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Abstract— In self-organized mobile ad hoc networks, nodes
belong to different authorities and pursue different goals, so
they tend to be selfish, that is, they try to maximize the benefits
they can get from the network, but are not willing to forward
packets for the benefits of other nodes. Meanwhile, some nodes
may be malicious whose objective is to degrade the network’s
performance and waste other nodes’ valuable resource. In this
paper, we propose an Attack-Resilient Cooperation Stimulation
(ARCS) system for self-organized mobile ad hoc networks to
stimulate cooperation among selfish nodes and to defend against
attacks. In the ARCS system, the damage that can be caused by
malicious nodes is bounded, and the cooperation among selfish
nodes is enforced. Both theoretical analysis and simulation studies
have confirmed the effectiveness of the ARCS system. Another
key property of the ARCS system lies in that it is completely
self-organizing and fully distributed, and does not require any
tamper-proof hardware or central management points.

I. INTRODUCTION

A mobile ad hoc network is a group of mobile nodes without
requiring centralized administration or fixed network infras-
tructure, in which nodes can communicate with other nodes
out of their direct transmission ranges through cooperatively
forwarding packets for each other. In emergency or military
situations, the nodes in an ad hoc network usually belong to the
same authority and pursue the common goals. To maximize the
overall performance, nodes usually work in a fully cooperative
way. Recently, emerging applications of ad hoc networks have
also been envisioned in civilian usage [1]–[8], where nodes
typically do not belong to a single authority and may not
pursue a common goal. Furthermore, such a network could
be completely self-organized, where the network could be
run solely by the operation of the end-users. Consequently,
fully cooperative behaviors such as unconditionally forwarding
packets for others cannot be taken for granted. On the contrary,
in order to save limited resources, such as battery power,
nodes tend to be “selfish”. We refer to such networks as self-
organized ad hoc networks.

Before ad hoc networks can be successfully deployed in
a self-organized way, cooperation stimulation and security
issues must be resolved first. To stimulate cooperation among
selfish nodes, one possible way is to apply payment-based
approaches, such as [2]–[4]. However, these schemes require
either tamper-proof hardware or online central management

points. Moreover, these schemes only considered nodes’ self-
ish behaviors. Another possible way to stimulate cooperation
is to employ reputation-based schemes [6]–[8]. However,
these schemes also suffer from some problems. First, many
attacks can cause a malicious behavior not being detected.
Second, these schemes can only isolate misbehaving nodes,
but cannot actually punish them, and the malicious nodes can
still utilize the valuable network resources even after they
have been suspected or detected. Third, extra energy needs
to be consumed when a node keeps monitoring its neighbors’
activities.

Previous experiences have also shown that before ad hoc
networks can be successfully deployed, security concerns
must be addressed [6], [9]–[13]. However, past experiences
also show that security in ad hoc networks is particularly
hard to achieve [11]. For self-organized ad hoc networks,
things are even worse: there are no centralized monitoring
or management points and nodes may tend to be selfish. In
the literature many schemes have been proposed to address
the security issues in ad hoc networks. However, most of the
focus is on preventing attackers from entering the network
through secure key distribution and secure neighbor discovery,
such as [12]–[18], they cannot handle well the situation that
the malicious nodes have entered the network, while in self-
organized ad hoc networks the access control is usually loose,
and malicious users can easily join the network.

In this paper we consider the scenarios that there exist
both selfish and malicious nodes in self-organized ad hoc
networks. The objective of selfish nodes is to maximize the
benefits they can get from the network, while the objective
of malicious node is to maximize the damage they can cause
to the network. In this paper, we propose an Attack-Resilient
Cooperation Stimulation (ARCS) system for self-organized ad
hoc networks to stimulate cooperation among selfish nodes
in adversarial environments. Besides being robust to various
various, another key property of the ARCS system is that
it does not require any tamper-proof hardware or central
management points, which is very suitable for self-organized
ad hoc networks. Both system analysis and simulation studies
will confirm the effectiveness of the ARCS system.

The rest of the paper is organized as follows. Section II
describes the system model and formulates the problem.
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Section III describes the proposed ARCS system. Section IV
presents the performance analysis of the system under various
attacks. Simulation studies are presented in Section V. Finally
Section VI concludes this paper.

II. MODELLING AND FORMULATION

A. System Model

In this paper we consider self-organized mobile ad hoc
networks where nodes belong to different authorities and have
different goals. We assume that each node is equipped with a
battery with limited power supply, communicates with others
through wireless connections, can move freely inside a certain
area, and may act as a service provider: packets are scheduled
to be generated and delivered to certain destinations with
each packet having a specific delay constraint. If a packet
cannot reach the destination within its delay constraint, it will
become useless. If a packet can be successfully delivered to its
destination within the specified delay constraint, the source of
the packet will get some payoff, otherwise, it will be penalized.

According to their objectives, the nodes in the network
can be classified into two types: selfish and malicious. The
objective of selfish nodes is to maximize the payoff they
can get using their limited resource, while the objective of
malicious nodes is to maximize the damage they can cause
to the network, where the damage is defined as the difference
between the resource wasted by them due to their malicious
behavior and the resource contributed by them in successfully
forwarding packets for other nodes. Since energy is usually
the most precious and valuable resource for battery-supplied
nodes in ad hoc networks, we restrict the resource constraint
to be energy. However, the proposed system is also applicable
to other types of resource constraints.

For each node in the network, the energy consumption may
come from many aspects, such as processing, transmitting
and receiving packets. In this paper, we focus on the energy
consumed in communication-related activities. One reason is
that this portion of energy is necessary to support the basic
networking functions, such as forwarding packets for each
other. Another reason is that in wireless communications the
energy consumed in communication-related activities usually
plays a major role in overall energy consumption.

In this paper we mainly consider the situations that mali-
cious nodes have entered the network, that is, all nodes in
the network are legitimate, no matter selfish or malicious.
To prevent illegitimate nodes from entering the network, the
existing secure protocols can be used as the first defense line.
For malicious nodes, in order to waste other nodes’ energy,
the following attacking models are considered:

• Drop packet: When a packet is dropped by an intermedi-
ate node on its route, all the energy that has been spent to
transmit this packet from its source to this intermediate
node is wasted.

• Inject traffic: Malicious nodes can inject an overwhelm-
ing amount of packets to overload the network and
to consume other nodes’s valuable energy. When other

TABLE I

NOTATIONS

E The total amount of energy needed to encrypt/decrypt, en-
code/decode, and transmit/receive a data packet.

Emax
S S’s total energy when it first enters the network.

αS The payoff to S if a data delivery transaction with S being
the source succeeds.

βS The penalty to S if a data delivery transaction with S being
the source fails.

ES Energy spent by S until the current moment.
Nsucc

S # successful data packet deliveries until the current moment
with S being the source.

Nfail
S # unsuccessful data packet deliveries until the current moment

with S being the source.
Ewaste

S Energy that has been wasted by S until the current moment
due to its malicious behavior.

Econtr
S Energy that S has spent until the current moment to success-

fully transmit packets for others.

nodes have forwarded these packets but cannot get corre-
sponding payback from attackers, the consumed energy
is wasted. Besides injecting general data packets, the
attackers can also inject control message packets.

• Prevent good routes from being discovered: Besides drop-
ping packets and injecting traffic, attackers can also waste
other nodes’ energy by preventing good routes from being
discovered. Two examples are wormhole [17] and rushing
attacks [13].

• Collusion: Attackers can try to work together in order to
improve their attacking capabilities.

We assume that each node has a public/private key pair,
and assume that a node can know or authenticate other nodes’
public keys, but no node will disclose its private key to others
unless it has been compromised. To keep the confidentiality
and integrity of the content, all packets should be encrypted
and signed by their senders when necessary. We assume that
the acknowledgement mechanism is supported in the link layer.
That is, if node A has transmit a packet to node B and B has
successfully received it, node B needs to immediately notify
A of the reception through link level acknowledgement.

B. Problem Formulation

Before formulating the problem, we first introduce some
notations to be used, as listed in Table I. Without loss of
generality, we assume that all data packets have the same
size, and the transmitting power is fixed for all nodes. We
use “packet delivery transaction” to denote sending a packet
from its source to its destination, and say that a transaction is
“successful” if the packet has successfully reached its desti-
nation within its delay constraint, otherwise, the transaction is
called as “unsuccessful”.

For each selfish node S, its objective can be formulated as
follows:

max
(
αSNsucc

S − βSNfail
S

)
s.t. ES ≤ Emax

S . (1)

If S is malicious, then the total damage DS that S has
caused to other selfish nodes until the current moment can
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TABLE II

RECORDS KEPT BY NODE S

Credit(A, S) Total energy spent by A until now on successfully
transmitting packets for S.

Debit(A, S) Total energy that S has spent until now on success-
fully transmitting packets for A.

Wby(A, S) Total wasted energy that A has caused to S until the
current moment.

Wto(A, S) Total wasted energy that S has caused to A until the
current moment.

LB(A, S) Total wasted energy caused to S until now due to
link breakages between A and S.

Blacklist(S) Set of nodes that S believes are malicious and S does
not want to work together with.

Blacklist(A, S) The subset of A’s blacklist known by S until the
current moment.

be calculated as follows:

DS = Ewaste
S − Econtr

S . (2)

Since in the current system model malicious nodes are allowed
to collude, in this paper we only formulate the overall objective
of malicious nodes, which is as follows:

max
∑

S is malicious

DS s.t. ES ≤ Emax
S . (3)

III. DESCRIPTION OF ARCS SYSTEM

This section presents the proposed Attack-Resistant Coop-
eration Stimulation (ARCS) system for self-organized mobile
ad hoc networks. In the ARCS system, each node S keeps
a set of records indicating its interactions with other nodes,
as listed in Table II. In a nutshell, the data delivery in the
ARCS system works as follows: When a service provider has
a packet scheduled to be sent, it first checks whether this
packet should be sent and which route should be used. Once
an intermediate node on the selected route receives a packet
forwarding request, it checks whether it should forward the
packet based on its relationship with the other nodes on the
route. Once a node has successfully forwarded a packet on
behalf of another node, it requests a receipt from its next node
on the route and submits this receipt to the source of the packet
to claim credits. After a packet delivery transaction finishes,
no matter whether it is successful or not, all participating
nodes will update their own records to reflect the changing
relationships with other nodes and to detect possible malicious
behavior.

A. Cooperation Degree

In [19], Dawkins illustrated that reciprocal altruism is
beneficial for every ecological system when favors are granted
simultaneously, and gave an example to explain the survival
chances of birds grooming parasites off each other’s head,
which they cannot clean themselves. In that example, Dawkins
divided the birds into three categories: suckers, which always
help; cheats, which ask other birds groom parasites off their
heads but never help others; and grudgers, which start out

being helpful to every bird but refuse to help those birds that
do not return the favor. The simulation study has shown that
both cheats and suckers extinct finally, and only grudgers win
over time.

Similar to those birds, in order to best utilize their limited
resources, selfish nodes in self-organized ad hoc networks
should also act like grudgers. In the ARCS system, each selfish
node S keeps track of the balance B(A,S) with any other node
A known by S, which is defined as:

B(A, S) = (Debit(A, S)−Wto(A, S))− (Credit(A, S)−Wby(A, S)).
(4)

That is, B(A,S) is simply the difference between what S has
contributed to A and what A has contributed to S until the
current moment in S’s point of view. If B(A,S) is a positive
value, it can be regarded as the relative damage that A has
caused to S, otherwise, it is the relative help that S has received
from A.

Besides keeping track of the balance, each node S also sets a
threshold Bmax(A,S) for each known node A in the network,
which we called cooperation degree. A necessary condition for
S to help A, e.g., forwarding packet for A, is

B(A, S) < Bmax(A, S). (5)

Setting Bmax(A,S) to be ∞ means S will always help A no
matter what A has done, as the suckers act in the example.
Setting Bmax(A,S) to be −∞ means S will never help A, as
the cheats act in the example. In the ARCS system, each selfish
node will set Bmax(A,S) to be a relatively small positive
value, which means that initially S is helpful to A, and will
keep being helpful to A unless the relative damage that A
has caused to S exceeds Bmax(A,S), as the grudgers act in
the example where they set the balance to be 1 for any other
bird. By specifying positive cooperation degrees, cooperation
among selfish nodes can be enforced, while by letting the
cooperation degrees to be relatively small, the possible damage
caused by malicious nodes can be bounded.

B. Route Selection

Due to insufficient balance, malicious behavior and node
mobility, not all packet delivery transactions can succeed.
When a node has a packet scheduled to be sent, it needs to
decide which route should be used. In the ARCS system, the
following criterion is used when a node makes route selection
decision.

In the ARCS system, each route is specified an expiring
time indicating that after that time the route will become
invalid, which is determined by the intermediate nodes during
the route discovery procedure. Assume that S has a packet
scheduled to be sent to D, route R = “R0R1 . . . RM” is a
valid route known by S with R0 = S, RM = D, and M being
the number of hops. Let Pdrop(Ri, S) be the probability that
node Ri will drop S’s packet, and let Pdelivery(R,S) denote
the probability that a packet can be successfully delivered from
S to D through route R at the current moment. In the ARCS
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system, S calculates Pdelivery(R,S) in the following way:

Pdelivery(R, S) =




0 (∃Ri ∈ R) B(Ri, S) < −Bmax(S, Ri)

0 (∃Ri, Rj ∈ R) Ri ∈ Blacklist(Rj , S)∏M−1
i=1 (1− Pdrop(Ri, S)) otherwise

(6)

That is, a packet delivery transaction has no chance to succeed
unless S has enough balance to request help from all interme-
diate nodes on the route and no node has been marked as
malicious by any other node on the route. Once a valid route
R with non-zero Pdelivery(R,S) is used to send a packet by
S, we define Efail(R,S) as

Efail(R, S) =

M−1∑
n=1

nE

(
n−1∏
k=1

(1− Pdrop(Rk, S))

)
Pdrop(Rn, S),

(7)

and define Esucc(R,S) as

Esucc(R, S) = E ×M. (8)

Then the expected energy consumption of using route R to
send a packet from S to D becomes

Eavg(R, S) = Esucc(R, S)Pdelivery(R, S) + Efail(R, S), (9)

and the expected profit of S is

Profit(R, S) = αSPdelivery(R, S)− βS(1− Pdelivery(R, S)). (10)

Let Q(R,S) be the expected energy efficiency of S using route
R to send a packet to D, which is defined as

Q(R, S) =
Profit(R, S)

Eavg(R, S)
. (11)

That is, Q(R,S) is the expected profit per unit energy when
S uses R to send a packet to D at the current moment. In the
ARCS system, which route should be selected is decided as
follows:

Route Selection Decision: Among all valid routes R known
by S which can reach D, route R∗ will be selected if and only
if Pdelivery(R∗, S) > 0 and Q(R∗, S) ≥ Q(R,S) for any
other route R ∈ R.

It is easy to see that the decision is optimal at the current
moment in the sense that no other known routes can provide
better expected energy efficiency than route R∗. Since the
accurate value of Pdrop(Ri, S) is usually not known and
may change over time, in the ARCS system, we can use
the percentage of S’s failed transactions caused by Ri in
S’s total transactions passing through Ri as the estimate of
Pdrop(Ri, S).

C. Data Packet Delivery Protocol

Once a service provider has decided to send a packet to
a certain destination using a certain route, a data packet
delivery transaction should be started. In the ARCS system,
the data packet delivery protocol consists of two stages:
forwarding data packet stage and submitting receipts stage. In
the forwarding data packet stage, the data packet is delivered
from the source to the destination, while in the submitting
receipts stage, each participating node on the route tries to
submit a receipt to the source to claim credit. Some notations
to be used in the protocols are listed below:

signS(m) S creates a signature based on message m.
verifyS(m, s) Verify whether s is the signature generated by node

S based on message m.
v ← m Assign the value of m to the variable v.
MD() A message digest function.

Protocol 1 Forward a Data Packet
� A is the current node, S is the sender, D is the destination,
and (m, R, seqS(S, D), s) is the received data packet from A’s
previous node if A �= S, otherwise, (m, R, seqS(S, D), s) is the
data packet generated by A.

if (A = S) then
S forwards (m, R, seqS(S, D), s) to next node, increases
seqS(S, D) by 1, and wait for receipts to be returned.

else if ((A = D) AND (seqS(S, D) > seqA(S, D)) AND
(verifyS((m, R, seqS(S, D)), s) = TRUE)) then

A assigns the value of seqS(S, D) to seqA(S, D), and returns
a receipt to its previous node.

else
if ((A /∈ R) OR (seqS(S, D) ≤ seqA(S, D)) OR
(verifyS((m, R, seqS(S, D)), s) �= TRUE )

OR (∃Ri ∈ R, Ri ∈ Blacklist(A)) ) then
A simply drops this packet.

else if ((B(S, A) > Bmax(S, A)) OR (the link to A’s next node
is broken) ) then

A drops the packet, and returns a receipt to its previous node
which also includes the dropping reason.

else
A assigns the value of seqS(S, D) to seqA(S, D), forwards
(m, R, seq(S, D), s) to its next node, and wait for a receipt
to be returned by the next node.

end if
end if

1) Forwarding Data Packet Stage: In the forwarding
data packets stage, the protocol execution of each partic-
ipating selfish node is illustrated in Protocol 1. Suppose
that node S is to send a packet with payload m and se-
quence number seqS(S,D) to destination D through the route
R. For the sender S, it first computes a signature s =
signS(MD(m), R, seqS(S,D)). Next, S transmits the packet
(m,R, seqS(S,D), s) to the next node on the route, increases
seqS(S,D) by 1, and waits for receipts to be returned by
the following nodes on route R. Once a selfish node A
has received the packet (m,R, seqS(S,D), s), A first checks
whether itself is the destination of the packet. If it is the
destination, after necessary verifications, A returns a receipt
to its previous node on the route to confirm the successful
delivery, otherwise, A checks whether the packet should be
forwarded. A is willing to forward the packet only if all the
following conditions are satisfied: 1) A is on the route R; 2)
seqS(S,D) > seqA(S,D), where seqA(S,D) is the sequence
number of the last packet that A has forwarded with S being
source and D being the destination; 3) the signature is valid;
4) B(S,A) < Bmax(S,A); 5) no node on route R has been
marked as malicious by A.

Once A has successfully forwarded the a packet to the next
node on the route, it will specify a time to wait for a receipt
being returned by the next node before that time to confirm
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the successful transmission, which A will use to claim credit
from S. In the ARCS system, a selfish node sets its waiting
time to be the value of Thop multiplied by the number of hops
following this node, where Thop is a relatively small interval
to account for the necessary time needed per hop. Since in
general the waiting time is small enough, we can assume that
if a node can return a receipt to its previous node in time, the
two nodes will still keep connected.

2) Submitting Receipts Stage: In self-organized ad hoc
networks, nodes may not be willing to forward packets on
behalf of other nodes. So after a node (e.g., A) has forwarded
a packet (m,R, seqS(S,D), s) for another node (e.g., S), A
will try to claim corresponding credits from S which A can use
later to request S to return the favor. To claim credits from S, A
needs to submit necessary evidence to convince S that it has
successfully forwarded packets for S. In the ARCS system,
in order for A to show that it has successfully forwarded a
packet for S, A only needs to request a receipt from its next
node on the route (e.g., B) indicating that B has successfully
received the packet. One possible format of such a receipt can
be {MD(m), R, seqS(S, D), B, signB(MD(m), R, seqS(S, D), B)}.
That is, it consists of {MD(m), R, seqS(S,D), B} and the
signature generated by node B based on this message.

Actually, a receipt generated by any node following A on
the route can be used as the evidence to convince S that A
has successfully forwarded a packet for S. Sometimes a packet
will be dropped due to link breakage or the requester running
out of balance, and sometimes the next node may not return
a receipt even if the transmission is successful, such as when
the next node is malicious. For each selfish node, if it has
dropped the packet or cannot get a receipt from its next node
in time, or the received receipt is not valid, it will generate a
receipt by itself and return it to its previous node, otherwise, it
will simply send the received receipt back to its previous node
on the route. The specific protocol execution of a selfish node
submitting receipt to the requester is described in Protocol 2.

Protocol 2 Submit a receipt
� A is the current node, (MD(m), R, seqS(S, D), B, s) is the
successfully received packet being processed.

if ((A = D) OR (no valid receipts have been returned from the
next node after waiting enough time)) then

s← signA(MD(m), R, seqS(S, D), A).
Send the receipt {MD(m), R, seqS(S, D), A, s} to A’s previ-
ous node on R.

else
receipt = {MD(m), R, seqS(S, D), B, s}, which is the re-
turned receipt from the next node on the route.
if (verifyB((MD(m), R, seqS(S, D), B), s) = TRUE)) then

Send receipt to A’s previous node on R.
else

s← signA(MD(m), R, seqS(S, D), A).
Send the receipt {MD(m), R, seqS(S, D), A, s} to A’s pre-
vious node on R.

end if
end if

D. Update Records

In the ARCS system, after a packet delivery transaction
has finished, no matter whether it is successful or not, each
participating node will update its records to keep track of the
changing relationships with other nodes and to detect possible
malicious behavior. Next we use Fig. 1 to illustrate the records
updating procedure, where S is the initiator of the transaction,
D is the destination, and “R = S . . . AMB . . . D” is the
associated route.

BMAS D

source destination

n hops m hops

Fig. 1. Records updating

For the sender S, according to different situations, it updates
its records as follows:

• Case 1: S has received a valid receipt signed by D which
means that this transaction has succeeded. In this case, for
each intermediate node X between S and D, S increases
Credit(X,S) by E, where E is the amount of energy
needed to transmit one packet.

• Case 2: S has successfully sent a packet to its next node,
but cannot receive any receipt in time. In this case, let
X be S’s next node, S then increases Wby(X,S) by E,
and marks X as malicious. That is, refusing to return a
receipt will be regarded as malicious behavior.

• Case 3: If S has received a valid receipt which is not
signed by D, but signed by an intermediate node (e.g.,
M), which means either M has dropped the packet, or
a returned receipt has been dropped by a certain node
following M (including M) on the route in the submitting
receipt stage. In this case, for each intermediate node X
between S and M, S still increases Credit(X,S) by E.
Since node M’s transmission cannot be verified by S, S
has enough evidence to suspect that the packet is dropped
by M. To reflect this suspect, S increases Wby(M,S) by
nE to account for the amount of energy that has been
wasted in this transaction with n being the number of
hops between S and M.

When a packet delivery transaction fails, S also keeps a record
of (MD(m), R, seqS(S,D), s) for this transaction as well as
a copy of the returned receipt if there exists, where MD(m) is
the digest of the message m, seqS(S,D) is sequence number
of this packet, and s is the signature generated by node S
based on the message {MD(m), R, seqS(S,D)}.

For each intermediate node (e.g., node M in Fig. 1) that
has participated in the transaction, if it is selfish, it updates its
records as follows:

• Case 1: M has successfully sent the packet to node B,
and has got a receipt from B to confirm the transmission.
Then M only needs to increases Debit(S,M) by E.

• Case 2: M has successfully sent the packet to node B,
but cannot get a valid receipt from B. In this case, M
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increases Wto(S,M) by nE, increases Wby(B,M) by
(n + 1)E, and marks B as malicious.

• Case 3: M has dropped the packet due to link breakage
between M and B. Although this packet dropping is not
M’s fault, since M cannot prove it to S, M will take the
responsibility. However, since this link breakage may be
caused by S who has selected a bad route, or caused by
B who tries to emulate link breakage to attack M, M
should also records this link breakage. In this case, M
increases Wto(S,M) by nE, increases LBwith(B,M)
and LBwith(S,M) by nE. In the ARCS system, each
selfish node (e.g., M) sets a threshold LBth(S,M) with
any other node (e.g., S) to indicate the damage that
M can tolerate which is caused due to link breakages
between M and S. In this case, if LBwith(B,M) exceeds
LBth(B,M), B will be put in M’s blacklist. Similarly,
if LBwith(S,M) exceeds LBth(S,M), S will be put in
M’s blacklist.

• Case 4: M has dropped the packet due to the reason that
the condition in (5) is not satisfied or some nodes on
R are in M’s blacklist. In this case M does not need to
update its records.

From the above update procedure we can see that a selfish
node will always return a receipt to confirm a successful
packet reception, since refusing to return receipt is regarded
as malicious behavior and cannot provide any gain.

E. Secure Route Discovery

In the ARCS system, DSR [20] is used as the underlying
routing protocol to perform route discovery. However, without
security consideration, the routing protocol can easily become
an attacking target. For example, malicious nodes can inject
an overwhelming amount of route request packets to overload
the network and consume other nodes’ valuable resource. In
the ARCS system, besides the necessary authentication, the
following security enhancements have also been incorporated
into the route discovery protocol:

1. When node S initiates a route discovery, it can also
append the subset of its blacklist not known by others
in the route request packet. After an intermediate node
A has received the request packet, it will update its own
record Blacklist(S,A) using the received blacklist.

2. When an intermediate node A receives a route request
packet which originates from S and A is not this request’s
destination, A first checks the following conditions: 1)
A has never seen this request before; 2) A is not in
S’s blacklist; 3) B(S,A) < Bmax(S,A); 4) no nodes
that have been appended to the request packet are in
A’s blacklist; 5) A has not forwarded any request for
S in the last Tmin(S,A) interval, where Tmin(S,A) is
the minimum interval specified by A to indicate that A
will forward at most one route request for S in each
Tmin(S,A) interval. A will broadcast the request if and
only if all of the above conditions can be satisfied,
otherwise, A will discard the request.

3. During a discovered route is being returned to the re-
quester S, each intermediate node A on the route appends
the following information to the returned route: the subset
of its blacklist that is not known by S, the value of
Bmax(S,A) if not known by S, the value of Debit(S,A),
and node A’s expected staying time in the current area.
After S has received the route, for each node A on
the discovered route, it updates the corresponding black-
list Blacklist(A,S), updates the value of Bmax(S,A),
determines the expiring time of this route which is
defined as the expected minimum staying time among all
nodes on the route, and checks the consistency between
Debit(S,A) and Credit(A,S), where the procedure to
handle inconsistent records is described below.

F. Resolve Inconsistent Records Update

In some situations, after a node (e.g., A) has successfully
forwarded a packet for another node (e.g., S) and has sent
a receipt back to S, the value of Credit(A,S) may not be
increased immediately by S due to some intermediate node
dropping the receipt returned by A. In this case, the value
of Debit(S,A) will be larger than the value of Credit(A,S),
which we referred to as inconsistent records update. As a
consequence, S may refuse to forward packets for A even
the actual value of B(A,S) is still less than Bmax(A,S), or
S may continue requesting A to forward packets for it when
the true value of B(S,A) has exceeded Bmax(S,A). Next
we describe how the inconsistent records update problem is
resolved in the ARCS system.

In the route discovery stage, after route R has been returned
to S, S will check whether there exists inconsistency. If
S finds that a node A on route R has reported a larger
value of Debit(S,A) than the value of Credit(A,S), when
calculating route quality, S should use the value of Debit(S,A)
to temporarily substitute the value of Credit(A,S). In the
packet delivery stage, when route R is picked by S to send
packets, for each intermediate node A on route R, the value
of Credit(A,S) will also be appended to the payload of the
data packet.

When A receives an appended value of Credit(A,S) from
S, and finds Credit(A,S) < Debit(S,A), A will submit those
receipts that target on S but have not been confirmed by S to
claim corresponding credits, where we say a receipt received
by A at time t1 and targeting on S has been confirmed if there
existed at least one moment t2 > t1 before now at which A and
S have agreed that Credit(A,S) = Debit(S,A). Once S has
received an unconfirmed receipt returned by A, S will check
whether there is a failed transaction record associated to this
receipt. If no such record exists, either the receipt is faked, or
the corresponding credit has been issued to A. If there exists
such a record, let B be the node who has signed the receipt
associated to this transaction record, that is, all nodes between
S and B have been credited by S. Let C be the node who has
signed the receipt submitted by A. If B is in front of C on the
route, S should use the new receipt singed by C to replace the
previous receipt signed by B, and for each intermediate node
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X between B and C on the route, S should update the values
of Credit(X,S) and Wby(C,S) according to Section III-D.

IV. ANALYSIS OF ARCS UNDER ATTACKS

In this section we analyze the performance of the ARCS
system under the following attack models: dropping packet,
emulating link breakage, injecting traffic and collusion. The
results show that the damage that can be caused by malicious
nodes is bounded, and the system is collusion-resistant.

A. Dropping Packet Attacks

In the ARCS system, malicious nodes can waste other
nodes’ energy by dropping their packets, which can happen
either in the forwarding data packet stage or in the submitting
receipts stage. We use Fig. 2 as an example to analyze the
possible dropping packet attacks that can be launched by
malicious node M. Based on in which stage M drops packets
and whether M will return receipts, there are four possible
attacking scenarios:

BMAS D

source malicious node destination

n hops

Fig. 2. Dropping Packets Attacks

• Scenario 1: M drops a packet in the forwarding data
packet stage, but creates a receipt to send back to A to
confirm successful receiving from A. In this scenario,
after S gets the receipt, S will increase Wby(M,S) by
nE, which equals to the total amount of energy that has
been wasted by M. That is, in this scenario, the damage
caused by M has been recorded by S and needs to be
compensated by M later if M still wants to get help from
S.

• Scenario 2: M drops a packet in the forwarding data
packet stage, and refuses to return a receipt to A. In this
scenario, although A will be mistakenly charged by S
who increases Wby(A,S) by (n − 1)E, A will mark M
as malicious and will stop working with M further. That
is, M can never get help from A and cause damage to A
in the future.

• Scenario 3: M drops the receipt returned by B, but creates
a receipt to send back to A. In this scenario, M will
be charged nE by S, but the nodes after M who have
successfully forwarded the packet will not be credited
by S immediately. That is, by taking some charge (here
nE), M can cause inconsistent records update. However,
as described in Section III-F, this inconsistency can be
easily resolved and will not cause further damage. That is,
M can only cause temporary records inconsistency with
the extra payment of (n + 1)E.

• Scenario 4: M drops the receipt returned by B, and
refuses to return a receipt to A. This scenario is similar to
scenario 3 with the difference being that in this scenario

A will be mistakenly charged by S, but M will be marked
as malicious by A and cannot do any further damage to
A in the future.

From the above analysis we can see that when a malicious
node M launches dropping packet attacks, either it will be
marked as malicious by some nodes, or the damage caused
by it will be recorded by other nodes. Since for each node
A, the maximum possible damage that can be caused by M is
bounded by Bmax(M,A), the total damage that M can cause
to the network is also bounded.

B. Emulating Link Breakage Attacks

Malicious nodes can also launch emulating link breakage
attacks to waste other nodes’ energy. For example, in Fig. 2,
when node A has received a request from S to forward a packet
to M, M can just keep silent to let A believe that the link
between A and M is broken. By emulating link breakage, M
can cause a transaction to fail and waste other nodes’ energy.

In the ARCS system, each selfish node handles the possible
emulating link breakage attacks as follows: For each known
node M, S keeps a record LB(M,S) to remember the damage
that has been caused due to link breakage between M and S,
and if LB(M,S) exceeds the threshold LBmax(M,S), S will
mark M as malicious and will never work with M again. That
is, the damage that can be caused to S by malicious node M
who launched emulating link breakage attacks is bounded by
LBmax(M,S).

C. Injecting Traffic Attacks

Besides dropping packets, attackers can also inject an exces-
sive amount of traffic to overload the network and consume
other nodes’ valuable energy. Two types of packets can be
injected: general data packets and route request packets. In
the ARCS system, according to the route discovery protocol,
the number of route request packets that can be injected by
each node is bounded by 1 in each time interval Tmin. For
general data packets, since an intermediate node A will stop
forwarding packets for node M if B(M,A) > Bmax(M,A),
the maximum damage that can be caused to node A by
node M launching injecting general data traffic attacks is
bounded by Bmax(M,A). In summary, by launching injecting
traffic attacks, the maximum damage that can be caused by a
malicious node M to node A is bounded.

D. Collusion Attacks

In order to increase their attacking capability, malicious
nodes may choose to collude. Next we show that in the
ARCS system colluding among malicious nodes cannot cause
more damage to the network than working alone, that is, the
ARCS system is collusion-resistant. First, it is easy to see
that two nodes collude to launch injecting extra traffic attacks
cannot increase the damage due to the existence of balance
threshold (cooperation degree), and two nodes colluding to
launch emulating link breakage attacks makes no sense, since
each link breakage event has only two participants. Next we
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consider two malicious nodes colluding to launch dropping
packets attacks.

Given a packet delivery transaction, we first consider the
case that the two colluding nodes are neighbor of each other.
For example, as in Fig. 2, assume that M and B collude. When
M drops the packet, M can still get (or generate by itself,
since M may know B’s private key) the receipt showing that
M has successfully forwarded the packet. However, this cannot
increase their total attacking capability, since B needs to take
the charge for the damage caused by this packet dropping. That
is, in this case M is released from the charge by sacrificing B.

BMAS

source

D

destination

C

drop receipt drop data packet

n hops m hops

Fig. 3. Collusion Attacks

If two colluding nodes are not neighbor of each other, the
only way that they can collude is that one node drops the data
packet in the forwarding data packet stage, and the other node
drops the receipt in the submitting receipt stage, as shown in
Fig. 3, where node C drops the data packet and node M drops
the receipt. By colluding in this way, if C has returned a receipt
to its previous node, C will not be charged by S temporarily,
and all the nodes between M and C cannot get credits from
S immediately. For node M, if M will return a receipt to A,
S will increase Wby(M,S) by nE, and if M refuses to return
a receipt to A, M will be marked as malicious by A. That
is, in this case, temporary inconsistent records update can be
caused, but the colluding nodes will be overcharged by nE.
However, according to Section III-F, the inconsistency can be
easily resolved.

Theorem 1 Assume in the ARCS system there are L selfish
nodes {S1, . . . , SL} and K malicious nodes {M1, . . . ,MK}.
Let Bmax(Mk, Sl), LBmax(Mk, Sl) and Tth(Mk, Sl) be the
cooperation degree, the link breakage threshold, and the
minimum route request forwarding interval that node Sl has
set for node Mk, respectively. Let TSl

be node Sl’s staying
time in the system, and let Erequest (which is far less than E)
be the consumed energy per route request forwarding, then the
total damage that can be caused by all the malicious nodes is
bounded by

K∑
k=1

L∑
l=1

(
Bmax(Mk, Sl) + LBmax(Mk, Sl) +

TSl
∗ Erequest

Tmin(Mk, Sl)

)

Proof: See the above analysis.
From the above theorem we can see that the damage that

can be caused by malicious nodes is bounded, and is deter-
mined by those specified thresholds. Since the good values of
LBmax(Mk, Sl) and Tmin(Mk, Sl) can be obtained through
training, and a relative small value of Bmax(Mk, Sl) can work
well in most situations as shown in Section V, in general the
above bound is small.

TABLE III

SIMULATION PARAMETERS

Total Number of Nodes 100
Number of Malicious Nodes 0-50
Maximum Velocity (vmax) 10 m/s
Average Pause time 200 seconds
Dimensions of Space 1000m × 1000m
Maximum Transmission Range 250 m
Average Packet Inter-Arrival Time 2 seconds
Data Packet Size 1024 bytes
Link Bandwidth 1 Mbps

V. SIMULATION STUDIES

A. Simulation Configuration

We use an event-driven simulator to simulate self-organized
ad hoc networks. There are 100 nodes in the network, which
are randomly deployed inside a rectangular space. Each node
moves randomly according to the random waypoint model
[20]: a node starts at a random position, waits for a duration
called the pause time that is modeled as a random variable with
exponential distribution, then randomly chooses a new location
and moves towards the new location with a velocity uniformly
chosen between 0 and vmax. When it arrives at the new
location, it waits for another random pause time and repeats
the process. The physical layer assumes a fixed transmission
range model, where two nodes can directly communicate with
each other successfully only if they are in each other’s trans-
mission range. The MAC layer protocol simulates the IEEE
802.11 Distributed Coordination Function with a four-way
handshaking mechanism [21]. Some simulation parameters are
listed in Table III.

In the simulations, each selfish node acts as a service
provider which randomly picks another selfish node as the
receiver and packets are scheduled to be generated according
to a Poisson process. Similarly, each malicious node also
randomly picks another malicious node as the receiver to send
packets. The total number of malicious nodes varies from 0
to 50. Among those malicious nodes, 1/3 launch dropping
packets attacks which drop all packets passing through them
whose sources are not malicious, 1/3 launch emulating link
breakage attacks which emulate link breakage once receiving
packet forwarding request from selfish nodes, and 1/3 launch
injecting traffic attacks. For each selfish node or malicious
node that does not launch injecting traffic attacks, the average
packet inter-arrival time is 2 seconds, while for malicious
nodes launching injecting traffic attacks, the average packet
inter-arrival time is 0.1 second. In the simulations, all data
packets have the same size.

Based on selfish nodes’ forwarding decision, three types
of systems have been implemented in the simulations: the
proposed ARCS system, which we called “ARCS”; the ARCS
system without balance constraint (i.e., cooperation degree
is set to be infinity for all selfish nodes), which we called
“ARCS-NBC”; and a fully-cooperative system, which we
called “FULL-COOP”. In “ARCS”, all selfish nodes behave in
the way as described in Section III. In “ARCS-NBC”, the same
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strategies as in “ARCS” have been used to detect launching
dropping packets attacks and emulating link breakage attacks,
but now (5) is not a necessary condition to forward packets for
other nodes, and a selfish node will unconditionally forward
packets for those nodes which have not been marked as
malicious by it. In “FULL-COOP”, all selfish nodes will
unconditionally forward packets for other nodes, and no mali-
cious nodes detection and punishment mechanisms have been
used. In all three systems, the same route discovery procedure
is used as described in Section III-E.

B. Performance metrics

We use {S1, . . . , SL} to denote the L selfish nodes and
use {M1, . . . ,MK} to denote the K malicious nodes in the
network. In this paper, the following metrics are used to
evaluate system performance:

• Energy efficiency of selfish nodes, which is defined as the
total profits gained by all selfish nodes divided by the
total energy spent by all selfish nodes until the current
moment:

Efficiency =

∑L
l=1(αSlN

succ
Sl
− βSlN

fail
Sl

) ∗ ESl∑L
l=1 ESl

. (12)

• Average damage received per selfish node: which is
defined as the total damage received by all selfish nodes
divided by the total number of selfish nodes until the
current moment:

Davg =
1

L

L∑
l=1

B(Sl). (13)

where B(Sl) is node Sl’s overall balance which is
calculated as follows:

B(Si) =
L∑

l=1

B(Sl, Si) +
K∑

k=1

B(Mk, Si). (14)

• Balance variation of selfish nodes, which is defined as
the standard deviation of selfish nodes’ overall balance
with the assumption that

∑L
l=1 B(Sl) = 0, that is,

Variation =

√√√√ 1

L

L∑
l=1

B(Sl) ∗B(Sl). (15)

By assuming
∑L

l=1 B(Sl) = 0, this definition has incor-
porated the effects caused by malicious nodes, which will
make

∑L
l=1 B(Sl) deviate from 0. This definition also

reflects the fairness for selfish nodes, where Variation = 0
implies absolute fairness, and the increase of Variation

implies the increase of possible unfairness for selfish
nodes.

C. Simulation results

In our simulations, each configuration has been run 10
independent rounds using different random seeds, and the
result are averaged over all the rounds. In the simulations,
we set αS = 1, βS = 0.5, and Tmin to be 100 seconds for
any selfish node S. The running time for each round is 5000

seconds. Fig. 4 shows the performance comparison among the
three systems: ARCS, ARCS-NBC, and FULL-COOP, where
in ARCS, Bmax and LBmax are both set to be 60E. From the
selfish nodes’ energy efficiency comparisons (Fig. 4(a)) we can
see that ARCS has much higher efficiency than ARCS-NBC
and FULL-COOP when there exist malicious nodes. When
only selfish nodes exist, ARCS-NBC and FULL-COOP have
the same efficiency, since they work in the same way, and both
have slightly higher efficiency than ARCS with the payment
of higher balance variation of selfish nodes, which is shown in
Fig. 4(b). The balance variation comparison shows that ARCS
has much lower balance variation than the other two systems,
and almost keeps unchanged with the increase of malicious
nodes number, while for the other two systems, the balance
variation increases linearly and dramatically with the increase
of malicious nodes number. This comparison also implies the
lower unfairness for selfish nodes in the ARCS system. The
average damage comparison (Fig. 4(c)) shows that in ARCS
the damage that can be caused by malicious nodes is much
lower than in other two systems, and increases very slowly
with the increase of malicious nodes number.
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Fig. 5. Effects of injecting traffic attacks comparison among the three systems

From the results shown in Fig. 4(a), Fig. 4(b) and Fig. 4(c)
we can also see that although ARCS-NBC has gained a lot of
improvement over FULL-COOP by introducing mechanisms
to detect dropping packet and emulating link breakage attacks,
its performance is still much worse than ARCS. The reason
is that ARCS-NBC cannot detect and punish those malicious
nodes which launch injecting traffic attacks, so a large portion
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Fig. 6. Performance comparison of the ARCS system under different cooperation degrees

of energy has been wasted to forward packets for those nodes.
Fig. 5 illustrates the different effects of injecting traffic attacks
in the three systems, where the y-axis shows the percentage
of damage caused by injecting traffic attacks to the network.
From these results we can see that in ARCS, only about 40%
percentage of damage is caused by injecting traffic attacks,
in FULL-COOP this percentage increases to around 80%,
while in ARCS-NBC the percentage increases to more than
90%, although the overall damage caused by all malicious
nodes to the selfish nodes in ARCS-NBC is less than that
in FULL-COOP. These results explain why ARCS-NBC has
much worse performance than ARCS, and clearly show that
how necessary it is to introduce mechanisms to defend against
such injecting traffic attacks.

Next we evaluate the ARCS system under different co-
operation degree configurations, where all other parameters
keep unchanged. Fig. 6 shows the performance of the ARCS
system by varying cooperation degree from 10E to 160E. From
Fig. 6(a) we can see that when the cooperation degree is
40E or more, the energy efficiency becomes almost identical.
However, Fig. 6(b) and Fig. 6(c) show that with the increase of
cooperation degree, both the balance variation of selfish nodes
and the average received damage per selfish node increase.
This can be explained using Fig. 7, which shows that with
the increase of cooperation degree, the percentage of damage
that is caused by injecting traffic attacks also increases. That
is, the higher the cooperation degree, the more vulnerable to

injecting traffic attacks. These results suggest that a relative
small cooperation degree (for example 40E) is enough to
achieve good performance for selfish nodes, such as high
energy efficiency, low unfairness, and small damage.

VI. CONCLUSION

In this paper we have investigated the issues of cooper-
ation stimulation and security in self-organized mobile ad
hoc networks, and proposed an attack-resistant cooperation
stimulation (ARCS) system to enforce cooperation among
selfish nodes and to defend against various attacks, such as
dropping packets, emulating link breakages, injecting traffic,
and collusion. In the ARCS system, each node can adaptively
adjust their own strategies according to the changing envi-
ronments. The analysis has shown that in the ARCS system,
the damage that can be caused by malicious nodes can be
bounded, and the cooperation among selfish nodes can be
enforced through introducing a positive cooperation degree.
At the same time, the ARCS system maintains fairness among
selfish nodes. The simulation studies have also agreed with the
analysis. Another key property of the ARCS system is that it
is fully distributive, and does not require any tamper-proof
hardware or central management points.
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