and highest resolution,
respectively. In Fig. 11(c) and (d), we select the threshold to fix

and compare when takes dif-
ferent values. In Fig. 11(e) and (f), is fixed as by
selecting the threshold in the simulation runs, and we compare

of the collusion attacks with different .
From Fig. 11, the effectiveness of collusion in defeating the

scalable fingerprinting systems depends on the resolution of the
colluded copy. When the colluded copy has higher resolution,
the extracted fingerprint gives the detector more information
about the colluders’ identities, and the attackers take a larger risk
of being detected. The simulation results on real videos agree
with our analytical results and are comparable with those simu-
lation results in Section IV-B.

VII. CONCLUSION

In this paper, we have studied the behavior forensics in
multimedia fingerprinting and analyzed the dynamics among
colluders to ensure fairness of collusion. We have investigated
how to achieve fairness of collusion when fingerprinted copies
used in collusion have different resolutions, and analyzed the
effectiveness of such fair collusion in removing the fingerprints.
We have also examined the collusion resistance of the scalable
fingerprinting systems and evaluated the maximum number of
colluders that they can withstand.

We first investigated how to distribute the risk of being de-
tected evenly to all colluders when they receive copies of dif-
ferent resolutions due to network and device heterogeneity. We

showed that higher resolution of the colluded copy puts more
severe constraints on achieving fairness of collusion. We then
analyzed the effectiveness of such fair collusion attacks. Both
our analytical and simulation results showed that the colluders
are more likely to be captured when the colluded copy has higher
resolution. The colluders have to take into consideration the
tradeoff between the probability of being detected and the reso-
lution of the colluded copy during collusion.

We also analyzed the collusion resistance of the scalable fin-
gerprinting systems for various fingerprinting scenarios with
different requirements. We evaluated the maximum number of
colluders that the fingerprinting systems can resist, and showed
that the scalable fingerprinting systems can withstand dozens to
hundreds of colluders, depending on the resolution of the col-
luded copy as well as the system requirements. We also provided
the lower and upper bounds of . From the colluders’ point
of view, tells attackers how many independent copies are
required to guarantee the success of collusion under all circum-
stances. From the content owner’s point of view, to achieve col-
lusion free, a desired security requirement is to make the poten-
tial colluders very unlikely to collect more than copies.

REFERENCES

[1] F. Hartung and M. Kutter, “Multimedia watermarking techniques,”
Proc. IEEE, vol. 87, no. 7, pp. 1079–1107, Jul. 1999.

[2] I. Cox, J. Killian, F. Leighton, and T. Shamoon, “Secure spread spec-
trum watermarking for multimedia,” IEEE Trans. Image Process., vol.
6, no. 12, pp. 1673–1687, Dec. 1997.

[3] W. Trappe, M. Wu, Z. Wang, and K. J. R. Liu, “Anti-collusion finger-
printing for multimedia,” IEEE Trans. Signal Process., vol. 51, no. 4,
pp. 1069–1087, Apr. 2003.

[4] Z. J. Wang, M. Wu, W. Trappe, and K. J. R. Liu, “Group-oriented fin-
gerprinting for multimedia forensics,” EURASIP J. Applied Signal Pro-
cessing, Special Issue on Multimedia Security and Rights Management,
vol. 2004, no. 14, pp. 2142–2162, Nov. 2004.

[5] F. Zane, “Efficient watermark detection and collusion security,” in
Proc. 4th Int. Conf. Financial Cryptography, Feb. 2000, vol. 1962,
Lecture of Notes in Computer Science, pp. 21–32.

[6] J. Dittmann, P. Schmitt, E. Saar, J. Schwenk, and J. Ueberberg, “Com-
bining digital watermarks and collusion secure fingerprints for digital
images,” SPIE J. Electron. Imag., vol. 9, no. 4, pp. 456–467, Oct. 2000.

[7] I. Cox and J. P. Linnartz, “Some general methods for tampering with
watermarking,” IEEE J. Select. Areas Commun., vol. 16, no. 4, pp.
587–593, May 1998.

[8] F. Petitcolas, R. Anderson, and M. Kuhn, “Attacks on copyright
marking systems,” in Proc. 2nd Workshop Information Hiding, Apr.
1998, Lecture Notes in Computer Science, pp. 218–238.

[9] Z. J. Wang, M. Wu, H. Zhao, W. Trappe, and K. J. R. Liu, “Anti-col-
lusion forensics of multimedia fingerprinting using orthogonal modu-
lation,” IEEE Trans. Image Process., vol. 14, no. 6, pp. 804–821, Jun.
2005.

[10] F. Ergun, J. Killian, and R. Kumar, “A note on the limits of collusion-
resistant watermarks,” in Proc. Advances in Cryptology—EuroCrypto,
2001, vol. 1592, Lecture Notes in Computer Science, pp. 140–149.

[11] J. Su, J. Eggers, and B. Girod, “Capacity of digital watermarks subject
to an optimal collusion attacks,” in Proc. Eur. Signal Processing Conf.,
2000.

[12] H. Stone, Analysis of Attacks on Image Watermarks With Randomized
Coefficients NEC Res. Inst., 1996, Tech. Rep. 96-045.

[13] H. Zhao, M. Wu, Z. J. Wang, and K. J. R. Liu, “Forensic analysis of
nonlinear collusion attacks for multimedia fingerprinting,” IEEE Trans.
Image Process., vol. 14, no. 5, pp. 646–661, May 2005.

[14] Y. Wang, J. Ostermann, and Y. Zhang, Video Processing and Commu-
nications, 1st ed. Englewood Cliffs, NJ: Prentice-Hall, 2001.

[15] C. Podilchuk and W. Zeng, “Image adaptive watermarking using visual
models,” IEEE J. Select. Areas Commun., vol. 16, no. 4, pp. 525–540,
May 1998.

[16] M. Swanson, B. Zhu, and A. Tewfik, “Multiresolution scene-based
video watermarking using perceptual models,” IEEE J. Select. Areas
Commun., vol. 16, no. 4, pp. 540–550, May 1998.



ZHAO AND LIU: BEHAVIOR FORENSICS FOR SCALABLE MULTIUSER COLLUSION 329

[17] M. Holliman and N. Memon, “Counterfeiting attacks and blockwise
independent watermarking techniques,” IEEE Trans. Image Process.,
vol. 9, pp. 432–441, Mar. 2000.

[18] D. Kiroski and F. A. P. Petitcolas, “Blind pattern matching attack
on watermarking systems,” IEEE Trans. Signal Process., vol. 51, pp.
1045–1053, 2003.

[19] G. Doerr, J. L. Dugelay, and L. Grange, “Exploiting self-similarities to
defeat digital watermarking systems: A case study on still images,” in
Proc. ACM Multimedia and Security Workshop, 2004.

[20] K. Su, D. Kundur, and D. Hatzinakos, “Statistical invisibility for col-
lusion-resistant digital video watermarking,” IEEE Trans. Multimedia,
vol. 7, no. 1, pp. 43–51, Feb. 2005.

[21] ——, “Spatially localized image-dependent watermarking for statis-
tical invisibility and collusion resistance,” IEEE Trans. Multimedia,
vol. 7, no. 1, pp. 52–66, Feb. 2005.

[22] Z. J. Wang, M. Wu, H. Zhao, W. Trappe, and K. J. R. Liu, “Resistance
of orthogonal Gaussian fingerprints to collusion attacks,” in Proc. IEEE
Int. Conf. Acoustics, Speech and Signal Processing, Apr. 2003.

[23] H. V. Poor, An Introducton to Signal Detection and Estimation, 2nd
ed. New York: Springer Verlag, 1999.

[24] J. Killian, T. Leighton, L. R. Matheson, T. G. Shamoon, R. Tajan, and
F. Zane, Resistance of Digital Watermarks to Collusive Attacks Dept.
Computer Science, Princeton Univ., Princeton, NJ, 1998, Tech. Rep.
TR-585-98.

[25] G. Dantzig, Linear Programming and Extensions. Princeton, NJ:
Princeton Univ. Press, 1963.

H. Vicky Zhao (M’05) received the B.S. and M.S.
degrees in electrical engineering from Tsinghua
University, Beijing, China, in 1997 and 1999, respec-
tively, and the Ph.D. degree in electrical engineering
from the University of Maryland, College Park, in
2004.

She has been a Research Associate with the
Department of Electrical and Computer Engineering
and the Institute for Systems Research, University
of Maryland. Since 2006, she has been an Assistant
Professor with the Department of Electrical and

Computer Engineering, University of Alberta, Edmonton, AB, Canada. She
coauthored the book Multimedia Fingerprinting Forensics for Traitor Tracing
(Hindawi, 2005). Her research interests include information security and
forensics, multimedia, digital communications, and signal processing.

K. J. Ray Liu (F’03) is Professor and Associate
Chair, Graduate Studies and Research of the
Graduate Studies and Research of Electrical and
Computer Engineering Department, University of
Maryland, College Park. His research contributions
encompass broad aspects of wireless communica-
tions and networking, information forensics and
security, multimedia communications and signal
processing, bioinformatics and biomedical imaging,
and signal processing algorithms and architectures.

Dr. Liu is the recipient of best paper awards from
the IEEE Signal Processing Society (twice), IEEE Vehicular Technology So-
ciety, and EURASIP, IEEE Signal Processing Society Distinguished Lecturer,
EURASIP Meritorious Service Award, and the National Science Foundation
Young Investigator Award. He also received Poole and Kent Company Senior
Faculty Teaching Award and Invention of the Year Award, both from the
University of Maryland. He is Vice President—Publications and on the Board
of Governor of IEEE Signal Processing Society. He was the Editor-in-Chief
of IEEE Signal Processing Magazine and the founding Editor-in-Chief of
EURASIP Journal on Applied Signal Processing.


