
Minimization of Rekeying Cost for Contributory
Group Communications

Wei Yu∗, Yan Sun† and K. J. Ray Liu∗
∗Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742

Email: weiyu, kjrliu@umd.edu
†Department of Electrical and Computer Engineering, University of Rhode Island, 4 East Alumni Ave, Kingston, RI 02881

Email: yansun@ele.uri.edu

Abstract— While contributory group key agreement is a
promising solution to achieve access control in collaborative
and dynamic group applications, the existing schemes have not
achieved the performance lower bound in terms of rekeying
overhead. In this paper we introduce a contributory group
key agreement that achieves the performance lower bound by
utilizing a novel logical key tree structure, called PFMH, and
the concept of phantom user position. In particular, the proposed
scheme only needs O(1) rounds of two-party Diffie-Hellman upon
any single user join event and O(log n) rounds of two-party
Diffie-Hellman upon any single user leave event. Both theoretical
bound analysis and simulation studies show that the proposed
scheme achieves much lower rekeying cost than the existing tree-
based contributory group key agreement schemes.

I. INTRODUCTION

Contributory group key agreement is a promising solution
to achieve access control in collaborative and dynamic group
applications [1]–[8]. However, the early design of contributory
group key agreement schemes mostly considers the efficiency
of initial group key establishment [1]–[3], which encounter
high rekeying cost upon group membership changes. Recently,
logical tree structures are used to improve the scalability of
contributory key agreements [7], [8]. Kim et al. proposed a
tree-based contributory group key agreement protocol called
TGDH, where binary balanced tree is adopted to maintain the
keying material [7]. In TGDH, the group key can be updated
by performing log n rounds of two-party Diffie-Hellman (DH)
upon any single user join or departure, where n is the group
size. Mao et al. proposed another tree-based contributory key
agreement scheme called DST [8]. By using a special join-
tree/exit-tree topology and exploiting cost amortization, DST
can reduce the average time cost to Θ(log log n) rounds of
two-party DH for single user join or departure. However, DST
has an unrealistic requirement that members need to know
other members’ exact departure time in advance.

The theoretical analysis in [9] indicates that for any tree-
based contributory group key management scheme, the lower
bound of the worst case cost is Θ(log n) rounds two-party DH
for either user adding or deleting. That is, either the cost for
adding a user or the cost for deleting a user is no less than
Θ(log n). In addition, it is obvious that at least one round of
two-party DH needs to be performed for adding or deleting a
user in any circumstance. Therefore, lowest possible cost for

This work was supported in part by the Army Research Office under URI
Award No. DAAD19-01-1-0494

contributory group key agreement is (1) Θ(log n) for user join
and O(1) for user departure; or (2) Θ(log n) for user departure
and O(1) for user join. Both TGDH and DST do not achieve
these lower bounds.

To achieve the lower bound of the rekeying cost, in this
paper we propose a novel and efficient logical key tree
structure, called PFMH tree, as well as a cost-minimizing
PFMH tree-based contributory group key agreement protocol
suite (PACK) that handles dynamic group membership events.
The optimality of the proposed PACK protocol suite lies in
that it only needs O(1) rounds of two-party DH upon any
single user join event and O(log n) rounds of two-party DH
upon any single user leave event, which achieves the lower
bound. Both theoretical analysis and simulation studies show
that the PACK has much lower rekeying cost than the existing
tree-based contributory group key agreements.

The rest of this paper is organized as follows. Section II
introduces security requirement and performance metrics. Sec-
tion III presents the proposed PFMH tree structure and two
basic operations to manage PFMH key trees. Section IV de-
scribes the proposed PFMH tree-based contributory group key
agreement protocol suite. Performance evaluation is presented
in Section V. Finally, conclusion is drawn in Section VI.

II. SECURITY REQUIREMENT AND PERFORMANCE

METRIC

Group key management schemes must be able to adjust
group secrets subsequent to membership changes, including
user addition and user deletion [7]. The security requirements
with dynamic membership include group key secrecy, forward
secrecy, backward secrecy, and key independence [7]. The
overhead of group key agreement involves computation cost,
communication cost and time cost. Since most existing con-
tributory key agreement schemes use two-party DH protocol
[10] as a basic building module, the computation cost comes
mainly from the cryptographic primitives that are needed to
perform two-party DH, such as modular exponentiation, and
the communication cost comes from sending/receiving rekey-
ing messages. In contributory group key agreement, many
operations can be performed in parallel. Thus, the time cost
is used to describe the latency in key generation.

Next we analyze the cost corresponding to the implemen-
tation of two-group DH (two-party DH among two groups),
which is the basic building module for most tree-based

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 1716 0-7803-9415-1/05/$20.00 © 2005 IEEE

contributory schemes. Let Ccast denote the communication
cost needed per multicast/broadcast, and let Cme denote the
computation cost of a modular exponentiation operation. In
this paper, the implementation method proposed in [7] for
two-group DH is used. Then for each round of two-group
DH, the computation cost is no more than (n + 2)Cme with
n being the total number of users in both subgroups, and the
communication cost is 2Ccast.

III. PFMH KEY TREE STRUCTURE

In tree-based contributory group key agreement schemes,
keys are organized in a logical tree structure, referred to as
the key tree. In the key tree, the root node represents the
group key, leaf nodes represent members’ private keys, and
each intermediate node corresponds to a subgroup key shared
by all the members (leaf nodes) under this node. The key of
each non-leaf node is generated by performing two-party DH
between the two subgroups represented by its two children [7].
Since two-group DH is used, the obtained key tree is binary.
For each node in the key tree, key-path denotes the path from
this node to the root, and co-path denotes the sequence of
siblings of each node on its key-path. In order to compute the
group key, a node only needs to know its own key and all the
blinded keys on its co-path [7].

In general the departure users can leave the key tree from
arbitrary positions. In fact, for user departure, the best tree
structure that reduces the worst-case rekeying overhead is a
balanced key tree, when group members have similar compu-
tation and communication capability. When using the balanced
key tree, the rekeying cost for user departure can be O(log n).
Thus, in order to achieve the lower bound of the rekeying cost,
the cost for user join must be O(1). One strategy that achieves
such a low user join cost is to insert the join user always at the
root of the key tree. However, with multiple join users, this
strategy results in a maximum height (MH) key tree (which
is defined next), which is sort of the opposite of balanced key
tree.

Therefore, in order to achieve the lower bound for user join
and departure simultaneously, we take into consideration of
both trees and propose a novel and efficient key tree structure
for contributory group key agreement schemes, which we refer
to as PFMH tree. PFMH tree is a combination of two special
key tree structures: partially-full (PF) key tree and maximum
height (MH) key tree. In the following of this paper, the size
of a key tree is defined as the total number of leaf nodes in this
tree, the function log() and log2() will be used exchangeably,
and when we say a “full (key) tree”, we always mean a fully
balanced binary (key) tree with certain size 2n, where n is a
non-negative integer.
Definition 1 Let T be a binary key tree of size n, and let
n′ = 2�log n�. T is a PF key tree if and only if it satisfies
one of the following properties: 1) T is a full key tree; 2) the
left subtree of T is a full key tree with size n′, and the right
subtree of T is a PF key tree with size (n − n′).

Definition 2 A key tree T of size n is a MH key tree if and
only if it satisfies one of the following properties: 1) n = 1,

and T is a tree with only one leaf node; 2) the right subtree
of T is a leaf node, and the left subtree of T is a MH key tree
with size n − 1.

Definition 3 A key tree T of size n is a PFMH key tree if
and only if it satisfies one of the following properties: 1) T is
a PF key tree; 2) the left subtree of T is a PF tree, and the
right subtree of T is a MH tree.

Procedure 1 unite({T1, . . . , TL})
� T = {T1, . . . , TL};
while (∃ T, T ′ ∈ T with T �= T ′ and |T | = |T ′|) do

Perform two-group DH between T and T ′ to generate a new
full key tree;
Remove T and T ′ from T , and add the new generated full key
tree to T .

end while
while (|T | > 1) do

Let T and T ′ be the two trees with the smallest sizes in T , and
|T | ≥ |T ′|; perform two-group DH between them to generate a
new key tree with the left subtree being T and the right subtree
being T ′; remove T and T ′ from T , and add the new generated
key tree to T .

end while
The remaining tree T in T is the PF tree.

According to these definitions, we can see that the height
of a PF key tree with size n is �log n�, the height of a MH
tree with size n is n − 1. In this paper, without introducing
ambiguity, we will use �log n� and log n exchangeably. Also,
given a PFMH key tree T , we will use main tree to refer to
the PF subtree of T , denoted by Tmain, and use join tree to
refer to the MH subtree of T , denoted by Tjoin. It is easy to
see that the height of Tmain is always bounded by log n.

Next we describe two basic operations to manage PFMH
trees: unite and split. Given a set of full key trees T =
{T1, . . . , TL}, the unite operation is to combine these key trees
into a single PF key tree. Given a key tree T , the split operation
is to partition T into a set of full key trees with minimum set
size. In general, given a set of full key trees, the result of
unite operation may not be unique, but all the obtained PF
trees have the same tree structure. Procedure 1 presents one
possible implementations of unite operation, and Procedure 2
presents one possible implementation of split operation.

For split operation, each leaf node only needs to truncate
the current tree to remove those nodes that do not belong to
the full tree where this leaf node belongs to, so no extra cost
is needed to recalculate keys. For unite operation, extra cost
will be introduced when performing a sequence of two-group
DH to generate new keys. Let L be the number of full key
trees before performing unite operation, and let n be the total
number of leaf nodes in all these trees, then we can have:

Proposition: Let T = {T1, . . . , TL} be a set of full key
trees with

∑L
i=1 |Ti| = n and |T1| ≥ |T2| ≥ · · · ≥ |TL|,

by exploiting possible parallelism, the costs associated to
unite(T) operation are as follows:

1) The time cost, which is the maximum rounds of two-
group DH, is bounded by log n.

2) The total communication cost is 2(L − 1)Ccast.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 1717 0-7803-9415-1/05/$20.00 © 2005 IEEE

Procedure 2 split(T)
if (T is a full tree) then

Return {T};
else if (T is empty) then

Return ∅.
else

Let Tleft and Tright be the left and right subtrees of T ;
Return split(Tleft)

S
split(Tright).

end if

3) If |Ti| = 1 for all 1 ≤ i ≤ L, the total computation cost
is bounded by n(log n + 1)Cme.

4) If |Ti| �= |Tj | for any i �= j, the total computation cost is
bounded by 2(n + log n)Cme.

5) Consider the special situation that for each tree Ti, no
more than 1 other tree has the same size with Ti in
T . If |T1| ≥ n/2, then the total computation cost can
be approximately bounded by 2.5nCme, otherwise, the
total computation cost can be approximately bounded by
3nCme.

IV. DESCRIPTION OF PACK

In this section we describe the proposed PFMH tree-based
contributory group key agreement protocol suite, referred to
as PACK, to update the group key upon group membership
change events.

A. User Join Protocol

When a prospective user M wants to join the group G,
it initiates the user join protocol by broadcasting a request
message that contains its own blinded key. After receiving
the join request message, the current group members check
whether M has the privilege to join the group based on
certain group policies. If M has the authorization to join, the
group key needs be updated in order to incorporate a secret
share from M and to guarantee group keys’ backward secrecy.
Procedure 3 describes the single user join protocol in PACK.

Procedure 3 join(G,M)
� T is the PFMH key tree of group G, Tmain is the main tree of
T , Tjoin is the join tree of T .

Create a leaf node to host user M ;
if (Tjoin is empty) then

Perform two-group DH between M and G to generate a new
group key K. Create a node for K with its right child being M
and its left child being Tmain.

else
Round 1: Perform two-group DH between M and Tjoin to
generate a new subgroup key Kjoin. Create a node for Kjoin

with its right child being M and its left child being the old
Tjoin. Now Kjoin becomes the new root of the join tree.
Round 2: Perform two-group DH between Tmain and the new
Tjoin to generate a new group key K, with its right child being
the new Tjoin, and its left child being Tmain.

end if

In PACK, the rekeying upon single user join needs to
perform at most 2 rounds of two-group DH. If the join tree

is not empty, a new join tree is generated by performing two-
group DH between the new member and the old join tree, with
the left subtree being the old join tree and the right subtree
being the node hosting the new member. If the join tree is
empty, the node hosting the new member becomes the join
tree. The group key is generated by performing two-group
DH between the new join tree and the main tree. In another
words, the new member will be become the shallowest node
in the join tree.

TABLE I

REKEYING COST UPON SINGLE USER JOIN EVENT

time cost communication cost computation cost
case 1 1 2Ccast nCme

case 2 2 4Ccast (n + |Tjoin|)Cme

Table I list the rekeying cost upon single user join event
in PACK. Case 1 denotes the situation that the join tree is
empty, and the protocol only needs to perform one round of
two-group DH. Case 2 denotes the situation that the join tree
is not empty, and the protocol needs to perform two rounds of
two-group DH. For case 2, the |Tjoin| term in the computation
cost comes from performing two-group DH between the new
member and the old join tree.

B. User Leave Protocol

When a current group member M wants to leave the group,
it broadcasts a leave request message to initiate the user leave
protocol. Once M leaves the group, the group key should be
updated to remove M’s share, and all the keys on M ’s key-
path should be updated to maintain the group key’s forward
secrecy. In PACK, to reduce the rekeying cost upon user leave
event, we introduce the concept of phantom node which allows
an existing member to simultaneously occupy more than one
leaf node in the key tree. In particular, when member M
leaves the group, another group member M ′ is moved to M ’s
position, generates a new secret key, and recursively updates
the keys on M ’s previous key-path. However, after moving
M ′ to M ’s position, the node which M ′ previously occupied
will not be deleted immediately. As a result, now M ′ occupies
two leaf nodes in the key tree. We call the node associated to
M ′’s previous position as phantom node, which are known by
all group members, and should be deleted no later than M ′

leaving the group to maintain group keys’ forward secrecy.
Procedure 4 describes the protocol upon single user leave event
in PACK.

In PACK, upon single user leave event, based on the
situation, different rekeying procedure is applied. The first
situation happens when the leaving member M is in the join
tree, and the size of join tree is no larger than log n. For this
situation, PACK simply removes the leaving member from the
key tree, changes certain node’s secret share, and recursively
updates all the keys on M’s key-path. Let h be M’s level in T .
Since at most h rounds of two-group DH operations need to
be performed, the time cost is h, the communication cost is no
more than 2hCcast, and the computation cost is about Cme(n+∑log n

i=log n−h i), which is bounded by Cme(n + 0.5 log2 n).

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 1718 0-7803-9415-1/05/$20.00 © 2005 IEEE

Procedure 4 Leave(G,M)
� T is the PFMH key tree of G, and n is the current tree size.
� Tmain is the main tree of T , Tjoin is the join tree of T .

if (M ∈ Tjoin) then
if (|Tjoin| ≤ logn) then

If M is the root of Tjoin, then simply remove M and the
root from T . Otherwise, let P be M’s sibling, remove M and
M’s parent from the key tree. If P has no children, change P’s
secret share, otherwise, change P’s right child’s secret share.
Recursively update all the keys on P’s key-path.

else
Remove all phantom nodes from T , remove M from T , and
change M’s sibling’s secret share.
unite(split(T)).

end if
else if (M has a phantom node in T or |Tjoin| > 1 or M is the
rightmost non-phantom leaf node) then

Remove all phantom nodes from T , remove M from T , and
change M’s sibling’s secret share.
unite(split(T)).

else
Find the rightmost non-phantom leaf node M ′ in T . Let Pnew

denote the node occupied by M , and Pold denote the node
occupied by M ′. M ′ moves to node Pnew and generates a new
secret share for it. If Pold lies in the join tree, then remove Pold

and the root of T , otherwise, let Pold be M ′’s phantom node.
Recursively update all the keys on Pnew’s key path.

end if

The second situation happens when any of the following
conditions is satisfied: 1) the leaving member M is in the join
tree, and the size of join tree is larger than log n; 2) M is in
the main tree, and the size of join tree is larger than 1; 3) M is
in the main tree, and is the rightmost non-phantom leaf node;
4) M is in the main tree, and has a phantom node. For this
situation, the key tree will be reorganized to generate a new
PF tree as the main tree, and the join tree will become empty.
Let Tjoin and Tmain be the join tree and the main tree after
removing M and all phantom nodes but before reorganizing
the tree, and let Tleft be the left subtree of Tmain. According
to the Proposition, the time cost is bounded by log n, the
communication cost is bounded by 2(log(n)+|Tjoin|)Ccast in
most cases (condition 1, 2, and 3), where log n+ |Tjoin| is the
maximum number of full subtrees after split operation. When
condition 4 is satisfied, the communication cost is bounded by
2(2 log(n) + |Tjoin|)Ccast.

To analyze the computation cost for the second situation,
we first consider the most general case where the height
of the main tree does not increase after the unite opera-
tion, that is, Tleft ≥ n/2. According to the Proposition,
in this case, the computation cost can be approximately
bounded by Cme(2.5n + Tjoin log(|Tjoin|)), where the term
Tjoin log(|Tjoin|) comes from merging the nodes from the
join tree into a set of full subtrees with different sizes. If
Tleft < n/2, which is a rare case, the approximate upper
bound becomes (3n + |Tjoin| log(|Tjoin|))Cme.

The third situation happens when neither of the first two
situations is applicable. For this situation, the leaving member

TABLE II

REKEYING COST UPON SINGLE USER LEAVE EVENT

time cost communication cost computation cost
case 1 h 2hCcast (n + 1

2
n2

j)Cme

case 2 log n 2(log n + nj)Ccast (2.5n + nj log njCme

case 3 log n 2(log n)Ccast (n + 2nj)Cme

TABLE III

REKEYING COST COMPARISON AMONG DIFFERENT SCHEMES

time cost communication cost computation cost
Upon Single User Join Event

PACK 1 ∼ 2 2 ∼ 4Ccast nCme

TGDH log n 2(log n)Ccast 2nCme

DST 1 + log log n (1 + log log n)Ccast (n + log n)Cme

Upon Single User Leave Event
PACK log n 2(log n)Ccast (1 ∼ 2.5)nCme

TGDH log n 2(log n)Ccast 2nCme

DST 1 + log nn 2(1 + log n 3nCme

+ log log n + log log n)Ccast

M is removed from the key tree, and M ′, which is the member
who occupies the right-most non-phantom leaf node, moves to
M’s previous position, generates a secret share for this node,
and recursively updates all the keys on this node’s key-path.
Now, M ′ occupies two positions, and the original position
is called M ′’s phantom position. It is easy to see that the
time cost is bounded by log n, the communication cost is
bounded by 2 log(n)Ccast, and the computation cost can be
approximately bounded by (n + 2|Tleft|)Cme, where Tleft is
Tmain’s left subtree.

Table II summarizes the rekeying cost upon single user leave
events under different situations, where nj denotes the size of
Tjoin. Usually we have |Tleft| ≥ n/2, h � 1

2 log n, nj � n,
and the average size of Tleft is about 0.75n. For the second
and third situation, in most cases we can simplify the upper
bound of computation cost as 2.5nCme. For the first situation,
we can simplify the bound of computation cost as nCme.

V. PERFORMANCE EVALUATION AND COMPARISON

Similar arguments as in [7] can be used to show that PACK
also satisfies all four security requirements. Next we compare
the rekeying cost in PACK upon single user join and leave
events with two existing tree-based contributory group key
agreement schemes: TGDH [7] and DST [8]. All three types
of cost are considered: time, computation, and communication.
Since in general members’ leaving time is not known in
advance, in DST, only join-tree is used. Table III lists the
approximate bounds of different costs for the three schemes.

From the above comparison, we can see that PACK has the
lowest cost in terms of time, computation, and communication.
For example, for user join, only 1 or 2 rounds are needed
in time cost, while DST needs 1 + log log n rounds and
TGDH needs log n rounds. Similar results can also be seen in
communication cost for user join. For the total computation
cost computed as the average of user join cost and leave cost,
DST has similar cost as TGDH, which is an order of 2n,
while for PACK, the order is from n to 1.75n, with the saving
ranging from 15% to 50% compared with DST and TGDH.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 1719 0-7803-9415-1/05/$20.00 © 2005 IEEE

0

500

1000

1500

2000

2500

3000

3500

200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 M

od
ul

ar
 E

xp
on

en
tia

tio
ns

Average Group Size

Average Computation Cost Upon Single User Join

PACK
DST

TGDH

0

5

10

15

20

25

200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 M

ul
tic

as
t

Average Group Size

Average Communication Cost Upon Single User Join

PACK
DST

TGDH

0

2

4

6

8

10

12

200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 R

ou
nd

s

Average Group Size

Average Time Cost Upon Single User Join

PACK
DST

TGDH

0

1000

2000

3000

4000

5000

200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 M

od
ul

ar
 E

xp
on

en
tia

tio
ns

Average Group Size

Average Computation Cost Upon Single User Leave

PACK
DST

TGDH

12

14

16

18

20

22

24

26

200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 M

ul
tic

as
t

Average Group Size

Average Communication Cost Upon Single User Leave

PACK
DST

TGDH
6

7

8

9

10

11

12

13

200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 R

ou
nd

s

Average Group Size

Average Time Cost Upon Single User Leave

PACK
DST

TGDH

Fig. 1. Comparison of rekeying cost among PACK, TGDH and DST

In our simulations we generate the user activities according
to the following probabilistic models: users join the group
according to a Poisson process with average arrival rate λ,
and users’ staying time in the group follows an exponential
distribution with mean µ. Then λµ is the average number of
users in the group, that is, the average group size. For each
simulation, we initialize the group size to be 0, fix λ, and
vary µ to get different average group size configuration. For
each configuration (different average group size), a sequence
of 100λµ users join the group according to the Poisson
process with rate λ, and each user’s staying time is drawn
independently from an exponential distribution with mean µ.
In the simulations, we have compared the rekeying cost of the
following three schemes: PACK, TGDH [7] and DST [8], in
all three aspects: computation, communication and time.

The simulation results are presented in Fig. 1. From these
results we can see that upon single user join event, PACK
has the lowest cost among all three schemes. Compared with
DST, PACK has more than 10% reduction in computation cost,
more than 65% reduction in communication cost and time cost.
Compared with TGDH, the reduction is even more, about 50%
in computation cost and about 80% in time and communication
cost. Upon single user leave event, compared with DST,
PACK has about 25% reduction in computation cost, about
15% reduction in time cost, and has similar communication
cost. Although PACK has slightly higher computation and
communication cost than TGDH upon single user leave event,
when averaged over both join and leave events, the reduction
is still significant, with 20% reduction in computation cost,
35% reduction in communication cost, and 40% reduction in
time cost.

VI. CONCLUSION

In this paper, we proposed PACK, a highly efficient con-
tributory key agreement scheme to achieve access control in

collaborative and dynamic group applications. Upon single
user join, PACK has the time cost as 1 or 2 rounds of two-
group DH, the communication cost as 2 or 4 multicast, and
the average computation cost as 1 modular exponentiation
per user. Upon single user leave event, PACK takes at most
log n rounds of two-group DH in terms of time cost, O(log n)
multicast in communication cost, and an average of 2 modular
exponentiations per user in computation cost, where n is
the current group size. Both theoretical bound analysis and
simulation results have shown that PACK has much lower
rekeying cost in terms of communication, computation and
cost than the existing schemes.

REFERENCES

[1] I. Ingemarsson, D. T. Tang, and C. K. Wong, “A conference key
distribution system,” IEEE Transactions on Information Theory, vol.
IT-28, no. 5, pp. 714–720, Sep. 1982.

[2] D. G. Steer, L. Strawczynski, W. Diffie, and M. Wiener, “A secure
audio teleconference system,” in Proceedings on Advances in cryptology,
1990, pp. 520–528.

[3] M. Burmester and Y. Desmedt, “A secure and efficient conference key
distribution scheme,” Advances in Cryptology-Eurocrypt, pp. 275–286,
1994.

[4] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key distribution
extended to group communication,” in ACM Conference on Computer
and Communication Security, 1996, pp. 31–37.

[5] K. Becker and U. Wille, “Communication complexity of group key
distribution,” in ACM Conference on Computer and Communication
Security, 1998, pp. 1–6.

[6] M. Steiner, G. Tsudik, , and M. Waidner, “Key agreement in dynamic
peer groups,” IEEE Transactions on Parallel and Distributed Systems,
vol. 11, no. 8, pp. 769–780, Aug 2000.

[7] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key agreement,”
ACM Transactions on Information and System Security, vol. 7, no. 1,
pp. 60–96, Feb. 2004.

[8] Y. Mao, Y. Sun, M. Wu, and K. J. R. Liu, “Dynamic join-exit
amortization and scheduling for time-efficient group key agreement,”
in IEEE INFOCOM, 2004.

[9] Jack Snoeyink, Subhash Suri, and George Varghese, “A lower bound
for multicast key distribution,” in IEEE INFOCOM, 2001.

[10] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. IT-22, no. 6, pp. 644–654,
Nov. 1976.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 1720 0-7803-9415-1/05/$20.00 © 2005 IEEE

