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Within the past decade, Internet traffic has
shifted dramatically from HTML text pages
to multimedia file sharing [1] as illustrated
by the emergence of large-scale multime-
dia social network communities such as

Napster, flickr, and YouTube. For example, a study showed that
in a campus network, peer-to-peer file sharing can consume
43% of the overall bandwidth, which is about three times of all

WWW traffic [2]. This consumption poses new challenges to the
efficient, scalable, and robust sharing of multimedia over large
and heterogeneous networks. It also significantly affects the
copyright industries and raises critical issues of protecting
intellectual property rights of multimedia.

This recent increase in Internet traffic adversely affects the
user experience for people all across the world. To improve the
efficiency of data transmission within multimedia social net-
works, we must analyze the impact of human factors on multi-
media networks, that is, how users interact with and respond toDigital Object Identifier 10.1109/MSP.2008.930648
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one another. Such an understanding provides fundamental
guidelines to better design of multimedia systems and network-
ing, and to offer more secure and personalized services. The area
of human and social dynamics has recently been identified by
the U.S. National Science Foundation as one of its five priority
areas, which also shows the importance of this emerging inter-
disciplinary research area.

Factors influencing human behavior have seldom appeared
in signal processing disciplines. Therefore, the goals of this
tutorial are to illustrate why human factors are important,
identify emerging issues strongly related to signal processing,
and to demonstrate that signal process-
ing can be effectively used to model,
analyze, and perform behavior forensics
for multimedia social networks. Since
media security and content protection
is a major issue, this article illustrates
various aspects of issues and problems
in multimedia social networks via a
case study of human behavior in trai-
tor-tracing multimedia fingerprinting.
We focus on the understanding of
behavior forensics from signal process-
ing perspective and present a frame-
work to model and analyze user
dynamics. The objective is to provide a
broad overview of recent advances in
behavior modeling and forensics for
multimedia social networks.

MULTIMEDIA SOCIAL NETWORKS
A social network is a structure of nodes
(including individuals and organiza-
tions) that are connected with each
other via certain types of relations, for
example, values, friendship, conflict, financial exchange, and
trade. Figure 1 gives examples of some typical social networks,
and Figure 2 demonstrates the complex user dynamics there.
People have been studying methodologies to formulate the rela-
tionships between members at all scales, from interpersonal to
international, and across many disciplines such as sociology,
economics, and information science.

In a multimedia social network community, a group of users
form a dynamically changing network infrastructure to share
and exchange data, often multimedia content, as well as other
resources. For example, in a peer-to-peer file-sharing system,
users pool together the resources and cooperate with each other
to provide an inexpensive, highly scalable, and robust platform
for distributed data sharing [3], [4]. However, since participation
nature in many multimedia social networks is often voluntary
and unregulated, users’ full cooperation cannot be guaranteed
unless there exist powerful central authorities who mandate and
enforce user cooperation. A recent study of Napster and
Gnutella showed that many users are free riders and 25% of the
users in Gnutella share no files at all [5].

Before multimedia social network communities become suc-
cessful, they must provide a predictable and satisfactory level of
service, and a critical issue to be resolved first is to stimulate
cooperation among users [6]. For example, in peer-to-peer file-
sharing systems, one possible solution is to use payment-based
methods where users pay to consume resources and are paid if
they contribute resources [6]. These schemes can effectively
stimulate cooperation, but they require tamper-proof hardware
or central billing services to track various transactions and
implement micropayment. Another form of incentives is to use
reputation-based methods to differentiate among users and

[FIG1] Examples of social networks.
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adopt the differential service model to offer better services to
peers who contribute more [6].

By participating in multimedia social networks, users receive
rewards by being able to access extra resources from their peers,
and they also contribute their own resources. Users aim to maxi-
mize their own payoff by participating in multimedia social net-
works, and different users have different (and often conflicting)
objectives. Thus, as demonstrated in Figure 2, an important
issue in multimedia social networks is to understand the strate-
gies that users will play when negotiating with each other and
study how they achieve fairness. Game theory [7], [8] provides a
fundamental tool to study the fairness dynamics among users.
The Nash equilibrium provides the optimum strategies from
which no user has incentives to deviate.

There are different types of users in multimedia social net-
works. Rational users are willing to contribute their own
resources if cooperation with others can help improve their
payoff. They are honest when exchanging information with
other users. Unlike rational users, there are also selfish users
who wish to consume others’ resources with little or no con-
tribution of their own. If necessary, these selfish users might
even cheat during the negotiation process in order to maxi-
mize their own payoff, as shown in Figure 2. Furthermore,
there might exist malicious users whose goal is to attack and
sabotage the system. For example, in peer-to-peer file-sharing
systems, they tamper with the media files with the intention of
making the content useless (the so-called pollution attack) [2].
They can also launch the denial of service (DoS) attack to
exhaust other users’ resources and make the system unavail-
able [9]. It is possible that a few malicious users collude with
each other to effectively attack the system, for example, the
flooding distributed DoS (DDoS) attack in peer-to-peer file-
sharing systems. Therefore, cheat prevention and attack resist-
ance are fundamental requirements in order to achieve user
cooperation and provide reliable services.

To model and analyze human dynamics in multimedia
social networks containing selfish users and malicious users,
the first step is to study the strategies that these users use to
cheat or attack the system. The next issue is to implement
monitoring mechanisms to detect and identify misbehaving
users, as illustrated in Figure 2. A challenging issue here is
that the monitoring mechanisms should be able to distinguish
intentional misbehavior (for example, intentional manipula-
tion of multimedia content) from the innocent (for example,
transmission errors and packet loss in erroneous and congest-
ed networks). The above investigation will facilitate the design
of cheat-proofing and attack-resistant strategies, which make
noncooperation nonprofitable, thus unattractive to selfish
users, and minimize the damage to the system caused by mali-
cious users.

Because different multimedia social networks have different
structures, there are different ways to implement cheat-proof-
ing and attack-resistant cooperation strategies. Some multi-
media social networks have a centralized structure where
there are one or more entities whom all users trust and who

can facilitate interaction among users. For example, the first
generation peer-to-peer file-sharing networks (for example, the
Napster music file-sharing system) used a set of central servers
to provide content indexing and search services [4]. Though
these central servers do not have the authorities to enforce
user cooperation, they can help monitor users’ behavior. For
example, they can serve as the central billing entity in the pay-
ment-based methods to help track the transactions and identi-
fy misbehaving users [4]. Other multimedia social networks
have a distributed structure and a flat topology where users
take the same role, for example, Gnutella and Chord [4]. In
these multimedia social networks, users have to monitor other
users and identify misbehavior themselves.

Essentially, multimedia social networks involve a large num-
ber of users of different types with different objectives, and mod-
eling and analysis of user dynamics is a fundamental issue to
address in multimedia social networks. Such an analysis helps
stimulate user cooperation, facilitates the implementation of
misbehavior monitoring mechanisms, and provides important
guidelines on the design of cheat-proofing and attack-resistant
strategies. All these are essential factors to maximize the overall
system performance and minimize the damage caused by mali-
cious users. In addition, for different multimedia social net-
works, different structures will result in different mechanisms
to monitor user behavior and to achieve cheat prevention and
attack resistance.

BEHAVIOR MODELING IN MULTIMEDIA 
FINGERPRINTING FORENSICS
Without loss of generality, in this article, we use multimedia fin-
gerprinting as an example to illustrate the modeling and analy-
sis of user behavior in multimedia social networks. In this
section, we first introduce the digital fingerprinting technology
used to identify the source of illicit copies. Then, we formulate
the dynamics among users in multimedia fingerprinting.

As we move to the digital era and experience the convergence
of networks, communications and multimedia, scalability in
multimedia coding becomes a critical issue to support universal
media access and provide rich media access from anywhere using
any devices [10]. Scalable video coding encodes video into several
bit streams (layers) of different priorities: the base layer contains
the most important information and the enhancement layers
gradually refine the resolution of the receiver’s reconstructed
copy. Such a coding structure provides flexible solutions for mul-
timedia transmission and offers adaptivity to heterogeneous net-
works, varying channel conditions and diverse computing
capability at the receiving terminals [10].

In this article, we use temporal scalability as an example,
inherent in most current video coding standards such as Moving
Pictures Expert Group (MPEG) and H.26x, to demonstrate
issues that arise from scalability. Without loss of generality, we
consider three-layer temporal scalability and use frame skipping
and frame copying to implement temporal decimation and
interpolation, respectively. For example, with MPEG encoding,
the base layer may include all the I frames, the enhancement
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layer one includes all the P frames, and the enhancement layer
two contains all the B frames.

MULTIMEDIA FINGERPRINTING FOR TRAITOR TRACING
Digital fingerprinting is an emerging technology that offers
proactive post-delivery protection of multimedia [11], [12].
As illustrated in Figure 3, it labels each distributed copy with
the corresponding user’s identification information, known
as a fingerprint, which can be used to trace culprits who use
their copies illegally. Traitor-tracing multimedia forensics
has compelling commercial applications, for example, in the
antipiracy campaign by Hollywood film industries. A prelimi-
nary technology based on robust watermarking was adopted
in the 2004 Oscar season and successfully captured a few peo-
ple who helped illegally post Oscar screener copies of movies
on the Internet [13]. It is also important for government
operations and intelligence agencies to be able to securely
and reliably exchange multimedia data and prevent the leak-
age of confidential information.

In multimedia fingerprinting, fingerprints are embedded
into the host signal using traditional data hiding techniques
[14]–[16]. Spread spectrum embedding techniques [17], [18] are
widely used in the literature due to the robustness against many
attacks. With the three-layer temporally scalable coding struc-
ture, let Sb, Se1, and Se2 be the base layer, the enhancement
layer one and the enhancement layer two of the host signal,
respectively. For Alice, who subscribes to the low-resolution

copy, let W(alice)
b be Alice’s unique fingerprint. The content

owner distributes to Alice the fingerprinted base layer

X(alice)
b ( j) = Sb( j) + c( j) × W(alice)

b ( j). (1)

Here, X(alice)
b ( j), Sb( j), and W(alice)

b ( j) are the jth components
of the fingerprinted copy, the host signal, and Alice’s fingerprint,
respectively. c is the just noticeable difference (JND) from
human visual models [17], [18] to control the energy and
achieve the imperceptibility of the embedded fingerprints. For
Bob, who subscribes to the medium resolution copy, he receives
the fingerprinted base layer

X(bob)
b = Sb + c × W(bob)

b (2)

and the fingerprinted enhancement layer one

X(bob)
e1 = Se1 + c × W(bob)

e1 , (3)

from the content owner, where W(bob)
b and W(bob)

e1 are Bob’s fin-
gerprints embedded in the base layer and the enhancement
layer one, respectively. (We drop the component index j to
simplify the notations.) Similarly, for Carl, who subscribes to
all three layers, the fingerprinted base layer, enhancement
layer one and enhancement layer two that he receives are
X(carl )

b = Sb + c × W(carl )
b , X(carl )

e1 = Se1 + c × W(carl )
e1 , and

X(carl )
e2 = Se2 + c × W(carl )

e2 , respectively. W
(carl )
b , W

(carl )
e1 and
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[FIG3] Using embedding fingerprinting for traitor tracing.
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W(carl )
e2 are Carl’s fingerprints that are embedded in the base

layer, enhancement layer one and enhancement layer two,
respectively. Here, the superscript is the user index and the sub-
script is the layer index.

Without loss of generality, we consider orthogonal finger-
print modulation [12], where in the same layer, fingerprints
assigned to different users are orthogonal to each other and
have the same energy. For example, in the above example, with
orthogonal fingerprint modulation, we have

�
W(alice)

b , W(bob)
b

�
=

�
W(alice)

b , W(carl )
b

�
=

�
W(bob)

b , W(carl )
b

�
= 0,

�
W(bob)

e1 , W(carl )
e1

�
= 0,

���W(alice)
b

���
2

=
���W(bob)

b

���
2

=
���W(carl )

b

���
2
, and

���W(bob)
e1

���
2

=
���W(carl )

e1

���
2
. (4)

In (4), �x, y� is the correlation between x and y, and �x�2

returns the Euclidean norm of x.
Once an illegal copy is discovered, the digital rights enforcer

first extracts the fingerprint Y from the colluded copy. Then,
the digital rights enforcer uses the correlation-based detection
statistic

TN(i ) = �Y, W(i )�/�W(i )� (5)

to measure the similarity between the extracted fingerprint Y
and user u(i )’s fingerprint W(i ). The fingerprint detector com-
pares all the detection statistics {TN(i )} with a predetermined
threshold h and identifies those whose detection statistics are
larger than h as colluders.

COLLUSION ATTACKS AND
ANTICOLLUSION FINGERPRINT DESIGN
However, protecting digital fingerprints is no longer a tradi-
tional security issue with a single adversary. The global
nature of Internet has enabled a group of attackers (collud-
ers) to work together and collectively mount attacks to
remove the fingerprints. These attacks, known as multiuser
collusion, pose serious threats to intellectual property rights.
Analysis of the strategies, capabilities, and limitations of attack-
ers is an indispensable and crucial part of research in multi-
media security.

Linear collusion is one of the most feasible collusion attacks
that may be employed against multimedia fingerprinting
[19]–[21]. Given K different fingerprinted signals {X(i )} of the
same content, attackers generate Y =

�
k akX(k) , where the

weights satisfy 
�

k ak = 1 to maintain the average intensity of
the original multimedia signal (thus the perceptual quality of
the attacked copy). With orthogonal fingerprinting, such an
averaging attenuates the energy of the k th contributing finger-
print by a factor of a2

k and thus reduces colluder k ’s probability

of being detected. In [19], collusion attacks were modeled as
averaging differently fingerprinted copies with equal weights
(that is, ak = 1/K ) followed by the addition of noise. Their
work showed that O(

�
N/ log N) colluders are sufficient to

defeat the underlying fingerprinting system, where N is the fin-
gerprint length.

In addition to linear averaging, another important class of
collusion attacks is based upon operations as taking the min-
imum, maximum, and median of corresponding components
of the fingerprinted signals [22]. For example, given K fin-
gerprinted signals {X(i )}, to generate the jth component of
the colluded copy Y( j), colluders use the minimum value of
X(1)( j), X(2)( j), • • • , X(K)( j) and let Y( j) = min ({X(k)( j)}) .
Since each fingerprinted copy is expected to have high per-
ceptual quality, colluders have high confidence that Y( j) is
within the JSD range. Similarly, colluders can also let
Y( j) = max({X(k)( j)}) and take the maximum value of
{X(i )( j)} . They can also use the median value and select
Y( j) = median({X(k)( j)}). Detailed analysis of linear and nonlin-
ear collusion attacks on orthogonal fingerprints was provided in
[23]. The gradient attack was proposed in [24], which uses the
combination of several basic nonlinear collusion attacks in [23].
The work in [25] evaluated the collusion resistance of multimedia
fingerprints as a function of system parameters, including finger-
print length, total number of users, and system requirements.

Collusion attacks pose serious threats to multimedia intel-
lectual property rights. To provide reliable and trustworthy trai-
tor-tracing performance, it is of ample importance to design
anticollusion fingerprints. In the literature, techniques from a
wide range of disciplines were used to improve the fingerprint-
ing system’s collusion resistance. A two-layer fingerprint design
scheme was proposed in [26] where the inner code from spread
spectrum embedding [17], [18] is combined with an outer error-
correcting code (ECC) [27]. A permuted subsegment embedding
technique and a group-based joint coding and embedding tech-
nique were proposed in [28] to improve the collusion resistance
of ECC-based multimedia fingerprinting while maintaining the
detection efficiency. In [29], finite projective geometry was used
to generate codes whose overlap with each other can identify
colluding users. The anticollusion code based on combinatorial
theories was proposed in [30]. In [31], prior knowledge of the
possible collusion patterns was used to improve the collusion
resistance of the fingerprinting systems. The anticollusion
dithering technique was proposed in [32] to resist multiuser col-
lusion attacks for compressed multimedia. Readers who are
interested in anticollusion fingerprint design are referred to [12]
for detailed discussion of current research in this area.

BEHAVIOR MODELING AND FORENSICS 
IN MULTIMEDIA FINGERPRINTING
During collusion, attackers form a unique social network: they
share the reward from the illegal usage of multimedia as well as
the risk of being captured by the digital rights enforcer. An
agreement must be reached regarding how to distribute the risk
and the reward before collusion relationship can be established.
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However, each colluder prefers the agreement that favors his or
her payoff the most, and different colluders have different pref-
erences. To address such a conflict, a critical issue is to decide
how to fairly distribute the risk and the reward. In addition,
even though all colluders agree so, some colluders might be
selfish and wish to break away from their fair-collusion agree-
ment. They might cheat their fellow attackers during the nego-
tiation process in order to minimize their own risk and
maximize their own payoff.

On the other hand, to protect their own interests, other col-
luders may want to identify selfish colluders and exclude them
from collaboration. It is of great importance to understand how
colluders negotiate with each other to achieve fairness of the
attack and study the cheating and the cheat-proofing strategies
that colluders may adopt to maximize their own payoff and
protect their own interests.

In addition, users in multimedia fingerprinting influence
each other’s decisions and performance. To maximize their own
payoff, users should observe and learn how others play the game
and adjust their own strategies accordingly. For example, to max-
imize the traitor-tracing capability, the digital rights enforcer
should explore and utilize as much knowledge about collusion as
possible when designing the fingerprints and identifying the col-
luders. Here, analysis of the colluder dynamics, especially the
investigation on how attackers achieve fairness of collusion, pro-
vides the digital rights enforcer with important insights on how
to probe and use such side information about collusion.
Therefore, another important issue in behavior modeling is to
understand the techniques that users can use to probe informa-
tion about how others play the game, study how they adjust their
strategies accordingly to maximize their own payoff, and analyze
the impact of side information on multimedia social networks.

In the sequel, using multimedia fingerprinting system as
an example, we present a general framework by employing a
few signal processing techniques to formulate and analyze
human behavior in multimedia social networks. We first
investigate the fairness dynamics in colluder social networks
and analyze how colluders negotiate with each other to
achieve fair collusion. We then study how selfish colluders
cheat to maximize their own payoff and how other colluders
detect such cheating behavior. We will also study side infor-
mation in multimedia fingerprinting, how the digital rights
enforcer can probe and utilize side information to improve
the traitor-tracing performance, and how such side informa-
tion affect the overall fingerprinting systems.

FAIRNESS DYNAMICS IN
MULTIMEDIA SOCIAL NETWORKS
In multimedia social networks, by contributing their own
resources and cooperating with each other, users are able to
access extra resources from their peers and thus receive
rewards. Each user aims to maximize his or her own payoff and
different users have different objectives. To address this con-
flict, an important issue is to investigate users’ strategies to
achieve a notion of fairness. In this section, we use colluder

social networks as an example to illustrate the methodologies
that can be used to analyze the fairness dynamics among users.

EQUAL-RISK ABSOLUTE FAIRNESS
Colluders receive rewards from the illegal usage of multimedia
content, for example, the profit from the unauthorized redistrib-
ution of copyrighted materials. They also take the risk of being
captured by the digital rights enforcer, which can be considered
as the colluders’ cost by participating in collusion. In the litera-
ture, a commonly used definition of a colluder’s utility (payoff)
function is his or her chance of not being captured by the digital
rights enforcer, and the notion of equal-risk absolute fairness is
widely adopted where all colluders agree to share the same risk
and have equal probabilities of being detected.

If all colluders receive fingerprinted copies of the same res-
olution, a simple average of all copies with equal weights
reduces the energy of each contributing fingerprint by the
same ratio, thus ensuring equal risk of all attackers. When
colluders receive fingerprinted copies of different resolutions,
it is much more complicated to guarantee equal risk of all col-
luders, especially when colluders wish to generate a colluded
copy of higher resolution.

A SIMPLE EXAMPLE WITH THREE COLLUDERS
For the example with three colluders, Alice, Bob, and Carl,
who receive fingerprinted copies of different resolutions, a pos-
sible solution of collusion is shown in Figure 4(a), where the
colluded copy includes all three layers. Here, the colluders
average the three base-layer copies that they have with equal
weights 1/3; for the enhancement layer one, they average the
two copies from Bob and Carl with equal weights 1/2; and the
colluded copy’s enhancement layer two equals to that in Carl’s
copy. Therefore, in the colluded copy, the three fingerprints
corresponding to the three attackers have the same energy in
the base layer. The enhancement layers contain only Bob and
Carl’s fingerprints, not the fingerprint identifying Alice. It is
obvious that among the three, Carl has the largest probability
of being caught and Alice takes the smallest risk.
Consequently, the collusion in Figure 4(a) does not achieve
equal-risk fairness.

Figure 4(b) shows another possible solution, where the col-
luded copy contains the base layer only. Here, the colluders
average the three copies of the base layer with equal weights 1/3.
In this example, the fingerprints corresponding to the three
attackers have the same energy in the colluded copy and, there-
fore, the three attackers have the same probability of being
detected. Although the collusion in Figure 4(b) ensures equal-
risk fairness, the attacked copy has low resolution.

When there is difference in the resolution of fingerprinted
copies due to network and device heterogeneity, how can collud-
ers establish fair multiuser collusion that guarantees the collec-
tive equal risk among all attackers while still generating an
attacked copy of high resolution? A possible solution is shown in
Figure 5. In the base layer of the colluded copy, the three copies
are assigned different weights �1, �2, and �3, respectively.
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Similarly, the enhancement layer one in the colluded copy is the
average of Bob and Carl’s copies with weights �1 and �2, respec-
tively. The colluders copy the enhancement layer two in Carl’s
copy to the colluded copy. To achieve fairness of collusion, Alice,
Bob, and Carl select the collusion parameters {�k, �l} such that
they have the same probability of being detected.

TWO-STAGE COLLUSION
In general, when colluders receive fingerprinted copies of differ-
ent resolutions, they apply the two-stage collusion as in Figure 5
to achieve equal-risk absolute fairness. They first apply the intra-
group collusion to guarantee that colluders who receive copies
of the same resolution have the same probability of being
detected. Then, they apply the the inter-group collusion to
ensure that colluders who receive copies of different resolutions
share the same risk.

To demonstrate how attackers colluder in scalable multime-
dia fingerprinting, we first introduce the symbols that we use.
For user u(i ), let X(i )

b , X(i )
e1 , and X(i )

e2 denote the fingerprinted
base layer, enhancement layer one and enhancement layer two,

respectively, that u(i ) receives from the
content owner. In our notations, the
superscript i is the user index and the
subscript b, e1, or e2 is the layer index.

During collusion, the colluders first
divide themselves into three subgroups:
SCb includes the indices of those collud-
ers who receive the fingerprinted base
layer only; the second subgroup, SCb,e1,
contains colluders who receive the base
layer and the enhancement layer one;
and the last group, SCall, includes col-
luders who receive all three layers. Let
K b = |SCb| , K b,e1 = |SCb,e1| and
K all = |SCall| be the numbers of collud-
ers in SCb, SCb,e1 and SCall, respective-
ly. Here, we use “b,” “b, e1,” and “all ” in
the superscript to differentiate different
subgroups of colluders.

Then, they apply the intra-group col-
lusion, where colluders collude with their
fellow attackers in the same subgroup and
average different copies of the same reso-
lution with equal weights. In this stage,
different subgroups collude independent-
ly. This intra-group collusion ensures that
colluders who receive fingerprinted
copies of the same resolution have the
same probability of being detected. In our
example, colluders in SCb generates
X b

b =
�

k�SCb X(k)
b /K b . Colluders in

SCb,e1 generates a copy of the base layer
X b,e1

b =
�

k�SCb,e1 X(k)
b /K b,e1 and a

copy of the enhancement layer one
X b,e1

e1 =
�

k�SCb,e1 X(k)
e1 /K b,e1. Similarly,

X all
b =

�
k�SCall X(k)

b /K all , X all
e1 =

�
k�SCall X(k)

e1 /K all , and
X all

e2 =
�

k�SCall X(k)
e2 /K all .

Finally, as illustrated in Figure 5, colluders apply the inter-
group collusion and average copies from different subgroups
with different weights. This step guarantees that colluders who
receive fingerprinted copies of different resolutions have equal
risk of being captured. In our example, in the final colluded copy
V, the base layer is

Vb = �1X b
b + �2X b,e1

b + �3X all
b + n, (6)

where 0 � �1, �2, �3 � �1 + �2 + �3 = 1; the enhancement
layer one is

Ve1 = �1X b,e1
e1 + �2X all

e1 + n, (7)

where 0 � �1, �2 � �1 + �2 = 1; and the enhancement layer
two is 

Ve2 = X all
e2 + n. (8)
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[FIG4] Two solutions of collusion in scalable multimedia fingerprinting.
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