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ABSTRACT

Multiuser collusion is an effective attack against traitor-tracing
multimedia fingerprinting, where a group of attackers collectively
mount attacks to reduce their risk of being detected. During collu-
sion, each attacker wishes to maximize his or her own payoff. To
resolve the conflict, colluders have to negotiate with each other and
achieve fair collusion. An attacker also needs to decide with whom
he or she wants to collude. Though colluding with more people helps
further reduce the risk, it also makes an attacker share with more
people the rewards from illegal usage of multimedia. This paper
uses game theory to model the complex colluder dynamics and an-
alyzes the tradeoff between the risk and the rewards. We study how
the selection of fellow attackers affects each colluder’s utility, and
analyze the optimum strategies that maximize colluders’ payoffs.

Index Terms— Multimedia forensics, security, game theory

1. INTRODUCTION

Digital fingerprinting is an emerging technology that offers proac-
tive post-delivery protection of multimedia. It labels each distributed
copy with the corresponding user’s ID, known as a fingerprint, which
can be used to trace traitors who use their copies illegally. Mul-
tiuser collusion attack is a powerful attack against digital finger-
printing, where a group of attackers collectively mount attacks to
attenuate the identifying fingerprints. To design collusion-resistant
fingerprints and provide reliable traitor-tracing performance, analy-
sis of the strategies and the effectiveness of collusion is a crucial part
of research in multimedia forensics.

Colluders form a special social network during collusion. They
share the rewards from the illegal usage of multimedia content as
well as the risk of being detected by the digital rights enforcer. Ev-
ery colluder wishes to maximize his or her own payoff, and they have
conflicting objectives. They negotiate with each other to resolve this
conflict and achieve a notion of fairness [1]. A game-theoretic frame-
work was proposed in [2] to analyze this complex dynamics among
colluders, and the negotiation among colluders was modeled as a
bargaining problem.

In addition to fairness, another important issue for colluders is
to select with whom to collude and decide how many people to col-
lude with. Most prior work considered the scenario where collud-
ers aim to minimize their risk of being detected during collusion.
In this scenario, when there are more colluders, the energy of each
contributing fingerprint is reduced by a larger ratio, and thus, each
attacker has a smaller probability of being detected [1]. Therefore,
colluders should find as many colluders as possible to minimize their
risk. However, a larger total number of colluders means sharing the
rewards with more people and thus benefiting less from collusion.
Thus, from reward maximization’s point of view, attackers prefer to
collude with fewer people. Colluders need to address this tradeoff
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between the risk and the rewards, which was seldom studied in the
current literature.

This paper focuses on the tradeoff analysis between the risk and
the rewards during collusion and analyzes the optimum strategies
that an attacker should follow to select with whom to collude. We
follow the game-theoretic modeling of colluder dynamics in [2], and
consider both the colluders’ probability of being detected and the
rewards from illegal usage of multimedia when defining the utility
functions. In this paper, we investigate the impact of the total num-
ber of colluders on each attacker’s utility, and analyze the optimum
fellow-attacker-selection strategies that maximize their payoffs.

The rest of the paper is organized as follows. Section 2 intro-
duces the multimedia fingerprinting system model, and Section 3
discusses the game-theoretic formulation of the complex colluder
dynamics. Section 4 studies the impact of the number of colluders
on each attacker’s utilities, and analyzes how an attacker should se-
lect with whom to collude in order to maximize his or her payoff.
Conclusions are drawn in Section 5.

2. MULTIMEDIA FINGERPRINTING SYSTEM MODEL

2.1. Scalable Video Coding

With recent advances in networks, communications and multimedia,
scalable video coding is widely adopted to accommodate heteroge-
nous networks and devices with different storage and computing ca-
pability. It decomposes video sequence into different layers of differ-
ent priority. The base layer contains the most important information
of the video and is received by all users, and the enhancement layers
gradually refine the reconstructed sequence at the decoder’s side and
are only received by users with sufficient bandwidth. Without loss of
generality, in this paper, we consider two-layer temporal scalability,
and we use frame skipping and frame copying to implement tempo-
ral decimation and interpolation, respectively [3]. For example, with
MPEG-2 video coding, the base layer may include all the I frames,
and the enhancement layer contains all the P and B frames.

Define Fb and Fe as the sets containing the indices of the frames
that are encoded in the base layer and the enhancement layer, respec-
tively. |Fb| and |Fe| are the number of frames in the base layer and
the enhancement layer, respectively. For user u(i), F (i) contains the
indices of the frames that he or she receives from the content owner,
and define f (i) = |F (i)|/(|Fb| + |Fe|) as the normalized temporal
resolution. If F (i) = Fb and u(i) receives a low-resolution copy,

then f (i) = fb
4
=|Fb|/(|Fb|+ |Fe|) < 1. If u(i) receives both layers

from the content owner, then f (i) = 1.

2.2. Multimedia Fingerprinting

Fingerprint Embedding We use the spread spectrum embedding
[4, 5] to embed fingerprints in the host signal. Let Sj be the jth
frame in the video, and for each user u(i) who subscribes to frame j,
the content owner generates a unique fingerprint W

(i)
j of the same



length as Sj . We consider orthogonal fingerprint modulation [1],
where fingerprints assigned to different users are orthogonal to each
other and have the same energy. The fingerprinted frame j that u(i)

receives is X
(i)
j = Sj + JNDjW

(i)
j . JND [5] here is used to

control the energy of the embedded fingerprints and make the fin-
gerprinted copy be perceptually the same as the original one.
Multi-user Collusion During collusion, a few attackers mount at-
tack collectively and generate a new copy where the fingerprints are
attenuated. Let F c be the set containing the indices of the frames in
the colluded copy, and fc = |Fc|/(|Fb| + |Fe|) is the normalized
resolution of the colluded copy. fc = fb when colluders generate a
copy with the base layer only, and fc = 1 when the colluded copy
includes both layers.

In this paper, we consider the scenario where colluders wish to
generate a high-resolution copy whenever possible. Following the
two-stage collusion model in [6], colluders first divide into two non-
overlapping subgroups: SCb is the set including the indices of the
colluders who receive the base layer only, and SCbe contains the
indices of the colluders who subscribe to the high-quality version.
Kb = |SCb| and Kbe = |SCbe| are the numbers of colluders in
SCb and SCbe, respectively. Then, colluders apply the intra-group
collusion: for each frame j in the base layer, colluders in SCb gen-
erate Zb

j =
∑

k∈SCb X
(k)
j /Kb; and for each frame j in the video

sequence, colluders in SCbe calculate Zbe
j =

∑
k∈SCbe X

(k)
j /Kbe.

Finally, the colluders apply the inter-group collusion: for each frame
j in the base layer, colluders generate Vj = βZb

j +(1−β)Zbe
j +nj

where 0 ≤ β ≤ 1 is the collusion parameter; and for each frame j
in the enhancement layer, Vj = Zb,e

j + nj . n is additive noise to
further deter the detection performance.
Fingerprint Detection When identifying colluders, the fingerprint
detector first extracts the fingerprint Y from the colluded copy V.
For each user u(i), to measure the similarity between the extracted
fingerprint Y and the original fingerprint W(i), the fingerprint de-
tector calculates the correlation-based detection statistic TN (i) =
〈Y,W(i)〉/||W(i)||, compares it with a pre-determined threshold
h, and identifies u(i) as a suspicious colluder if TN (i) > h.

3. GAME-THEORETIC FORMULATION OF COLLUDER
DYNAMICS

During collusion, different attackers have different objectives, and
an important issue is to reach an agreement regarding how to fairly
distribute the risk and the rewards. Following [2], we model this
complex dynamics among colluders as a bargaining problem, and
use game theory [7] to analyze how colluders negotiate with each
other.

3.1. Definition of the Utility Function

The first step in the game-theoretic formulation is to define the util-
ity function π. Following [2], we consider a simple scenario where
colluders who receive copies of the same resolution agree to have
equal payoffs. Thus, there are two players in the game: colluders in
SCb act as a single player and they have the same utility πb, while
those in SCbe act as a single player and have the same utility πbe.

Taking into consideration both the risk and the rewards, a natural
definition of the utility function is the expected payoff that u(i) re-
ceives by participating in collusion, that is, π(i) = −P

(i)
d L(i)+(1−

P
(i)
d )R(i). Here, P

(i)
d is u(i)’s probability of being detected, L(i) is

his or her loss if u(i) is captured by the fingerprint detector, and R(i)

is the rewards that u(i) receives if he or she successfully escapes be-
ing detected. In this paper, we normalize L(i) = 1 for all colluders.
Also, we let R(i) be an increasing function of the colluded copy’s
resolution fc. This is because when the colluded copy has a higher
resolution and better quality, colluders can redistribute the copy at
a higher price and thus profit more from collusion. In addition, we
consider the scenario where colluders receive more rewards if they
contribute more, and let R(i) be an increasing function of f (i), the
normalized resolution of the fingerprinted copy from u(i).

Based on the above discussion, we define the utility function as

π(i) = −P
(i)
d + (1− P

(i)
d )R(i) where

R(i) = (fc)
γ (f (i))γ

Kb(fb)γ + Kbe
θ(i). (1)

The denominator in (1) is the normalization term.
There are two parameters in (1), γ and θ(i). γ describes the im-

portance of the base layer to the the reconstructed video sequence.
Let us consider an example where |Fb| = |Fe| and fb = 0.5. Even
though the base layer includes only half of the frames in the se-
quence, it conveys more than 50% of information about the content.
Those frames in the enhancement layer only help improve the quality
of the reconstructed sequence. So we select γ such that (fb)

γ ≥ fb.
Since 0 < fb < 1, γ should be in the range [0, 1] and a smaller value
of γ indicates that the base layer contains more information of the
video. In this paper, we use γ = 1/3 as an example, and the anal-
ysis for other values is similar. θ(i) in (1) is a parameter for u(i) to
address the tradeoff between the risk and the rewards. A larger θ(i)

indicates that u(i) prefers to benefit more from collusion at a cost of
higher risk. In our paper, we consider a simple case where θ(i) are
the same for all colluders and θ(i) = θ. In summary, if colluders
generate a colluded copy of high resolution and fc = 1, we have

R(i) = Rb4=
(fb)

γθ

Kb(fb)γ + Kbe
for all i ∈ SCb

and R(i) = Rbe4=
θ

Kb(fb)γ + Kbe
for all i ∈ SCbe. (2)

3.2. The Bargaining Process

The collusion parameter β determines the colluders’ probability of
being detected (P (i)

d ) and thus their utilities (π(i)) [2]. Each colluder
prefers the β that maximizes his or her own payoff. To resolve the
conflict, they negotiate with each other on the selection of β.

Given the utility function, colluders find the feasible set S =
{(πb, πbe) ∈ R2}, where for every (πb, πbe) ∈ S, it is possible
for colluders to act together and obtain the utilities πb and πbe, re-
spectively. Among all the possible solutions in the feasible set, those
in the Pareto-Optimal set are of particular interest to colluders. A
solution is Pareto optimal if no one can further increase his or her
utility without decreasing others’. In a bargaining situation like this,
colluders would always like to settle at a Pareto-Optimal point.

From [2], the Pareto-Optimal set of the colluder game corre-

sponds to the solutions where colluders select 0 ≤ β ≤ β̃
4
=1 −

(
√

Ne ·N −Ne)/Nb. Nb and Ne are the lengths of the fingerprints
embedded in the base layer and the enhancement layer, respectively,
and N = Nb +Ne. It was shown in [2] that, when the additive noise
n is i.i.d. Gaussian N (0, σ2

n), given 0 ≤ β ≤ β̃, colluder u(i)’s
probability of being detected is

P
(i)
d = Q

(
h− µ(i)

σn

)
, where
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Fig. 1. π̃ when all colluders receive the high-resolution copies.

µ(i) = µb
4
=β

√
Nb

Kb
σw if i ∈ SCb, and

µ(i) = µbe
4
=

(1− β)Nb + Ne

Kbe
√

Nb + Ne

σw if i ∈ SCbe. (3)

σ2
w is the variance of the fingerprint W(i), and Q(·) is the Gaussian

tail function. Thus, given 0 ≤ β ≤ β̃ and fc = 1, we have

πb = −Q

(
h− µb

σn

)
+

[
1−Q

(
h− µb

σn

)]
Rb,

and πbe = −Q

(
h− µbe

σn

)
+

[
1−Q

(
h− µbe

σn

)]
Rbe.(4)

In game theory, a popular solution to the bargaining problem is
the Nash Bargaining solution (NBS), which achieves proportional
fairness. It divides the additional utility between the two players in
a ratio that is equal to the rate at which this utility can be transferred
[7]. Mathematically, the Nash Bargaining solution maximizes

g(πb, πbe) =
(
πb − πb∗

)ab (
πbe − πbe∗

)abe

,

where πb∗ = min πb and πbe∗ = min πbe. (5)

ab and abe are the bargaining powers of SCb and SCbe, respectively.
In this paper, we select ab : abe = Kb : Kbe. The Nash Bargaining
solution favors the player with a larger bargaining power and thus,
in our problem, the subgroup of colluders with a larger size.

4. MAXIMUM-PAYOFF COLLUSION

Given fixed Kb and Kbe, Section 3 analyzes how colluders nego-
tiate with each other and select the collusion parameter β. During
collusion, in addition to β, attackers can also select the total num-
ber of colluders K and select with whom they want to collude. In
this paper, we consider the scenario where colluders not only want
to minimize their risk, they also wish to maximize their rewards re-
ceived from collusion. Taking into consideration both the risk and
the rewards in the definition of the utility functions, this section in-
vestigates how the number of colluders affects each attacker’s utility
and finds the optimum K that maximizes their payoffs.

4.1. Non-Scalable Multimedia Fingerprinting

We start with the simple scenario where all users receive the high-
resolution version. Since all the copies have the same resolution,

there is no bargaining in collusion. Colluders agree to have the same
probability of being detected P̃d and the same utility π̃, where

P̃d = Q

(
h−√Nσw/K

σn

)
, and

π̃ = −P̃d +
(
1− P̃d

)
θ/K, (6)

respectively. Figure 1 plots π̃ versus the total number of colluders
K. Here, we assume that the length of the embedded fingerprints is
100,000. σw = σn = 1 and θ = 50 in (6). h is selected so that the
probability of falsely accusing an innocent user is 10−3.

When K is small, P̃d has large values and colluders’ chance of
being detected is huge. Therefore, −P̃d is the dominating term in
π̃, which results in a negative payoff as shown in Figure 1. In this
scenario, colluders may not want to redistribute multimedia illegally
since it is too risky. Attackers only collude and redistribute multime-
dia if they can find more than K0 = 126 fellow attackers and receive
positive payoffs from collusion. As K continues to increase above
126, colluders’ risk of being detected decreases and, therefore, their
payoffs increase.

However, colluding with more attackers does not necessarily
always increase their payoffs. From Figure 1, when K is larger
than 206, π̃ becomes a decreasing function of K. This is because
in this scenario, P̃d is very small and the dominating term in π̃ is
(1 − P̃d)θ/K. Note that during collusion, colluders share the re-
wards from the illegal usage of multimedia and R(i) is a decreasing
function of K. So when colluders are sure that their risk of be-
ing caught is small, they tend to prefer a smaller K and share the
rewards with fewer people. Thus, in the example in Figure 1, attack-
ers might prefer K = 206 in order to maximize their payoffs, and
π̃max = maxK π̃ = 0.1682 when K = 206.

Define Kmax4=arg maxK π̃ as the optimal K that maximizes
colluders’ payoffs. We solve the problem ∂π̃/∂K|K=Kmax = 0 to
find Kmax, where

∂π̃

∂K
= −

(
1 +

θ

K

)
∂P̃d

∂K
− (1− P̃d)

θ

K2
, and

∂P̃d

∂K
= −

√
Nσw√

2πK2σn

exp

{
−1

2

(
h−√Nσw/K

σn

)2
}

.(7)

Figure 2 plots Kmax versus θ and it shows that Kmax is a decreas-
ing function of θ. This is because, when θ has a larger value, that
is, when colluders are willing to take a higher risk in order to benefit
more from collusion, they prefer to collude with fewer people (thus
a smaller K) to increase their rewards.

4.2. Scalable Multimedia Fingerprinting

Now, we consider the more complicated scenario where different
colluders receive fingerprinted copies of different resolutions. In this
scenario, colluders in SCb act as a single player when negotiating,
and those in SCbe act as one player. Note that one possible outcome
of this bargaining is that they do not reach an agreement. If so, col-
luders only collude with their fellow attackers in the same subgroup,
and the two subgroups SCb and SCbe do not cooperate with each
other during collusion. In this scenario, those colluders in subgroup
SCb generate a colluded copy with the base layer only. Similar to
the analysis in Section 4.1, colluders in SCb receive a payoff of

πb
nc = max

{
−P b

d,nc + (1− P b
d,nc)(fb)

γθ/Kb, 0
}

where P b
d,nc = Q

(
h−√Nbσw/Kb

σn

)
. (8)
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Here, the maximum operator indicates that they will collude only
if they receive positive payoffs from collusion. Similarly, for those
colluders in SCbe, they generate a high-resolution copy and

πbe
nc = max

{
−P be

d,nc + (1− P be
d,nc)θ/Kbe, 0

}
,

where P be
d,nc = Q

(
h−√Nσw/Kbe

σn

)
. (9)

If they reach an agreement regarding the distribution of the re-
wards and the risk, we use πb

c to denote the utilities of the colluders
in SCb and πbe

c is the payoff of those colluders in SCbe. We con-
sider the scenario where colluders select the Nash Bargaining solu-
tion in (5). Note that colluders in the two subgroups will cooperate
with each other if and only if cooperation increases both subgroups’
utilities, that is, when πb

c ≥ πb
nc and πbe

c ≥ πbe
nc.

Figure 3 shows the results of the bargaining process. In Figure
3, Kbe is fixed as 150, and we assume that these 150 colluders could
not find any others who also receive high-resolution copies. Figure
3 analyzes how Kb affects the colluders’ payoffs.

In this example, similar to that in Section 4.1, colluding with at-
tackers in SCb help colluders in SCbe further reduce their chance of
being detected. However, colluding with more attackers does not al-
ways increase the payoffs. In Figure 3, when Kb > 108, πbe

c < πbe
nc

due to the sharing of the rewards with more people, and cooperation
with attackers in SCb does not benefit colluders in SCbe but rather
decreases their utilities. Consequently, when Kb > 108, colluders
only collude with their fellow attackers in the same subgroup, and
the two subgroups do not cooperate with each other. From Figure
3, for colluders in SCbe, πbe

c reaches the maximum of 0.1681 when
Kb = 77. Thus, in this example, for those 150 colluders in SCbe to
maximize their utilities, if they cannot find any other attackers who
receive high-resolution copies, the best strategy for them is to find
another 77 attackers who receive the low-resolution copies.

In the example in Figure 3, we fix the number of colluders who
receive the high-resolution copies as Kbe = 150, and analyze how
Kb affects the utilities of those colluders in the subgroup SCbe.
Now, with the two-stage collusion model in Section 2.2 and the bar-
gaining process in 3, colluder u(i) is interested in the optimum val-
ues of Kbe and Kb that maximize his or her utility π(i), that is,

(Kbe∗(i), Kb∗(i)) = arg max
Kbe,Kb

π(i). (10)

To find Kbe∗(i) and Kb∗(i), we solve the problem

∂π(i)

∂Kbe
|Kbe=Kbe∗,Kb=Kb∗ =

∂π(i)

∂Kb
|Kbe=Kbe∗,Kb=Kb∗ = 0.

(11)
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With Nb = Nbe = 50, 000, γ = 1/3 and θ = 50, for colluder
u(i) who receives a high-resolution copy, our analysis show that
Kbe∗(i) = 175 and Kb∗(i) = 52 give u(i) a maximum payoff of
0.1744. Thus, if possible, to maximize πbe, u(i∈SCbe) should find
174 more attackers who also have the high-resolution copies and an-
other 52 colluders who receive the base layer only. For colluder u(k)

who has the low-resolution copy only, the best strategy is to select
Kb∗(k) = 141 and collude with attackers in SCb only. It helps
u(k∈SCb) achieve a maximum payoff of 0.1966.

5. CONCLUSIONS

This paper studies the game-theoretic modeling of the complex dy-
namics among colluders, and analyzes the impact of colluder se-
lection on attackers’ payoffs. We consider both the colluders’ risk
of being detected and the rewards that they receive from collusion
when defining the utility function, and model the colluder dynamics
as a bargaining problem. Our analysis show that even though col-
luding with more attackers helps a colluder reduce his or her risk of
being detected, it does not always increase his or her payoff, since
he or she has to share the rewards with more people. Attackers will
cooperate with each other if and only if cooperation helps all collud-
ers further increase their utilities. We also investigate the optimum
strategies that a colluder should follow when selecting fellow attack-
ers in order to maximize his or her own payoff.
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