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W
ithin the past decade, Internet traffic has
shifted dramatically from HTML text pages
to multimedia file sharing [1] as illustrated
by the emergence of large-scale multime-
dia social network communities such as

Napster, flickr, and YouTube. For example, a study showed that
in a campus network, peer-to-peer file sharing can consume
43% of the overall bandwidth, which is about three times of all

WWW traffic [2]. This consumption poses new challenges to the
efficient, scalable, and robust sharing of multimedia over large
and heterogeneous networks. It also significantly affects the
copyright industries and raises critical issues of protecting
intellectual property rights of multimedia.

This recent increase in Internet traffic adversely affects the
user experience for people all across the world. To improve the
efficiency of data transmission within multimedia social net-
works, we must analyze the impact of human factors on multi-
media networks, that is, how users interact with and respond toDigital Object Identifier 10.1109/MSP.2008.930648
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one another. Such an understanding provides fundamental
guidelines to better design of multimedia systems and network-
ing, and to offer more secure and personalized services. The area
of human and social dynamics has recently been identified by
the U.S. National Science Foundation as one of its five priority
areas, which also shows the importance of this emerging inter-
disciplinary research area.

Factors influencing human behavior have seldom appeared
in signal processing disciplines. Therefore, the goals of this
tutorial are to illustrate why human factors are important,
identify emerging issues strongly related to signal processing,
and to demonstrate that signal process-
ing can be effectively used to model,
analyze, and perform behavior forensics
for multimedia social networks. Since
media security and content protection
is a major issue, this article illustrates
various aspects of issues and problems
in multimedia social networks via a
case study of human behavior in trai-
tor-tracing multimedia fingerprinting.
We focus on the understanding of
behavior forensics from signal process-
ing perspective and present a frame-
work to model and analyze user
dynamics. The objective is to provide a
broad overview of recent advances in
behavior modeling and forensics for
multimedia social networks.

MULTIMEDIA SOCIAL NETWORKS
A social network is a structure of nodes
(including individuals and organiza-
tions) that are connected with each
other via certain types of relations, for
example, values, friendship, conflict, financial exchange, and
trade. Figure 1 gives examples of some typical social networks,
and Figure 2 demonstrates the complex user dynamics there.
People have been studying methodologies to formulate the rela-
tionships between members at all scales, from interpersonal to
international, and across many disciplines such as sociology,
economics, and information science.

In a multimedia social network community, a group of users
form a dynamically changing network infrastructure to share
and exchange data, often multimedia content, as well as other
resources. For example, in a peer-to-peer file-sharing system,
users pool together the resources and cooperate with each other
to provide an inexpensive, highly scalable, and robust platform
for distributed data sharing [3], [4]. However, since participation
nature in many multimedia social networks is often voluntary
and unregulated, users’ full cooperation cannot be guaranteed
unless there exist powerful central authorities who mandate and
enforce user cooperation. A recent study of Napster and
Gnutella showed that many users are free riders and 25% of the
users in Gnutella share no files at all [5].

Before multimedia social network communities become suc-
cessful, they must provide a predictable and satisfactory level of
service, and a critical issue to be resolved first is to stimulate
cooperation among users [6]. For example, in peer-to-peer file-
sharing systems, one possible solution is to use payment-based
methods where users pay to consume resources and are paid if
they contribute resources [6]. These schemes can effectively
stimulate cooperation, but they require tamper-proof hardware
or central billing services to track various transactions and
implement micropayment. Another form of incentives is to use
reputation-based methods to differentiate among users and

[FIG1] Examples of social networks.
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adopt the differential service model to offer better services to
peers who contribute more [6].

By participating in multimedia social networks, users receive
rewards by being able to access extra resources from their peers,
and they also contribute their own resources. Users aim to maxi-
mize their own payoff by participating in multimedia social net-
works, and different users have different (and often conflicting)
objectives. Thus, as demonstrated in Figure 2, an important
issue in multimedia social networks is to understand the strate-
gies that users will play when negotiating with each other and
study how they achieve fairness. Game theory [7], [8] provides a
fundamental tool to study the fairness dynamics among users.
The Nash equilibrium provides the optimum strategies from
which no user has incentives to deviate.

There are different types of users in multimedia social net-
works. Rational users are willing to contribute their own
resources if cooperation with others can help improve their
payoff. They are honest when exchanging information with
other users. Unlike rational users, there are also selfish users
who wish to consume others’ resources with little or no con-
tribution of their own. If necessary, these selfish users might
even cheat during the negotiation process in order to maxi-
mize their own payoff, as shown in Figure 2. Furthermore,
there might exist malicious users whose goal is to attack and
sabotage the system. For example, in peer-to-peer file-sharing
systems, they tamper with the media files with the intention of
making the content useless (the so-called pollution attack) [2].
They can also launch the denial of service (DoS) attack to
exhaust other users’ resources and make the system unavail-
able [9]. It is possible that a few malicious users collude with
each other to effectively attack the system, for example, the
flooding distributed DoS (DDoS) attack in peer-to-peer file-
sharing systems. Therefore, cheat prevention and attack resist-
ance are fundamental requirements in order to achieve user
cooperation and provide reliable services.

To model and analyze human dynamics in multimedia
social networks containing selfish users and malicious users,
the first step is to study the strategies that these users use to
cheat or attack the system. The next issue is to implement
monitoring mechanisms to detect and identify misbehaving
users, as illustrated in Figure 2. A challenging issue here is
that the monitoring mechanisms should be able to distinguish
intentional misbehavior (for example, intentional manipula-
tion of multimedia content) from the innocent (for example,
transmission errors and packet loss in erroneous and congest-
ed networks). The above investigation will facilitate the design
of cheat-proofing and attack-resistant strategies, which make
noncooperation nonprofitable, thus unattractive to selfish
users, and minimize the damage to the system caused by mali-
cious users.

Because different multimedia social networks have different
structures, there are different ways to implement cheat-proof-
ing and attack-resistant cooperation strategies. Some multi-
media social networks have a centralized structure where
there are one or more entities whom all users trust and who

can facilitate interaction among users. For example, the first
generation peer-to-peer file-sharing networks (for example, the
Napster music file-sharing system) used a set of central servers
to provide content indexing and search services [4]. Though
these central servers do not have the authorities to enforce
user cooperation, they can help monitor users’ behavior. For
example, they can serve as the central billing entity in the pay-
ment-based methods to help track the transactions and identi-
fy misbehaving users [4]. Other multimedia social networks
have a distributed structure and a flat topology where users
take the same role, for example, Gnutella and Chord [4]. In
these multimedia social networks, users have to monitor other
users and identify misbehavior themselves.

Essentially, multimedia social networks involve a large num-
ber of users of different types with different objectives, and mod-
eling and analysis of user dynamics is a fundamental issue to
address in multimedia social networks. Such an analysis helps
stimulate user cooperation, facilitates the implementation of
misbehavior monitoring mechanisms, and provides important
guidelines on the design of cheat-proofing and attack-resistant
strategies. All these are essential factors to maximize the overall
system performance and minimize the damage caused by mali-
cious users. In addition, for different multimedia social net-
works, different structures will result in different mechanisms
to monitor user behavior and to achieve cheat prevention and
attack resistance.

BEHAVIOR MODELING IN MULTIMEDIA 
FINGERPRINTING FORENSICS
Without loss of generality, in this article, we use multimedia fin-
gerprinting as an example to illustrate the modeling and analy-
sis of user behavior in multimedia social networks. In this
section, we first introduce the digital fingerprinting technology
used to identify the source of illicit copies. Then, we formulate
the dynamics among users in multimedia fingerprinting.

As we move to the digital era and experience the convergence
of networks, communications and multimedia, scalability in
multimedia coding becomes a critical issue to support universal
media access and provide rich media access from anywhere using
any devices [10]. Scalable video coding encodes video into several
bit streams (layers) of different priorities: the base layer contains
the most important information and the enhancement layers
gradually refine the resolution of the receiver’s reconstructed
copy. Such a coding structure provides flexible solutions for mul-
timedia transmission and offers adaptivity to heterogeneous net-
works, varying channel conditions and diverse computing
capability at the receiving terminals [10].

In this article, we use temporal scalability as an example,
inherent in most current video coding standards such as Moving
Pictures Expert Group (MPEG) and H.26x, to demonstrate
issues that arise from scalability. Without loss of generality, we
consider three-layer temporal scalability and use frame skipping
and frame copying to implement temporal decimation and
interpolation, respectively. For example, with MPEG encoding,
the base layer may include all the I frames, the enhancement
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layer one includes all the P frames, and the enhancement layer
two contains all the B frames.

MULTIMEDIA FINGERPRINTING FOR TRAITOR TRACING
Digital fingerprinting is an emerging technology that offers
proactive post-delivery protection of multimedia [11], [12].
As illustrated in Figure 3, it labels each distributed copy with
the corresponding user’s identification information, known
as a fingerprint, which can be used to trace culprits who use
their copies illegally. Traitor-tracing multimedia forensics
has compelling commercial applications, for example, in the
antipiracy campaign by Hollywood film industries. A prelimi-
nary technology based on robust watermarking was adopted
in the 2004 Oscar season and successfully captured a few peo-
ple who helped illegally post Oscar screener copies of movies
on the Internet [13]. It is also important for government
operations and intelligence agencies to be able to securely
and reliably exchange multimedia data and prevent the leak-
age of confidential information.

In multimedia fingerprinting, fingerprints are embedded
into the host signal using traditional data hiding techniques
[14]–[16]. Spread spectrum embedding techniques [17], [18] are
widely used in the literature due to the robustness against many
attacks. With the three-layer temporally scalable coding struc-
ture, let Sb, Se1, and Se2 be the base layer, the enhancement
layer one and the enhancement layer two of the host signal,
respectively. For Alice, who subscribes to the low-resolution

copy, let W(alice)
b be Alice’s unique fingerprint. The content

owner distributes to Alice the fingerprinted base layer

X(alice)
b ( j) = Sb( j) + c( j) × W(alice)

b ( j). (1)

Here, X(alice)
b ( j), Sb( j), and W(alice)

b ( j) are the jth components
of the fingerprinted copy, the host signal, and Alice’s fingerprint,
respectively. c is the just noticeable difference (JND) from
human visual models [17], [18] to control the energy and
achieve the imperceptibility of the embedded fingerprints. For
Bob, who subscribes to the medium resolution copy, he receives
the fingerprinted base layer

X(bob)

b = Sb + c × W(bob)

b (2)

and the fingerprinted enhancement layer one

X(bob)
e1 = Se1 + c × W(bob)

e1 , (3)

from the content owner, where W(bob)

b and W(bob)
e1 are Bob’s fin-

gerprints embedded in the base layer and the enhancement
layer one, respectively. (We drop the component index j to
simplify the notations.) Similarly, for Carl, who subscribes to
all three layers, the fingerprinted base layer, enhancement
layer one and enhancement layer two that he receives are
X(carl )

b = Sb + c × W(carl )
b , X(carl )

e1 = Se1 + c × W(carl )
e1 , and

X(carl )
e2 = Se2 + c × W(carl )

e2 , respectively. W
(carl )
b , W

(carl )
e1 and
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[FIG3] Using embedding fingerprinting for traitor tracing.
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W(carl )
e2 are Carl’s fingerprints that are embedded in the base

layer, enhancement layer one and enhancement layer two,
respectively. Here, the superscript is the user index and the sub-
script is the layer index.

Without loss of generality, we consider orthogonal finger-
print modulation [12], where in the same layer, fingerprints
assigned to different users are orthogonal to each other and
have the same energy. For example, in the above example, with
orthogonal fingerprint modulation, we have

〈
W(alice)

b , W(bob)

b

〉
=

〈
W(alice)

b , W(carl )
b

〉
=

〈
W(bob)

b , W(carl )
b

〉
= 0,〈

W(bob)
e1 , W(carl )

e1

〉
= 0,

∥∥∥W(alice)
b

∥∥∥2

=
∥∥∥W(bob)

b

∥∥∥2 =
∥∥∥W(carl )

b

∥∥∥2
, and∥∥∥W(bob)

e1

∥∥∥2 =
∥∥∥W(carl )

e1

∥∥∥2
. (4)

In (4), 〈x, y〉 is the correlation between x and y, and ‖x‖2

returns the Euclidean norm of x.
Once an illegal copy is discovered, the digital rights enforcer

first extracts the fingerprint Y from the colluded copy. Then,
the digital rights enforcer uses the correlation-based detection
statistic

TN(i ) = 〈Y, W(i )〉/‖W(i )‖ (5)

to measure the similarity between the extracted fingerprint Y
and user u(i )’s fingerprint W(i ). The fingerprint detector com-
pares all the detection statistics {TN(i )} with a predetermined
threshold h and identifies those whose detection statistics are
larger than h as colluders.

COLLUSION ATTACKS AND
ANTICOLLUSION FINGERPRINT DESIGN
However, protecting digital fingerprints is no longer a tradi-
tional security issue with a single adversary. The global
nature of Internet has enabled a group of attackers (collud-
ers) to work together and collectively mount attacks to
remove the fingerprints. These attacks, known as multiuser
collusion, pose serious threats to intellectual property rights.
Analysis of the strategies, capabilities, and limitations of attack-
ers is an indispensable and crucial part of research in multi-
media security.

Linear collusion is one of the most feasible collusion attacks
that may be employed against multimedia fingerprinting
[19]–[21]. Given K different fingerprinted signals {X(i )} of the
same content, attackers generate Y = ∑

k akX(k) , where the
weights satisfy 

∑
k ak = 1 to maintain the average intensity of

the original multimedia signal (thus the perceptual quality of
the attacked copy). With orthogonal fingerprinting, such an
averaging attenuates the energy of the k th contributing finger-
print by a factor of a2

k and thus reduces colluder k ’s probability

of being detected. In [19], collusion attacks were modeled as
averaging differently fingerprinted copies with equal weights
(that is, ak = 1/K ) followed by the addition of noise. Their
work showed that O(

√
N/ log N) colluders are sufficient to

defeat the underlying fingerprinting system, where N is the fin-
gerprint length.

In addition to linear averaging, another important class of
collusion attacks is based upon operations as taking the min-
imum, maximum, and median of corresponding components
of the fingerprinted signals [22]. For example, given K fin-
gerprinted signals {X(i )}, to generate the jth component of
the colluded copy Y( j), colluders use the minimum value of
X(1)( j), X(2)( j), · · · , X(K)( j) and let Y( j) = min ({X(k)( j)}) .
Since each fingerprinted copy is expected to have high per-
ceptual quality, colluders have high confidence that Y( j) is
within the JSD range. Similarly, colluders can also let
Y( j) = max({X(k)( j)}) and take the maximum value of
{X(i )( j)} . They can also use the median value and select
Y( j) = median({X(k)( j)}). Detailed analysis of linear and nonlin-
ear collusion attacks on orthogonal fingerprints was provided in
[23]. The gradient attack was proposed in [24], which uses the
combination of several basic nonlinear collusion attacks in [23].
The work in [25] evaluated the collusion resistance of multimedia
fingerprints as a function of system parameters, including finger-
print length, total number of users, and system requirements.

Collusion attacks pose serious threats to multimedia intel-
lectual property rights. To provide reliable and trustworthy trai-
tor-tracing performance, it is of ample importance to design
anticollusion fingerprints. In the literature, techniques from a
wide range of disciplines were used to improve the fingerprint-
ing system’s collusion resistance. A two-layer fingerprint design
scheme was proposed in [26] where the inner code from spread
spectrum embedding [17], [18] is combined with an outer error-
correcting code (ECC) [27]. A permuted subsegment embedding
technique and a group-based joint coding and embedding tech-
nique were proposed in [28] to improve the collusion resistance
of ECC-based multimedia fingerprinting while maintaining the
detection efficiency. In [29], finite projective geometry was used
to generate codes whose overlap with each other can identify
colluding users. The anticollusion code based on combinatorial
theories was proposed in [30]. In [31], prior knowledge of the
possible collusion patterns was used to improve the collusion
resistance of the fingerprinting systems. The anticollusion
dithering technique was proposed in [32] to resist multiuser col-
lusion attacks for compressed multimedia. Readers who are
interested in anticollusion fingerprint design are referred to [12]
for detailed discussion of current research in this area.

BEHAVIOR MODELING AND FORENSICS 
IN MULTIMEDIA FINGERPRINTING
During collusion, attackers form a unique social network: they
share the reward from the illegal usage of multimedia as well as
the risk of being captured by the digital rights enforcer. An
agreement must be reached regarding how to distribute the risk
and the reward before collusion relationship can be established.
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However, each colluder prefers the agreement that favors his or
her payoff the most, and different colluders have different pref-
erences. To address such a conflict, a critical issue is to decide
how to fairly distribute the risk and the reward. In addition,
even though all colluders agree so, some colluders might be
selfish and wish to break away from their fair-collusion agree-
ment. They might cheat their fellow attackers during the nego-
tiation process in order to minimize their own risk and
maximize their own payoff.

On the other hand, to protect their own interests, other col-
luders may want to identify selfish colluders and exclude them
from collaboration. It is of great importance to understand how
colluders negotiate with each other to achieve fairness of the
attack and study the cheating and the cheat-proofing strategies
that colluders may adopt to maximize their own payoff and
protect their own interests.

In addition, users in multimedia fingerprinting influence
each other’s decisions and performance. To maximize their own
payoff, users should observe and learn how others play the game
and adjust their own strategies accordingly. For example, to max-
imize the traitor-tracing capability, the digital rights enforcer
should explore and utilize as much knowledge about collusion as
possible when designing the fingerprints and identifying the col-
luders. Here, analysis of the colluder dynamics, especially the
investigation on how attackers achieve fairness of collusion, pro-
vides the digital rights enforcer with important insights on how
to probe and use such side information about collusion.
Therefore, another important issue in behavior modeling is to
understand the techniques that users can use to probe informa-
tion about how others play the game, study how they adjust their
strategies accordingly to maximize their own payoff, and analyze
the impact of side information on multimedia social networks.

In the sequel, using multimedia fingerprinting system as
an example, we present a general framework by employing a
few signal processing techniques to formulate and analyze
human behavior in multimedia social networks. We first
investigate the fairness dynamics in colluder social networks
and analyze how colluders negotiate with each other to
achieve fair collusion. We then study how selfish colluders
cheat to maximize their own payoff and how other colluders
detect such cheating behavior. We will also study side infor-
mation in multimedia fingerprinting, how the digital rights
enforcer can probe and utilize side information to improve
the traitor-tracing performance, and how such side informa-
tion affect the overall fingerprinting systems.

FAIRNESS DYNAMICS IN
MULTIMEDIA SOCIAL NETWORKS
In multimedia social networks, by contributing their own
resources and cooperating with each other, users are able to
access extra resources from their peers and thus receive
rewards. Each user aims to maximize his or her own payoff and
different users have different objectives. To address this con-
flict, an important issue is to investigate users’ strategies to
achieve a notion of fairness. In this section, we use colluder

social networks as an example to illustrate the methodologies
that can be used to analyze the fairness dynamics among users.

EQUAL-RISK ABSOLUTE FAIRNESS
Colluders receive rewards from the illegal usage of multimedia
content, for example, the profit from the unauthorized redistrib-
ution of copyrighted materials. They also take the risk of being
captured by the digital rights enforcer, which can be considered
as the colluders’ cost by participating in collusion. In the litera-
ture, a commonly used definition of a colluder’s utility (payoff)
function is his or her chance of not being captured by the digital
rights enforcer, and the notion of equal-risk absolute fairness is
widely adopted where all colluders agree to share the same risk
and have equal probabilities of being detected.

If all colluders receive fingerprinted copies of the same res-
olution, a simple average of all copies with equal weights
reduces the energy of each contributing fingerprint by the
same ratio, thus ensuring equal risk of all attackers. When
colluders receive fingerprinted copies of different resolutions,
it is much more complicated to guarantee equal risk of all col-
luders, especially when colluders wish to generate a colluded
copy of higher resolution.

A SIMPLE EXAMPLE WITH THREE COLLUDERS
For the example with three colluders, Alice, Bob, and Carl,
who receive fingerprinted copies of different resolutions, a pos-
sible solution of collusion is shown in Figure 4(a), where the
colluded copy includes all three layers. Here, the colluders
average the three base-layer copies that they have with equal
weights 1/3; for the enhancement layer one, they average the
two copies from Bob and Carl with equal weights 1/2; and the
colluded copy’s enhancement layer two equals to that in Carl’s
copy. Therefore, in the colluded copy, the three fingerprints
corresponding to the three attackers have the same energy in
the base layer. The enhancement layers contain only Bob and
Carl’s fingerprints, not the fingerprint identifying Alice. It is
obvious that among the three, Carl has the largest probability
of being caught and Alice takes the smallest risk.
Consequently, the collusion in Figure 4(a) does not achieve
equal-risk fairness.

Figure 4(b) shows another possible solution, where the col-
luded copy contains the base layer only. Here, the colluders
average the three copies of the base layer with equal weights 1/3.
In this example, the fingerprints corresponding to the three
attackers have the same energy in the colluded copy and, there-
fore, the three attackers have the same probability of being
detected. Although the collusion in Figure 4(b) ensures equal-
risk fairness, the attacked copy has low resolution.

When there is difference in the resolution of fingerprinted
copies due to network and device heterogeneity, how can collud-
ers establish fair multiuser collusion that guarantees the collec-
tive equal risk among all attackers while still generating an
attacked copy of high resolution? A possible solution is shown in
Figure 5. In the base layer of the colluded copy, the three copies
are assigned different weights β1, β2, and β3, respectively.
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Similarly, the enhancement layer one in the colluded copy is the
average of Bob and Carl’s copies with weights α1 and α2, respec-
tively. The colluders copy the enhancement layer two in Carl’s
copy to the colluded copy. To achieve fairness of collusion, Alice,
Bob, and Carl select the collusion parameters {αk, βl} such that
they have the same probability of being detected.

TWO-STAGE COLLUSION
In general, when colluders receive fingerprinted copies of differ-
ent resolutions, they apply the two-stage collusion as in Figure 5
to achieve equal-risk absolute fairness. They first apply the intra-
group collusion to guarantee that colluders who receive copies
of the same resolution have the same probability of being
detected. Then, they apply the the inter-group collusion to
ensure that colluders who receive copies of different resolutions
share the same risk.

To demonstrate how attackers colluder in scalable multime-
dia fingerprinting, we first introduce the symbols that we use.
For user u(i ), let X(i )

b , X(i )
e1 , and X(i )

e2 denote the fingerprinted
base layer, enhancement layer one and enhancement layer two,

respectively, that u(i ) receives from the
content owner. In our notations, the
superscript i is the user index and the
subscript b, e1, or e2 is the layer index.

During collusion, the colluders first
divide themselves into three subgroups:
SCb includes the indices of those collud-
ers who receive the fingerprinted base
layer only; the second subgroup, SCb,e1,
contains colluders who receive the base
layer and the enhancement layer one;
and the last group, SCall, includes col-
luders who receive all three layers. Let
K b = |SCb| , K b,e1 = |SCb,e1| and
K all = |SCall| be the numbers of collud-
ers in SCb, SCb,e1 and SCall, respective-
ly. Here, we use “b,” “b, e1,” and “all ” in
the superscript to differentiate different
subgroups of colluders.

Then, they apply the intra-group col-
lusion, where colluders collude with their
fellow attackers in the same subgroup and
average different copies of the same reso-
lution with equal weights. In this stage,
different subgroups collude independent-
ly. This intra-group collusion ensures that
colluders who receive fingerprinted
copies of the same resolution have the
same probability of being detected. In our
example, colluders in SCb generates
X b

b = ∑
k∈SCb X(k)

b /K b . Colluders in
SCb,e1 generates a copy of the base layer
X b,e1

b = ∑
k∈SCb,e1 X(k)

b /K b,e1 and a
copy of the enhancement layer one
X b,e1

e1 = ∑
k∈SCb,e1 X(k)

e1 /K b,e1. Similarly,
X all

b = ∑
k∈SCall X(k)

b /K all , X all
e1 = ∑

k∈SCall X(k)
e1 /K all , and

X all
e2 = ∑

k∈SCall X(k)
e2 /K all .

Finally, as illustrated in Figure 5, colluders apply the inter-
group collusion and average copies from different subgroups
with different weights. This step guarantees that colluders who
receive fingerprinted copies of different resolutions have equal
risk of being captured. In our example, in the final colluded copy
V, the base layer is

Vb = β1X b
b + β2X b,e1

b + β3X all
b + n, (6)

where 0 ≤ β1, β2, β3 ≤ β1 + β2 + β3 = 1; the enhancement
layer one is

Ve1 = α1X b,e1
e1 + α2X all

e1 + n, (7)

where 0 ≤ α1, α2 ≤ α1 + α2 = 1; and the enhancement layer
two is 

Ve2 = X all
e2 + n. (8)
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[FIG4] Two solutions of collusion in scalable multimedia fingerprinting.
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In (6)–(8), n is additive noise to further
hinder the detection process.

ACHIEVING EQUAL-RISK FAIRNESS
Given the above two-stage collusion
model, to ensure equal risk for all col-
luders, attackers need to first estimate
each colluder’s probability of being
detected, and then select the collusion
parameters {αk, βl} in (6)–(8) according-
ly. Therefore, an important step in multi-
user collusion is to follow the same
fingerprint detection process as the digi-
tal rights enforcer and estimate each
attacker’s chance of being caught. This
analysis provides colluders with impor-
tant guidelines on the selection of collu-
sion parameters to achieve fairness.

In the example in Figure 5, let Yb, Ye1 and Ye2 be the finger-
prints extracted from the base layer, enhancement layer one and
enhancement layer two, respectively. Since Alice only receives
the base layer from the content owner, only Yb is used to deter-
mine if she participates in collusion. Her detection statistic is

TN(alice)
c =

〈
Yb, W(alice)

b

〉/∥∥∥W(alice)
b

∥∥∥ . (9)

For Bob, who receives a medium-resolution copy, Yb and Ye1 are
used collectively to decide if Bob is a colluder, and his detection
statistic is

TN (bob)
c = 〈Y, W(bob)〉/‖W(bob)‖

where 〈Y, W(bob)〉 =
〈
Yb, W(bob)

b

〉
+

〈
Ye1, W(bob)

e1

〉
,

and ‖W(bob)‖2 =
∥∥∥W(bob)

b

∥∥∥2 +
∥∥∥W(bob)

e1

∥∥∥2
. (10)

Because Carl receives all three layers from the content owner,
Yb, Ye1 and Ye2 will be used collectively to determine if Carl col-
ludes with others, and Carl’s detection statistic is

TN (carl )
c = 〈Y, W(carl )〉

/√
‖W(carl )‖2

where 〈Y, W(carl )〉 =
〈
Yb, W(carl )

b

〉
+

〈
Ye1, W(carl )

e1

〉
+

〈
Ye2, W(carl )

e2

〉
and ‖W(carl )‖2 =

∥∥∥W(c)
b

∥∥∥2 +
∥∥∥W(carl )

e1

∥∥∥2 +
∥∥∥W(carl )

e2

∥∥∥2
.

(11)

In (9)–(11), we use the subscript c to denote the collective
detection statistics that use fingerprints extracted from all layers
collectively to identify colluders.

With orthogonal fingerprint modulation, if the additive noise
n is i.i.d. Gaussian N (0, σ 2

n), the collective detection statistics
follow the normal distributions [33]

TN (alice)
c ∼ N

(
μ(a), σ 2

n

)
with μ(a) = β1

√
Nb

K b
σW,

TN (bob)
c ∼ N

(
μ(b), σ 2

n

)
with μ(b) = β2Nb + α1Ne1

K b,e1
√

Nb + Ne1
σW,

and TN (carl )
c ∼ N

(
μ(c), σ 2

n

)
with

μ(c) = β3Nb + α2Ne1 + Ne2

K all
√

Nb + Ne1 + Ne2
σW .

(12)

In (12), Nb, Ne1 and Ne2 are the lengths of the fingerprints
embedded in the base layer, enhancement layer one and
enhancement layer two, respectively, and σ 2

W is the variance of
the fingerprints W. Detailed derivations are available in [33].
Therefore, Alice’s probability of being detected is

P(alice)
s = Q

(
h − μ(a)

σn

)
, (13)

and P(bob)
s and P(carl )

s , which are Bob’s and Carl’s probabilities of
being detected, share the similar form. To guarantee that
P(alice)

s = P(bob)
s = P(carl )

s and ensure the equal risk of all col-
luders, it is equivalent to select {αk, βl} such that μ(a) =
μ(b) = μ(c). Table 1 [33] lists the constraints on collusion and
the selection of collusion parameters to achieve equal-risk
absolute fairness when generating a colluded copy of high, medi-
um, and low resolutions, respectively.

UNDERSTANDING THE CONSTRAINTS
ON COLLUSION TO ACHIEVE FAIRNESS
From Table 1, if the colluders wish to generate a high-resolu-
tion colluded copy while still achieving equal-risk absolute fair-
ness, then (K b, K b,e1, K all) and (Nb, Ne1, Ne2) have to satisfy

[FIG5] The intra-group and the inter-group collusion attacks.
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the constraints (*) in the row of highest resolution, and the
colluders should select parameters as in (**). Similarly, if the
colluders wish to generate a colluded copy of medium resolu-
tion, to achieve equal-risk absolute fairness, (K b, K b,e1, K all)

and (Nb, Ne1, Ne2) must satisfy the constraint (†) in the row of
medium resolution, and the colluders should select the param-
eters according to (‡) therein. If the colluders only want to
generate a low-resolution copy, there are no constraints on
(K b, K b,e1, K all) and (Nb, Ne1, Ne2), and they should follow
(§§) to achieve equal-risk absolute fairness. If we compare the
constraints (*), (†) and (§) in Table 1, it is easy to see that gen-
erating a colluded copy of higher resolution puts more severe
constraints on collusion to guarantee that all colluders have
the same risk of being detected.

To have a better visualization of fair collusion, Figure 6
shows an example of the constraints on collusion to ensure the
equal risk of all colluders. Define K = K b + K b,e1 + K all as the
total number of colluders. In addition, we let Rb = K b/K ,
Rb,e1 = K b,e1/K and Rall = K all/K denote the percentages of
colluders who receive the low-, medium- and high-resolution
copies, respectively, and Rb + Rb,e1 + Rall = 1. In Figure 6,
the horizontal and the vertical axes are Rb and Rall, respective-
ly, and each point in the figure corresponds to a unique triplet
(Rb, Rb,e1, Rall) where Rb,e1 = 1 − Rb − Rall .

In Figure 6(a), the line AB is defined as

AB �
{
(Rb, Rb,e1, Rall) :

Rall√Nb + Ne1 + Ne2

Rb
√

Nb + Rb,e1
√

Nb + Ne1 + Rall
√

Nb + Ne1 + Ne2

= Ne2

Nb + Ne1 + Ne2

}
, (14)

which corresponds to the boundary of the second constraint in
(*) in Table 1. The line CD is

CD �
{
(Rb, Rb,e1, Rall) :

Rb√Nb

Rb
√

Nb + Rb,e1
√

Nb + Ne1 + Rall
√

Nb + Ne1 + Ne2

= Nb

Nb + Ne1 + Ne2

}
, (15)

which is the boundary of the first constraint in (*) in Table 1. In
Figure 6(b), the line EF is

EF �
{
(Rb, Rb,e1, Rall) :

Rb√Nb

Rb
√

Nb + (Rb,e1 + Rall)
√

Nb + Ne1
= Nb

Nb + Ne1

}
,

(16)

which is the boundary of the constraint (†) in Table 1 when col-
luders wish to generate a colluded copy of medium resolution.

From Table 1, if colluders wish to generate a high-resolution
colluded copy, (Rb, Rb,e1, Rall) have to be in the shaded area
shown in Figure 6(a) to guarantee that all attackers have the same
probability of being detected. To generate a colluded copy of medi-
um resolution, (Rb, Rb,e1, Rall) have to be in the shaded area
shown in Figure 6(b) to ensure that colluders share the same risk.
As we can see from Figure 6, generating a colluded copy of higher
resolution puts more severe constraints on collusion to achieve
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HIGHEST RESOLUTION WITH FAIRNESS CONSTRAINTS

⎧⎪⎨⎪⎩
K b

√
Nb

K b
√

Nb+K b,e1
√

Nb+Ne1+K all
√

Nb+Ne1+Ne 2
≤ Nb

Nb+Ne1+Ne 2
,

K all
√

Nb+Ne1+Ne 2

K b
√

Nb+K b,e1
√

Nb+Ne1+K all
√

Nb+Ne1+Ne 2
≥ Ne 2

Nb+Ne1+Ne 2
.

(∗)

ALL THREE LAYERS

PARAMETER SELECTION

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β 1 = Nb+Ne1+Ne 2

Nb

K b
√

Nb

K b
√

Nb+K b,e1
√

Nb+Ne1+K all
√

Nb+Ne1+Ne 2
,

β 2Nb + α 1Ne1 = (Nb+Ne1+Ne 2)K b,e1
√

Nb+Ne1

K b
√

Nb+K b,e1
√

Nb+Ne1+K all
√

Nb+Ne1+Ne 2
,

β 3 = 1 − β 1 − β 2, α 2 = 1 − α 1.

(∗∗)

MEDIUM RESOLUTION WITH FAIRNESS CONSTRAINTS
K b

√
Nb

K b
√

Nb + (K b,e1 + K all)
√

Nb + Ne1
≤ Nb

Nb + Ne1
. (†)

THE BASE LAYER AND THE 
ENHANCEMENT LAYER ONE

PARAMETER SELECTION

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β 1 = Nb+Ne1

Nb

Kb

√
Nb

K b
√

Nb+(K b,e1+K all)
√

Nb+Ne1
,

β 2 = K b,e1

K b,e1+K all (1 − β 1), β 3 = 1 − β 1 − β 2,

α 1 = K b,e1

K b,e1+K all , α 2 = 1 − α 1.

(‡)

LOWEST RESOLUTION WITH FAIRNESS CONSTRAINTS NO CONSTRAINTS ON (K b, K b,e1, K all) AND (Nb, Ne1, Ne 2). (§)

THE BASE LAYER ONLY

PARAMETER SELECTION β 1 = K b

K b + K b,e1 + K all
, β 2 = K b,e1

K b + K b,e1 + K all
, β 3 = K all

K b + K b,e1 + K all
. (§§)

[TABLE 1]  CONSTRAINTS ON COLLUSION AND SELECTION OF COLLUSION PARAMETERS TO ACHIEVE EQUAL RISK.
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equal-risk fairness, and it requires that more colluders receive the
high-resolution copies from the content owner.

GAME-THEORETIC MODELING 
OF COLLUDER DYNAMICS
Equal-risk absolute fairness only considers each colluder’s risk
and ensures that all colluders have the same probability of being
detected. During collusion, colluders not only negotiate how to
distribute the risk but also bargain how to share the rewards
from the illegal usage of multimedia. In addition, rather than
absolute fairness, colluders may prefer other ways to distribute
the risk and the reward. For example, some colluders may want
to benefit more from collusion by taking a higher risk of being
detected. In [34], this complex dynamics was modeled as a bar-
gaining problem where colluders negotiate with each other to
resolve the conflict, and game theory [7] was used to analyze
this negotiation process.

In this game-theoretic framework, colluders first define the
utility (payoff) function π , which is a function of a colluder’s
risk as well as the reward that he or she receives from collu-
sion. A natural definition of the utility function is the expected
payoff that a colluder receives by participating in collusion. For
colluder u (i ), his or her utility can be given by

π (i ) = −P(i )
s L (i ) + (1 − P(i )

s )Rw(i ), (17)

where P(i )
s is his or her probability of being detected, L(i ) is

colluder u (i ) ’s loss if he or she is captured by the fingerprint
detected, and Rw(i ) is the reward that u (i ) receives if he or
she successfully escapes being detected. Each colluder tries
to maximize his or her own utility function during the nego-
tiation process.

Without loss of generality, we use a two-layer multimedia
fingerprinting example to demonstrate how colluders bargain
during collusion. We assume that there are a total of 250 collud-
ers of which 80 attackers receive the low-resolution copies and
the rest have the high-resolution version. For simplicity, we
consider a scenario where colluders who receive fingerprinted
copies of the same resolution agree to share the same risk and
have equal utilities. Therefore, colluders who receive the low-
resolution copies act as a single player in the game and they
have the same utility πb, while colluders who have the high-res-
olution copies act as a single player during the bargaining
process and they have the same utility πbe.

The second step in the bargaining process is to find the feasi-
ble set S = {(π b, π be) ∈ R2} of the game, where for every
(π b, π be) ∈ S, it is possible for colluders to act together and
obtain the utilities π b and π be, respectively. For the above men-
tioned colluder game, Figure 7 shows the feasible set, which is
the curve AB plus the line BC. Note that if colluders select a
solution that corresponds to a point on the line BC, then they
can always find another solution that gives the same πbe but a
larger πb. Therefore, in a bargaining situation like this, collud-
ers would always like to settle at a Pareto-optimal point, where
no one can further increase his or her utility without decreasing

others’. In Figure 7, the Pareto-optimal set includes solutions
that correspond to the points on the curve AB.

Depending on their definition of fairness and their objectives
of collusion, colluders select different collusion strategies. For
example, with equal-payoff absolute fairness, colluders select the
point where πb = πbe and let all attackers have the same utility.
Colluders can also select the collusion parameters to maximize
the minimum utility that a colluder can receive by participating
in collusion, that is,

π∗ = max
β

min
{
πb, πbe

}
, (18)

where β is the collusion parameter in Figure 5. This solu-
tion guarantees that by participating in collusion, a colluder
can receive at least π∗ utilities. The maxsum solution maxi-
mizes the sum of all attackers’ utilities if they cooperate
with each other during collusion. Another popular solution
in game theory is the famous Nash bargaining solution

[FIG6] An example of the constraints on collusion to achieve
equal-risk absolute fairness. (a) Generating a colluded copy of
high resolution. (b) Generating a colluded copy of medium
resolution Nb : Ne1 : Ne 2 = 1 : 1 : 2.
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(NBS), which aims to achieve proportional fairness. It
divides the additional utility between the two players in a
ratio that is equal to the rate at which this utility can be
transferred [7]. Mathematically, the NBS maximizes

g(πb, πbe) = (πb − πb∗)(πbe − πbe∗),
where πb∗ = min

β
{πb} and πbe∗ = min

β
{πbe}. (19)

Different collusion strategies correspond to different points
in the Pareto-optimal set. In the example shown in Figure 7, the
equal-payoff absolute fairness and the maxmin strategies give
the same result, while the maxsum and the NBSs favor colluders
who receive the high-resolution fingerprinted copies more.

CHEATING BEHAVIOR IN
MULTIMEDIA SOCIAL NETWORKS
In multimedia social networks, users need to exchange private
information with each other when negotiating, and achieving
fairness requires that they give each other correct information
about their own resources. However, the assumption of fair play

may not always hold. Although they might agree so, some users
might be selfish and wish to maximize their own payoff. To
achieve this goal, they might break away from their agreement
and cheat other users during the bargaining process. To
improve the overall system performance, it is important to study
the cheating and cheat-proofing dynamics among users, investi-
gate the selfish colluders’ cheating strategies, and design cheat-
proofing mechanisms. In this article, we use multiuser collusion
as an example to understand the colluders’ cheating and cheat-
proofing strategies and study the traitor-within-traitor problem.

In multiuser collusion, colluders need to exchange private
information (that is, the resolution of the fingerprinted copies
and the fingerprinted coefficients in each frame) with each other
to ensure fairness of the attack. Without loss of generality, we
use equal-risk absolute fairness as an example. In this scenario,
colluders agree to distribute the risk evenly among themselves,
while selfish colluders wish to minimize their own probability of
being detected. To achieve this goal, selfish colluders process
their fingerprinted copies before collusion and contributes the
processed copy instead of the originally received ones during
collusion. In this section, we focus on the analysis of selfish col-
luders’ cheating strategies and demonstrate a few techniques
that selfish colluders can use to minimize their own risk.

RISK MINIMIZATION AND TRADEOFF
For selfish colluders, in order to further lower their risk, one
possible solution is to attenuate the energy of the embedded fin-
gerprints even before multiuser collusion. Examples include
averaging or swapping neighboring frames to replace each seg-
ment of the fingerprinted signal with another, seemingly similar
segment from different regions of the content [35]–[37].

For example, consider frame averaging where the selfish col-
luder uses linear interpolation to generate a temporally filtered
and smoothed video. Assume that for colluder u (i ), X (i )

j is his
or her originally received fingerprinted frame j. As shown in
Figure 8, for each frame (say j) in the video sequence, the self-
ish colluder replaces it with a linear combination of the current
frame ( j), the previous frame ( j− 1) and the next frame ( j+ 1)

with weights {λ j, 1 − λ j/2, 1 − λ j/2}, respectively, and gener-
ates a new frame

X̃ (i )
j = 1 − λ j

2
X (i )

j−1 + λ jX
(i )
j + 1 − λ j

2
X (i )

j+1. (20)

The selfish colluder repeats this process for all frames in
the video sequence and different frames are processed inde-
pendently during precollusion processing. During collusion,
the selfish colluder contributes the temporally filtered copy
X̃ (i )

j instead of the originally received one X (i )
j . If other col-

luders do not discover this temporal filtering, same as in
the previous section, they average all the fingerprinted
copies that they have and add additional noise n to further
hinder the detection process.

During precollusion processing, the selfish colluder wishes
to minimize his or her chance of being detected by the finger-
print detector. Meanwhile, temporal filtering should introduce

[FIG7] An example of the feasible set and different solutions of
the colluder game. The horizontal axis is the utility of colluders
who receive the high-resolution copies, and the vertical axis is
the utility of colluders who receive the low-resolution copies.
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as little perceptually noticeable distortion as possible to his or
her fingerprinted copy. To select the appropriate parameter λ j in
(20), the selfish colluder needs to analyze how temporal filtering
changes his or her risk of being detected by the digital rights
enforcer and study how it affects the perceptual quality of his or
her fingerprinted copy.

From the analysis in [38], with orthogonal fingerprint
modulation, if  the additive noise n is i . i .d. Gaussian
N (0, σ 2

n), the selfish colluder u(i ) ’s detection statistic TN (i )

follows the normal distribution

TN (i ) ∼ N
(
μ(i ), σ 2

n

)
, where

μ(i ) =
∑

j

〈
W (i )

j−1, W (i )
j

〉
+

〈
W (i )

j , W (i )
j+1

〉
2K

√∑
l

∥∥∥W (i )
l

∥∥∥2

+
∑

j

λ j ×
2
∥∥∥W (i )

j

∥∥∥2 −
〈
W (i )

j−1, W (i )
j

〉
−

〈
W (i )

j , W (i )
j+1

〉
2K

√∑
l

∥∥∥W (i )
l

∥∥∥2
,

(21)

and K is the total number of colluders. Therefore, u (i )’s proba-
bility of being detected is

P(i )
s = Q

(
(h − μ(i ))/σn

)
, (22)

where Q(·) is the Gaussian tail function and h is a predeter-
mined threshold. Since

〈
W (i )

j−1, W (i )
j

〉
≤

〈
W (i )

j , W (i )
j

〉
=

∥∥∥W (i )
j

∥∥∥2
and〈

W (i )
j+1, W (i )

j

〉
≤

∥∥∥W (i )
j

∥∥∥2
, (23)

μ(i ) is a nondecreasing function of λ j and is minimized when
λ j = 0 for all j. This is because, by using a smaller λ j, the inter-
polated frame X̃ (i )

j contains less information of the originally
received frame X (i )

j and, therefore, attenuates the fingerprints
embedded in frame j by a larger amount. Thus, from risk mini-
mization’s point of view, smaller values of {λ j} are preferred.

To analyze how temporal filtering affects the perceptual qual-
ity, we calculate the mean square error (MSE) between the fil-
tered frame ̃X (i )

j and the originally received one X (i )
j , which is

MSEj =
∥∥∥X̃ (i )

j − X (i )
j

∥∥∥2 =
(

1 − λ j

2

)2

· φ j,

where φ j = 4
∥∥∥X (i )

j

∥∥∥2 +
∥∥∥X (i )

j−1

∥∥∥2 +
∥∥∥X (i )

j+1

∥∥∥2

− 4
〈
X (i )

j−1, X (i )
j

〉
− 4

〈
X (i )

j , X (i )
j+1

〉
+ 2

〈
X (i )

j−1, X (i )
j+1

〉
. (24)

From (24), a larger λ j implies a smaller MSE and better quality.
When λ j = 1, X̃ (i )

j = X(i )
j and it corresponds to the scenario

where u(i ) does not process his or her copy before collusion.
Therefore, from the perceptual quality’s point of view, u(i )

should choose a larger λ j.
To address such tradeoff between the risk and the per-

ceptual quality, the selfish colluder selects the parameters
{λ j} to minimize his or her chance of being detected by the
digital rights enforcer under the constraint that the MSE
between the temporally filtered copy X̃ (i )

j and the originally
received one X(i )

j is below a predetermined threshold ε .
Therefore, for a selfish colluder u(i ) , the selection of the
parameter {λ j} can be modeled as

min
{λ j}

⎧⎨⎩μ(i ) =
∑

j

μ
(i )
j

⎫⎬⎭
s.t. MSEj ≤ ε, 0 ≤ λ j ≤ 1, j = 1, 2, . . . , (25)

From [38], the solution to the above optimization problem is:
for every frame j,

λ∗
j = max

{
0, 1 − 2

√
ε/φj

}
, (26)

where φ j is in (24). By using {λ∗
j } during temporal filtering, a

selfish colluder minimizes his or her own probability of being
detected and ensures that the newly generated frames have
small perceptual distortion when compared with the originally
received ones (the MSE between these two is no larger than ε).

TRAITOR-WITHIN-TRAITOR DYNAMICS
In addition to temporal filtering, the selfish colluder can use
a wide range of techniques to process his or her fingerprinted
copy before multiuser collusion. For example, when collud-
ers receive fingerprinted copies of different resolutions, col-
luders first need to estimate every attacker’s probability of
being detected. Then they follow the analysis in the section
“Fairness Dynamics in Multimedia Social Networks” to select
the parameters such that all colluders share the same risk.
The assumption here is that all colluders are honest about
the resolutions of their fingerprinted copies, and they can
correctly estimate each other’s risk. Thus, to further reduce
their risk, one possible option for selfish colluders is to lie
about (for example, change) the resolutions of their copies
before collusion [38].

Without loss of generality, we use three-layer temporal scala-
bility as an example and consider a selfish colluder u(i ) who
receives a low-resolution copy with the base layer only. During
precollusion processing, u(i ) can interpolate the base-layer
frames and generate the missing frames in the two enhance-
ment layers. Assume that X (i )

j1
and X (i )

j3
are two adjacent frames

in the base layer that u(i ) receives. To forge a frame j2 in the
enhancement layers where j1 < j2 < j3, u(i ) can use a simple
linear-interpolation-based method and let
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X̃ (i )
j2

= λ1 · X (i )
j1

+ λ2 · X (i )
j3

,

where λ1 = j3 − j2

j3 − j1
, and λ2 = j2 − j1

j3 − j1
. (27)

Other complicated algorithms,
e.g., motion-based interpolation
[39], can also be used.

To analyze the effectiveness of
this precollusion processing in
reducing u(i )s risk, we consider
two scenarios: when the selfish
colluder does not apply precollu-
sion processing and when u(i )

increases the temporal resolution
of his or her copy before collu-
sion, and we compare the selfish colluder’s probability of being
detected in these two scenarios.

Scenario 1: Without Precollusion Processing
We first consider the scenario when u(i ) does not process his or
her copy and contributes the originally received frames during
collusion. In this scenario, the analysis is the same as that in the
section “Equal-Risk Absolute Fairness.” Since u(i ) receives the
base layer only, other colluders believe that the fingerprint
detector will use the fingerprint extracted from the base layer
only to determine if u(i ) participates in collusion. Thus, follow-
ing the same analysis as in the section “Equal-Risk Absolute
Fairness,” colluders calculate that u(i )’s risk of being detected is

P(i )
s = Q

(
h − β1

√
NbσW/K b

σn

)
, (28)

where h is a predetermined threshold. Then, they follow Table 1
and select {αk, βl} such that P(i )

s is the same as other colluders’
probability of being detected. Since u(i ) does not process his or
her copy before collusion, other colluders correctly estimate
u(i )’s risk, and P(i )

s in (28) is u(i )’s probability of being detected
by the fingerprint detector.

Scenario 2: With Precollusion Processing
We then consider the scenario where u(i ) increases the frame
rate before multiuser collusion. If other colluders do not discov-
er this cheating behavior, they still believe that the fingerprint
detector will use fingerprints extracted from all layers collective-
ly to determine if u(i ) participates in collusion. Based on this
assumption, they follow the same analysis as in the section
“Equal-Risk Absolute Fairness” and calculate that u(i )’s risk of
being detected is

P̄(i )
s = Q

(
h − μ̄ (i )

σn

)
, where

μ̄ (i ) = β̄ 3Nb + ᾱ 2Ne1 + Ne2

K̄ all
√

Nb + Ne1 + Ne2
σW . (29)

In (29), K̄ all is the total number of colluders who contribute
high-resolution fingerprinted copies, including u(i ). Then, they
follow Table 1 and select {ᾱk, β̄l} such that P̄(i )

s is the same as
other colluders’ probability of being detected.

However, the fingerprint detector knows that u(i ) receives
the fingerprinted base layer only from the content owner. The

fingerprint detector believes that
if u(i ) is a colluder, the enhance-
ment layers of the colluded copy
should not contain u(i )’s identifi-
cation information. Therefore, the
fingerprint detector only uses the
fingerprint extracted from the
base layer to decide if u(i ) is a col-
luder. In this case, following the
same analysis as in the section
“Equal-Risk Absolute Fairness,”

u(i )’s true probability of being detected is

P̃(i )
s = Q

(
h − β̄ 3

√
NbσW/K̄ all

σn

)
. (30)

Comparing (29) and (30), P̃(i )
s in (30) does not equal to and

is smaller than P̄(i )
s in (29). Other colluders make an error

when estimating P(i )
s due to u(i )’s precollusion processing. This

estimation error helps u(i ) further lower his or her probability
of being detected.

To analyze how precollusion processing affects other collud-
ers, with u(i )’s precollusion processing, for a colluder u (k) who
contributes the originally received copy, following the same
analysis, u (k)’s chance of being detected is

P̃(k)
s = Q

(
h − β̄ 1

√
NbσW/K̄ b

σn

)
. (31)

Using the above example, Figure 9 shows the effectiveness
of precollusion processing in reducing the selfish colluder’s
risk. We assume that there are a total of K = 150 colluders.
Each point on the horizontal axis corresponds to a unique
triplet (K b, K b,e1, K all) on the line AB in (14), In Figure 9, we
assume that there is only one selfish colluder u(i ) and other
colluders do not discover his or her selfish behavior. Figure
9(a) compares P(i )

s in (28) with P̃(i )
s in (30), that is, u(i ) ’s

probability of being detected with and without precollusion
processing. It is obvious that increasing the resolution of the
fingerprinted copy can help u(i ) further decrease his or her
risk. In Figure 9(b), we plot P̃(i )

s in (30) and P̃(k)
s in (31), and

we compare the selfish colluder u(i ) ’s risk with that of another
colluder u (k) who does not apply precollusion processing. It
shows that u(i ) ’s precollusion processing makes others take a
much higher probability of being detected and thus increases
others’ relative risk when compared with u(i ).

Similarly, if the selfish colluder receives not only the base
layer but also the enhancement layers, he or she can also drop
the enhancement layers and contribute only the low-resolution
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copy during collusion. Interested readers can refer to detailed
analysis in [38], where it showed that changing the resolution of
the fingerprinted copies can help selfish colluders further reduce
their probability of being detected, especially when the colluded
copy has high resolution. In fact, in some scenarios, precollusion
not only increases other colluders’ relative risk when compared
with that of the selfish colluders, but it may also increase others’
absolute risk, that is, their probability of being detected.
Therefore, it is not only selfish but also malicious.

CHEAT-PROOFING STRATEGIES IN 
MULTIMEDIA SOCIAL NETWORKS
In multimedia social networks, due to the selfish nature of
human behavior, honestly reporting private information cannot
be taken for granted and some users might intentionally cheat
others to maximize their own payoff. Therefore, it is important
to have cheat-proofing strategies to protect one’s own interests.
A social network may have different social structures and,
therefore, can result in different cheat-proofing strategies. In a
centralized multimedia social network where there exists at
least one trusted entity (or leader), he or she can help monitor
(maintain the order) and detect cheating behavior. However, in
a distributed structure where there exists no such trusted enti-
ty, users have to detect cheating behavior and identify selfish
users themselves. In this section, we consider the development
of cheat-proofing strategies, and without loss of generality, we
use traitors within traitors in multimedia fingerprinting as an
example to illustrate the dynamics.

As we can see from the previous section, in multiuser collu-
sion, precollusion processing is not only a selfish behavior, but
can also be a malicious one. To protect their own interests dur-
ing collusion, it is important for colluders to have cheat-proof-
ing strategies. They must examine all the fingerprinted copies
before collusion, detect and identify selfish colluders, and
exclude them from collusion. It forces all colluders to keep
their fair-play agreement and build trust among attackers. Let
us use temporal filtering as an example of the selfish colluders’
cheating strategies to illustrate the techniques to detect such
temporal filtering and identify selfish colluders who deviate
from their agreement. In this section, we first consider a cen-
tralized colluder social network with a ringleader whom all
colluders trust and investigate how the trusted ringleader can
help identify selfish colluders. We then study autonomous self-
ish colluder identification in the distributed colluder social
networks that do not have trusted ringleaders.

The selfish colluder identification scheme should accurately
identify all selfish colluders without falsely accusing any others.
In addition, note that before deciding with whom to collude,
colluders are unwilling to give others copies that contain their
identification information. Therefore, selfish colluder identifica-
tion should also protect the secrecy of all the fingerprinted
copies and prevent colluders from accessing the fingerprinted
coefficients in others’ copies. To meet such an antiframing
requirement, all copies must be encrypted appropriately during
the selfish identification process. Thus, a challenging issue here

is how colluders can detect precollusion processing and identify
selfish colluders without knowing the fingerprinted coefficients
in others’ copies.

CENTRALIZED SOCIAL NETWORKS 
WITH TRUSTED RINGLEADERS
In the centralized colluder social networks, there exists a ring-
leader trusted by all colluders. They trust that the ringleader
will not give their fingerprinted copies to others, will not frame
any colluders, and will not modify the selfish colluder detection
and identification results. In this scenario, all colluders give
their fingerprinted copies to the ringleader, and the ringleader
enforces the collusion by helping them detect selfish behavior.

Accurate identification of selfish colluders requires thor-
ough study of how precollusion processing modifies the fin-
gerprinted signals. Assume that S j is the original frame j in
the video sequence, and W(i ) is user u(i ) ’s fingerprint that is
embedded in frame j. With spread spectrum embedding [17],

[FIG9] (a) Comparison of the selfish colluder u(i )’s probability of
being detected with and without precollusion processing. 
(b) Comparison of different colluders’ probabilities of being
detected when u(i ) applies precollusion processing.
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[18], for three colluders Alice, Bob, and Carl, their received
fingerprinted frames are

X (alice)
j = S j + W (alice)

j , X (bob)
j = S j + W (bob)

j , and

X (carl )
j = S j + W (carl )

j , (32)

respectively. (We drop the JND term here to simplify the nota-
tions.) Alice and Bob do not process their copies and contribute
X (alice)

j and X (bob)
j during collusion. Carl uses (20) to temporally

filter his copy and contributes

X̃ (carl )
j = 1 − λ j

2
X (carl )

j−1 + λ jX
(carl )
j + 1 − λ j

2
X (carl )

j+1

= S j + 	S j (λ j) + W̃ (carl )
j ,

where 	S j (λ j) = (1 − λ j)

(
S j−1

2
+ S j+1

2
− S j

)
,

and W̃ (carl )
j = 1 − λ j

2
W (carl )

j−1 + λ j W
(carl )
j

+ 1 − λ j

2
W (carl )

j+1 . (33)

From (33), temporal filtering not only averages fingerprints
embedded in adjacent frames and attenuates their energies, it
also filters neighboring host frames and introduces extra distor-
tion 	S j(λ j) into the host signal.

Define D(a, b) = ‖X (alice ) − X (bob)‖2 and D(a, c) =
‖X (alice) − X (carl )‖2, where ‖x‖2 returns the Euclidean norm
of x. From (33), we have

Dj(a, b) ≈
∥∥∥W (alice)

j − W (bob)
j

∥∥∥2
,

and Dj(a, c) ≈
∥∥∥W (alice)

j − W̃ (carl )
j

∥∥∥2 + ‖	S j(λ j)‖2,

where ‖	S j(λ j)‖2 = (1 − λ j)
2 ×

∥∥∥∥S j−1

2
+ S j+1

2
− S j

∥∥∥∥2

.

(34)

As can be seen from (33), Dj (a, c) has a much larger value than
Dj (a, b) since Dj (a, c) also includes the extra distortion
‖	S j(λ j)‖2 due to temporal filtering of adjacent host frames.
The difference between Dj (a, b) and Dj (a, c) is more obvious
when λ j takes a smaller value and when the difference between
adjacent frames is larger (for example, when the scene of the
host video sequence changes fast).

Figure 10 shows examples of the histograms of {D(k, l )}.
As shown in Figure 10(a), when all colluders keep their fair-
collusion agreement and give each other correct information
of their received copies, all {D(k, l )} are from the same distri-
bution with a single mean. On the contrary, if there are selfish
colluders who temporally filter their fingerprinted copies
before collusion, then {D(k, l )} are from two or more distri-
butions with distinct means, as shown in Figure 10(b) and (c).
Therefore, study of {D(k, l )}’s histogram plot can help detect

[FIG10] Histograms of {D(k, l)}. (a) All colluders give each other
correct information about their fingerprinted copies. (b) There is
one selfish colluder, u (i 1), who temporally filters his or her copy
before multiuser collusion. (c) There are two selfish colluders,
u (i 1) and u (i 2), who process their copies before multiuser
collusion. u (i 1) chooses λj = 0.6031 in (20), and u (i 2) selects
λj = 0.7759 in (20). SCh contains the indices of all colluders who
do not process their copies before collusion. In (b) and (c),
D(i 1, SCh) = {D(i 1, l ) : l ∈ SCh} and
D(i 2, SCh) = {D(i 2, l ) : l ∈ SCh}.
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the existence of selfish collud-
ers. Identification of the selfish
colluders requires detailed
examination of D(k, l ) for each
pair of colluders (u(k), u(l )). For
example, in Figure 10(b), analy-
sis of each individual D(k, l ), in
particular, those in D(i1, SCh), will help separate colluders
into two subgroups: one includes the selfish colluder u(i1) ,
and the other contains those who keep their fair-collusion
agreement and contribute the originally received copies. In
Figure 10(c), analysis of the two distributions on the right
side, D(i1, SCh) and D(i2, SCh), can help identify u(i1) and
u(i2) as the selfish colluders. The selfish colluder identifica-
tion algorithm proposed in [40] can accurately identify all
selfish colluders without falsely accusing any others. In addi-
tion, for each copy, only the corresponding colluder and the
trusted ringleader can access the fingerprinted coefficients.
Therefore, the selfish colluder detection and identification
algorithm in [40] also protects the secrecy of all the finger-
printed copies and prevents framing attacks.

DISTRIBUTED SOCIAL NETWORKS
Now, without a trusted ringleader, colluders form a distrib-
uted and peer-structured social network. They have to help
each other identify selfish colluders and implement
autonomous selfish colluder identification. Assume that X (k)

j
and X (l )

j are the fingerprinted copies from u(k) and u(l ) ,
respectively. Without a trusted ringleader, they have to find
another colluder u(i ) to help them calculate Dj (k, l ). In order
to prevent u(i ) from accessing the fingerprinted coefficients
in their copies, u(k) and u(l ) process their copies beforehand
and let u(i ) calculate D(k, l ) from the processed copies
instead of the original ones. This processing should hide
information about the fingerprinted coefficients in X (k)

j and
X (l )

j . Meanwhile, it should not change the MSE between these
two copies so that u(i ) can calculate the correct Dj (k, l ).

Define f(·) as the function that u(k) and u(l ) use to
process X (k)

j and X (l )
j ,  and let Y (k) = f(X (k)

j ) and
Y (l ) = f(X (l )

j ) be the processed copies, respectively. A com-
ponent-wise, addition-based method [41] can be used to
process the fingerprinted copies: u(k) and u(l ) first generate
a noise-like signal v (k,l )

j and then add v (k,l )
j to their copies

component by component. That is,

Y (k)
j = f

(
X (k)

j , v (k,l )
j

)
= X (k)

j + v (k,l )
j and

Y (l )
j = f

(
X (l )

j , v (k,l )
j

)
= X (l )

j + v (k,l )
j , (35)

and therefore, ‖Y (k)
j − Y (l )

j ‖2 = ‖X (k)
j − X (l )

j ‖2 . v (k,l )
j can help

protect the secrecy of the fingerprinted coefficients in X (k)
j and

X (l )
j if it has large amplitude.

Based on the above, as shown in the example in Figure 11,
the key steps in the autonomous selfish colluder identification
scheme [41] are summarized as follows:

■ Step 1: Grouping: Colluders
randomly divide themselves into
two nonoverlapping subgroups
SC1 and SC2. In the example in
Figure 11, colluders 1–5 are in
SC1 and colluders 6–10 are in
SC2. Then, colluders in SC1 ran-

domly select an assistant (colluder five in Figure 11) to help
colluders in SC2 calculate {Dj (k, l )}k,l∈SC2 . Similarly, col-
luder eight is randomly selected to help colluders in SC1 cal-
culate {Dj (k, l )}k,l∈SC1 .
■ Step 2: Encryption: Colluders in SC1 generate a noise-
like signal v (SC1)

j . Each colluder u(i ) in SC1 generates a
secret key K (i,8) shared with colluder eight. Then, u(i ) uses
(35) to process his or her fingerprinted copy X (i )

j and gener-
ates f(X (i )

j , v (SC1)
j ). Then, u(i ) encrypts his or her copy

with key K (i,8) and transmits the encrypted version
Enc ( f(X (i )

j , v (SC1)
j ), K (i,8)) to colluder eight. Colluders in

SC2 follow the same procedure, process and encrypt their fin-
gerprinted copies, and transmit them to colluder five.
■ Step 3: Calculation of {D}: After decrypting the bit streams
received from all colluders in SC1, for each pair of colluders
(u(k), u(l )) in subgroup SC1 , colluder eight calculates
Dj (k, l ) = ‖ f(X (k)

j , vSC1
j ) − f(X (l )

j , v (SC1)
j )‖2 . Colluder

eight then broadcasts {Dj (k, l )}k,l∈SC1 to colluders in SC1,
together with his or her digital signature. Colluder five
repeats the same process to help colluders in SC2 calculate
{Dj (k, l )} for all k, l ∈ SC2.
■ Step 4: Selfish colluder identification: Given
{Dj (k, l )}k,l∈SC1 , colluders in SC1 apply the same method as
in the section “Centralized Social Networks with Trusted
Ringleaders” to detect and identify selfish colluders in SC1.
Similarly, attackers in SC2 examine {Dj (k, l )}k,l∈SC2 and
identify selfish colluders in SC2.

Finally, for colluders who do not apply precollusion pro-
cessing, they combine the detection results from all frames
in the sequence and exclude those identified selfish collud-
ers from collusion.

The above autonomous selfish colluder identification
scheme can accurately identify all selfish colluders without
falsely accusing any others if colluders five and eight in
Figure 11 give others correct values of {D(k, l )}. However, it
is possible that a small group of selfish colluders actively
attack the scheme by collaborating with each other and
manipulating the detection results. For example, in Figure 11,
if both colluders one and eight are selfish colluders, then col-
luder eight can change the values of {Dj (1, k)}k=2,3,4,5 such
that they follow the same distribution as others. In this case,
the above selfish colluder identification algorithm cannot
identify colluder one as a selfish colluder, and it makes a miss-
detection error. Colluder eight can also change {D} and let
{Dj (2, k)}k=1,3,4,5 take much larger values than others. Thus,
in addition to missing the true selfish colluder one, the above
scheme will also falsely accuse colluder two as selfish and
make a false-alarm error.

IEEE SIGNAL PROCESSING MAGAZINE [133] JANUARY 2009

COLLUSION ATTACKS POSE SERIOUS
THREATS TO MULTIMEDIA

INTELLECTUAL PROPERTY RIGHTS.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 16, 2009 at 09:42 from IEEE Xplore.  Restrictions apply.



To resist the above attack, col-
luders 1–5 select not only collud-
er eight but also colluders seven
and nine to help calculate
{Dj (k, l )}, and use majority vote
to make the final decision on the
identities of selfish colluders. In
this scenario, colluders seven
and nine will help correct the
detection errors due to colluder eight’s manipulation of
{Dj (k, l )}, and the proposed selfish colluder identification
scheme can still accurately identify all selfish colluders without
falsely accusing others [41]. The work in [41] showed that, if
less than 15% of the colluders are selfish, the autonomous self-
ish colluder identification algorithm can correctly identify all
selfish colluders without falsely accusing any others.

LEVERAGING SIDE INFORMATION IN SOCIAL GAMES
In multimedia social networks, to maximize his or her own
payoff, each user observes how others play the game and
adjusts his or her own strategy accordingly. Thus, side infor-
mation plays an important role in multimedia social net-
works, and it is important to understand which side
information about others can help a user improve his or her

own payoff, study how users
probe and util ize such side
information, and analyze its
impact on the overall system
performance. Again, we use
traitor tracing in scalable fin-
gerprinting as an example and
investigate how side informa-
tion affects the colluder-detec-

tor dynamics and the traitor-tracing performance of
multimedia fingerprinting systems.

In the cat-and-mouse game between the colluders and
the digital rights enforcer, there are many collusion strate-
gies from which the colluders can select, and the finger-
print detector has numerous choices when detecting
fingerprints. To minimize their risk of being detected, based
on the available information about the detection procedure,
the attackers try by all means to remove the embedded fin-
gerprints under the fairness constraints. Meanwhile, given a
colluded copy, the fingerprint detector selects the detection
strategy adaptively to maximize the traitor-tracing capabili-
ty. In this section, we investigate how each player in the
game adjusts his or her own strategy based on available
information about others’ actions to maximize his or her
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[FIG11] An example of autonomous selfish colluder identification.
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own payoff. Without loss of generality, we use equal-risk
absolute fairness as an example, and the analysis for other
collusion strategies is similar. We further assume that the
selfish detection and identification algorithm has accurately
identified all selfish colluders, and all attackers that partici-
pate in collusion contribute their originally received finger-
printed copies during collusion.

PROBING AND EXPLOITING SIDE INFORMATION
When detecting fingerprints, most prior work simply extended
the watermark detection method in digital watermarking and
did not consider the unique issues in multiuser collusion.
Intuitively, exploring the special characteristics of the colluded
copy can help improve the detection performance. Thus, to
maximize the success rate of traitor tracing, the fingerprint
detector should first examine the colluded copy, probe informa-
tion about collusion, and utilize this side information to help
select the optimum detection strategy.

In a scalable multimedia fingerprinting system, there are
various methods to determine if a user participates in collu-
sion. For example, for user u(i ) who receives all three lay-
ers, the fingerprint detector can use the collective detection
statistics in (11) to measure the similarity between Y and
W (i ) . Let SC be the set including the indices of all collud-
ers. Following the same analysis as in (12), with orthogonal
fingerprint modulation, if the additive noise n is i.i.d.
Gaussian with zero mean and variance σ 2

n , then the collec-
tive detection statistic TN (i )

c in (11) follows the Gaussian
distribution [42]

TN (i )
c ∼

⎧⎨⎩
N

(
μ

(i )
c , σ 2

n

)
, if i ∈ SC,

N
(
0, σ 2

n
)
, if i �∈ SC,

where μ
(i )
c = (1 − β 1 − β 2)Nb + (1 − α 1)Ne1 + Ne2

K all
√

Nb + Ne1 + Ne2
σW .

(36)

For user u(i ), define P(i )
s as the probability of successfully cap-

turing u(i ) if he or she is guilty, and P(i )
f a is the probability of

falsely accusing u(i ) if he or she is innocent. With the collective
detector in (11), we have

P(i )
s = Q

(
h − μ

(i )
c

σn

)
if i ∈ SC, and

P(i )
f a = Q

(
h
σn

)
if i �∈ SC. (37)

The fingerprint detector can also use the fingerprint extracted
from the enhancement layer two, Ye2, to determine if u(i ) is a
colluder. In this case, the detection statistic used by the finger-
print detector is

TN (i )
e2 =

〈
Ye2, W (i )

e2

〉/∥∥∥W (i )
e2

∥∥∥ . (38)

Following the same analysis as that for the collective detector,
TN (i )

e2 follows the Gaussian distribution

TN (i )
e2 ∼

⎧⎨⎩
N

(√
Ne2

K all σW, σ 2
n

)
if i ∈ SC,

N
(
0, σ 2

n
)

if i �∈ SC.

(39)

Similarly, the fingerprint detector can also use

TN (i )
e1 =

〈
Ye1, W (i )

e1

〉/∥∥∥W (i )
e1

∥∥∥ or

TN (i )
b =

〈
Yb, W (i )

b

〉/∥∥∥W (i )
b

∥∥∥ (40)

to determine if u(i ) is involved in the attack. The work in [42]
showed that

TN (i )
e1 ∼

⎧⎨⎩
N

(
(1 − α 1)

√
Ne1

K all σW, σ 2
n

)
if i ∈ SC,

N
(
0, σ 2

n
)

if i �∈ SC,

and TN (i )
e1 ∼

⎧⎨⎩
N

(
(1 − β 1 − β 2)

√
Nb

K all σW, σ 2
n

)
if i ∈ SC,

N
(
0, σ 2

n
)

if i �∈ SC.

(41)

With TN (i )
e2 , TN (i )

e1 , and TN (i )
b , the analysis of P(i )

s and P(i )
f a is

similar to (37) and thus omitted.
As we can see from the above analysis, the four detection

statistics, TN (i )
c , TN (i )

e2 , TN (i )
e1 , and TN (i )

b , have the same vari-
ance but different statistical means, and the one with the
largest mean gives the best traitor-tracing performance.
Depending on how attackers select the collusion parameters,
the detection strategy that gives the best performance may
vary from copy to copy, and there is no single detector that
outperforms the others in all scenarios.

Figure 12 shows an example of the performance of differ-
ent detection strategies when detecting colluder u(i ) who
receives a high-resolution copy. In this example, when more
than 60% of the colluders have high-resolution fingerprinted
copies, the collective detector in (11) gives the best perform-
ance. This is because in this scenario, u(i ) ’s fingerprint is
spread all over the entire colluded copy, and W (i ) ’s energy is
evenly distributed in the three layers. Therefore, from detec-
tion theory [43], fingerprints extracted from all layers should
be used collectively during detection to improve the perform-
ance. When less than 60% of the colluders receive all three
layers, due to the selection of the collusion parameters, a sig-
nificant portion of W (i ) ’s energy is in the enhancement layer
two, while the other two layers of the colluded copy contain
little information of u(i ) ’s identity. In this scenario, TN (i )

e2 in
(38) gives the best detection performance.
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The four detection strategies discussed above use fixed
detection statistics to estimate the identities of colluders, and
none of them take into consideration how attackers collude
and select the collusion parameters. To achieve the optimal
performance, the fingerprint detector should first examine the
colluded copy and probe such side information about collu-
sion, then uses the best detec-
tion statistic with the largest
statistical mean to identify col-
luders. A self-probing detector
was proposed in [42] to explore
such side information about col-
lusion. As an example, to identify
colluders who receive all three
layers from the content owner,
the key steps in probing side
information and selecting the optimum detection statistic are:

■ The fingerprint detector first uses the traditional
nonprobing detection methods to identify a few suspi-
cious users whose possibilities of participating in collu-
sion are very high. Let ŜC be the set including the
indices of all suspicious users who receive high-resolu-
tion copies and are identified in this stage.
■ Given ŜC, the detector calculates the sample means of the
four detection statistics

μ̂c =
∑
i ∈ŜC

TN (i )/|ŜC |, μ̂e2 =
∑
i ∈ŜC

TN (i )
e2 /|ŜC |,

μ̂e1 =
∑
i ∈ŜC

TN (i )
e1 /|ŜC |, and μ̂b =

∑
i ∈ŜC

TN (i )
b /|ŜC |,

(42)

where |A | returns the size of the
set A.
■ The detector compares the four
estimated statistical means, μ̂c,
μ̂e2, μ̂e1, and μ̂b, and selects the
detection statistic with the largest
sample mean. For example, the
collective detector in (11) is cho-
sen if μ̂c has the largest value.

Then, the fingerprint detector uses the selected detection sta-
tistic to make the final decision on the identities of colluders.
Figure 13 compares the performance of three detectors:

the collective detector in (11), which always uses the extract-
ed fingerprints from all layers collectively to identify collud-
ers; the optimum detector that has perfect knowledge about
the statistical means of the detection statistics and always
selects the optimum detection strategy; and the self-probing
detector that probes such side information from the colluded

copy himself or herself. As shown in
Figure 13, information about the statis-
tical mean of the detection statistics
can help significantly improve the col-
lusion resistance, and the self-probing
detector has approximately the same
performance as the optimum detector.

Side information about collusion not
only improves the fingerprint detector’s
traitor-tracing performance, it also
affects each colluder’s probability of
being detected and influences how they
collude. Figure 14 shows each collud-
er’s probability of being detected with
the self-probing fingerprint detector.
From Figure 14, when less than 60% of
the colluders receive the high-resolu-
tion copies, those colluders who receive
all three layers have a much larger
probability of being detected than the
others. This is because, during collu-
sion, attackers assume that fingerprints
extracted from all layers will be used
collectively to detect fingerprints, and
they select the parameters {αk} and {βl}
to achieve collective fairness. However,
during the colluder identification
process, the fingerprint detector probes
side information about detection statis-
tics and uses the one that gives the best

[FIG12] Comparison of different detection statistics (11), (38)–(40). The total number of
colluders is fixed as K = 250 of which K b = 50 of them receive the low-resolution copies.
The horizontal axis (Rall) is the percentage of colluders who receive high-resolution
fingerprinted copies. Each point on the horizontal axis corresponds to a unique triplet
(K b, K b,e1, K all), where the number of colluders who receive the low-, medium-, and high-
resolution fingerprinted copies are K b = 50, K all = Rall × K and K b,e1 = K − K b − K all,
respectively.
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collusion resistance. This mis-
match causes the difference in
different colluders’ risk.

GAME-THEORETIC
FORMULATION OF
ATTACKER-DETECTOR
DYNAMICS
Without probing side information, the detector will always
use all the frames collectively to identify the colluders, hop-
ing that more frames will give more information about col-
luders’ identities. On the other side of the game, colluders
adjust the collusion parameters {αk} and {βl} to seek collec-
tive fairness. Under such circumstances, the colluders and
the fingerprint detector reaches the collective fairness equi-
librium. However, side information breaks this equilibrium
between the colluders and the fingerprint detector. Both
sides need to search for a new equilibrium point, which
requires a new framework to model and analyze the complex
colluder-detector dynamics. To further analyze the interplay
between the colluders and the fingerprint detector, game the-
ory provides fundamental tools to formulate this complex
dynamics and facilitate the search of the new equilibrium.

The colluder-detector dynamics can be formulated as a
game with two players: the colluders acting as one single play-
er and the fingerprint detector as the other. In this frame-
work, a natural definition of the payoff function is the
colluders’ probability of being detected, or equivalently, the
fingerprint detector’s chance of successfully capturing collud-
ers. The two players in this game have conflicting objectives
and one player’s gain is another’s loss.

In such a game, the colluders act
first followed by the fingerprint detec-
tor. Note that from [42], the self-prob-
ing fingerprint detector has
approximately the same performance as
the optimal detector. Therefore, it is a
game with perfect information, where
the fingerprint detector is perfectly
informed of the colluders’ decisions [8].
Consequently, the colluder-detector
game can be modeled as a Stackelberg
game, where the colluders represents
the leader and the fingerprint detector
is the follower [8]. The subgame-perfect
equilibrium of this game can be found
by working backward: first solve for the
optimal choice of the fingerprint detec-
tor for each possible situation that he
or she might face, and then work back-
ward to compute the optimal choice for
the colluders. It can be easily shown
that this solution is a Nash equilibri-
um, and each player’s actions are opti-
mal at every possible history [44].

For colluder u(i ), define D (i )

as the set including all the possi-
ble detection statistics that can
be used to measure the similari-
ty between the extracted finger-
print and u(i ) ’s fingerprint. For
example, when u(i ) receives all
three layers of the fingerprinted

copy from the content owner, D (i ) = {TN (i )
c ,

TN (i )
b , TN (i )

e1 , and TN (i )
e2 } ,  where TN (i )

c ,  TN (i )
b ,  TN (i )

e1 , and
TN (i )

e2 are defined in (11), (38), and (40), respectively. Let P(i )
s

[FIG13] Performance comparison of the collective detector, the
optimum detector and the self-probing fingerprint detector. The
simulation setup is the same as in Figure 12.
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[FIG14] Each colluder’s probability of being detected with the self-probing fingerprint
detector. The simulation setup is the same as in Figure 12.
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be u(i ) ’s probability of being detected. Mathematically, with
equal-risk absolute fairness, to find the subgame-perfect equi-
librium of the colluder-detector game, it is equivalent to solve
the following min-max problem:

min
{αk,βl}

max
D (i )

P(i )
s

s.t. max
D (i 1)

P(i1)
s = max

D (i 2)
P(i2)

s , ∀ i1, i2 ∈ SC,

(43)

where SC is the set containing the indices of all colluders. In
(43), for every possible set of collusion parameters {αk, βl},
maxD (i ) P(i )

s gives the fingerprint detector’s decision when
selecting the optimal detection
strategy to maximize the traitor-
tracing performance; and the
minimization operator reflects
the colluders’ choice of the collu-
sion parameters to minimize
their chance of being caught. The
constraint maxD (i 1) P(i1)

s =
maxD (i 2) P(i2)

s in (43) is the fair-
ness constraint on collusion to ensure the even distribution of
risk among colluders.

To find solutions to this min-max problem, for every
possible situation that the fingerprint detector might face
(that is, for every possible set of collusion parameters
{αk, βl}), the first step is to analyze maxD (i ) P(i )

s for every
attacker u(i ) and investigate which detection statistic in
D (i ) has the largest statistical mean. This is the same as
that of the optimal fingerprint detection in the section
“Probing and Exploiting Side Information.” The next step
is to search for the feasible set, which includes all the pos-
sible collusion parameters {αk, βl} that satisfy the fairness
constraint maxD (i 1) P(i1)

s = maxD (i 2) P(i2)
s for any two collud-

ers u(i1) and u(i2). This feasible-set analysis will provide col-
luders with the constraints on collusion and the selection of
collusion parameters to ensure the fair play of the attack.
Finally, to minimize their risk, colluders select from the feasi-
ble set the collusion parameters that give them the smallest
probability of being detected. This min-max solution is a Nash
equilibrium of the colluder-detector game [45]: by following
this solution, the digital rights enforcer achieves the optimal
traitor-tracing performance, and the colluders minimize their
risk under the equal-risk absolute fairness constraint.

CONCLUSIONS
In summary, we have discussed recent advances in the study
of human dynamics for multimedia social networks, reviewed
a few methodologies to investigate the impact of human fac-
tors on multimedia security from signal processing perspec-
tive, and presented a framework to model and analyze user
behavior. Human dynamics plays a vital role in multimedia
social networks and must be taken into consideration during
the design of multimedia systems. It is important to under-
stand under what conditions users would like to cooperate

with each other and how selfish users behave to maximize
their own payoff. Possible malicious behavior should also be
incorporated in the model to account for malicious users
whose goal is to damage and sabotage the system. Equipped
with the understanding of human dynamics in social net-
works, multimedia system designers implement attack-resist-
ant and cheat-proofing strategies to minimize the damage to
and to guarantee satisfactory performance of the system.

We hope that the general framework presented in this
article will encourage and stimulate researchers from differ-
ent areas to further explore behavior modeling and foren-
sics for multimedia social networks and beyond. It is an

emerging research field with
much uncharted territory
remains unexplored. We envi-
sion that insights from a wide
range of disciplines, such as
signal processing, game theory,
sociology, networking, commu-
nications, and economics will
help improve our understand-

ing of human dynamics and its impact on multimedia social
networks, and ultimately lead to systems with more secure,
efficient, and personalized services.
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