
2260 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

Attack-Resistant Cooperation Stimulation in
Autonomous Ad Hoc Networks

Wei Yu, Student Member, IEEE, and K. J. Ray Liu, Fellow, IEEE

Abstract—In autonomous ad hoc networks, nodes usually belong
to different authorities and pursue different goals. In order to max-
imize their own performance, nodes in such networks tend to be
selfish, and are not willing to forward packets for the benefits of
other nodes. Meanwhile, some nodes might behave maliciously and
try to disrupt the network and waste other nodes’ resources. In
this paper, we present an attack-resilient cooperation stimulation
(ARCS) system for autonomous ad hoc networks to stimulate coop-
eration among selfish nodes and defend against malicious attacks.
In the ARCS system, the damage that can be caused by malicious
nodes can be bounded, the cooperation among selfish nodes can
be enforced, and the fairness among nodes can also be achieved.
Both theoretical analysis and simulation results have confirmed
the effectiveness of the ARCS system. Another key property of the
ARCS system lies in that it is completely self-organizing and fully
distributed, and does not require any tamper-proof hardware or
central management points.

Index Terms—Autonomous ad hoc networks, cooperation stim-
ulation, security.

I. INTRODUCTION AND BACKGROUND

AN AD HOC NETWORK is a group of nodes without re-
quiring centralized administration or fixed network infra-

structure, in which nodes can communicate with other nodes out
of their direct transmission ranges through cooperatively for-
warding packets for each other. In emergency or military situa-
tions, nodes in an ad hoc network usually belong to the same
authority and have a common goal. To maximize the overall
system performance, nodes usually work in a fully cooperative
way, and will unconditionally forward packets for each other.
Recently, emerging applications of ad hoc networks are also en-
visioned in civilian usage [1]–[8]. In such applications, nodes
typically do not belong to a single authority and may not pursue
a common goal. Consequently, fully cooperative behaviors such
as unconditionally forwarding packets for others cannot be di-
rectly assumed. On the contrary, in order to save limited re-
sources, such as battery power, nodes may tend to be “selfish.”

Before ad hoc networks can be successfully deployed in
autonomous ways, the issues of cooperation stimulation and
security must be resolved first. To stimulate cooperation among
selfish nodes, one possible way is to use payment-based
methods. In [2], a cooperation stimulation approach was

Manuscript received October 1, 2004; revised April 1, 2005. This work
was supported in part by the Army Research Office under URI Award
DAAD19-01-1-0494.

The authors are with the Department of Electrical and Computer Engi-
neering, Institute for Systems Research, University of Maryland, College Park,
MD 20742 USA (e-mail: weiyu@isr.umd.edu; kjrliu@isr.umd.edu).

Digital Object Identifier 10.1109/JSAC.2005.857201

proposed by using a virtual currency, called nuglets, as pay-
ments for packet forwarding, which was then improved in
[3] using credit counters. However, tamper-proof hardware is
required in each node to count the credits. In [4], Sprite was
proposed to stimulate cooperation. It releases the requirement
of tamper-proof hardware, but requires a centralized credit
clearance service trusted by all nodes. Furthermore, these
schemes consider only nodes’ selfish behavior, while in many
situations nodes can be malicious.

Another possible way to stimulate cooperation is to employ
reputation-based schemes [6]–[8]. In [6], the first reputation-
based system for ad hoc networks was proposed to mitigate
nodes’ misbehavior, where each node launches a “watchdog”
to monitor its neighbors’ packet forwarding activities and to
make sure that these neighbors have forwarded the packets ac-
cording to its requests. Following [6], CORE was proposed to
enforce cooperation among selfish nodes [7], and CONFIDANT
was proposed to detect and isolate misbehaving node and thus
make it unattractive to deny cooperation [8]. However, these
schemes suffer some problems. First, many attacks can cause
a malicious behavior not being detected in these systems, and
malicious nodes can easily propagate false information to frame
up others. Second, these schemes can only isolate misbehaving
nodes, but cannot actually punish them, and malicious nodes
can still utilize the valuable network resources even after being
suspected or detected.

Previous experiences have also shown that before ad hoc net-
works can be successfully deployed, security concerns must be
addressed too [6], [9]–[13]. However, due to the sporadic nature
of ad hoc networks, possible mobility and fragile wireless links,
security in ad hoc networks is particularly hard to achieve [11].
For autonomous ad hoc networks, things are even worse: there
is no centralized management point and nodes may tend to be
selfish. Many schemes have been proposed in the literature to
address the security issues in ad hoc networks. However, most
of the focus is on preventing attackers from entering the network
through secure key distribution and secure neighbor discovery,
such as [12]–[18]. These schemes cannot handle well the situa-
tion that the malicious nodes have entered the network, while in
autonomous ad hoc networks the access control is usually loose,
and malicious users can easily join the network.

In this paper, we consider the scenarios where there exist both
selfish and malicious nodes in autonomous ad hoc networks.
The objective of selfish nodes is to maximize the benefits they
can get from the network, while the objective of malicious
node is to maximize the damage they can cause to the network.
Since no central management points are available, selfish nodes
need to adaptively and autonomously adjust their strategies
according to the environments. Accordingly, we propose an

0733-8716/$20.00 © 2005 IEEE

YU AND RAY LIU: ATTACK-RESISTANT COOPERATION STIMULATION IN AUTONOMOUS AD HOC NETWORKS 2261

attack-resilient cooperation stimulation (ARCS) system for
autonomous ad hoc networks which provides mechanisms to
stimulate cooperation among selfish nodes in adversarial en-
vironments. Besides maintaining fairness among selfish nodes
and being robust to various attacks, another key property of
the ARCS system is that it does not require any tamper-proof
hardware or central management point, which is very suitable
for autonomous ad hoc networks. Both analysis and simulation
confirm the effectiveness of the ARCS system.

The rest of this paper is organized as follows. Section II
describes the system model and formulates the problem.
Section III describes the proposed ARCS system. Section IV
presents the performance analysis of the system under various
attacks. Simulation studies are presented in Section V. Finally,
Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider autonomous ad hoc networks where
nodes belong to different authorities and have different goals.
We assume that each node is equipped with a battery with lim-
ited power supply, and may act as a service provider: packets are
scheduled to be generated and delivered to certain destinations
with each packet having a specific delay constraint. If a packet
can be successfully delivered to its destination within the spec-
ified delay constraint, the source of the packet will get some
payoff; otherwise, it will be penalized.

According to their objectives, the nodes in such networks can
be classified into two types: selfish and malicious. The objec-
tive of selfish nodes is to maximize the payoff they can get using
their limited resources, and the objective of malicious nodes is to
maximize the damage that they can cause to the network. Since
energy is usually the most stringent and valuable resource for
battery-supplied nodes in ad hoc networks, we restrict the re-
source constraint to be energy. However, the proposed schemes
are also applicable to other types of resource constraints. For
each node in the network, the energy consumption may come
from many aspects, such as processing, transmitting and re-
ceiving packets. In this paper, we focus on the energy consumed
in communication-related activities. We focus on the situation
that all nodes in the network are legitimate, no matter selfish or
malicious. To prevent illegitimate nodes from entering the net-
work, some existing schemes can be used as the first defense
line, such as [9] and [12]–[14].

Next, we exploit the possible attacks that can be launched
in such networks. We say a route is valid
at time if for any , and are in each
other’s transmission range. We say a link is broken
at time if and are not in each other’s transmission
range. It is easy to see that at time , a packet can be successfully
delivered from its source to its destination through the route

(and) within the delay
constraint if and only if all of the following conditions are
satisfied.

1) is a valid route at time , and no links on route will
break during the transmission.

2) No errors will be introduced to the packet during the
transmission.

3) No nodes on route will drop the packet during the
transmission.

4) The total transmission time is less than .
In order to degrade the network performance, the attackers

can either directly break the ongoing communications, or try to
waste other nodes’ valuable resources. In general, the possible
attacks that can be used by attackers in ad hoc networks can be
roughly categorized as follows.

A1) Emulate link breakage: When a node wants to
transmit a packet to the next node on a certain
route , if is malicious, can simply keep
silent to let believe that is out of ’s trans-
mission range, which can dissatisfy the condition 1.

A2) Drop/modify/delay packets: Dropping a packet can
dissatisfy the condition 3, modifying a packet can
dissatisfy the condition 2, and delaying a packet can
dissatisfy the condition 4.

A3) Prevent good routes from being discovered: Such at-
tacks can either dissatisfy the condition 1, or increase
attackers’ chance of being on the discovered routes and
then launching various attacks such as A1 and A2. Two
examples are wormhole and rushing attacks [13], [14].

A4) Inject traffic: Malicious nodes can inject an over-
whelming amount of packets to overload the network
and consume other nodes’s valuable energy. When
other nodes forward these packets but cannot get pay-
back from attackers, the consumed energy is wasted.

A5) Collusion attack: Attackers can work together in order
to improve their attacking capability.

A6) Slander attack: Attackers can also try to say something
bad about the others.

Before formulating the problem, we first introduce some no-
tations to be used, as listed in Table I. We assume that all data
packets have the same size, and the transmitting power is the
same for all nodes. We use “packet delivery transaction” to de-
note sending a packet from its source to its destination. We say a
transaction is “successful” if the packet has successfully reached
its destination within its delay constraint; otherwise, the trans-
action is “unsuccessful.”

For each node , if it is selfish, its total profit is
defined as follows:

(1)

Then, the objective of each selfish nodes can be formulated
as follows:

(2)

If is malicious, then the total damage that has caused
to other nodes until the current moment is calculated as

(3)

Since in the current system model malicious nodes are allowed
to collude, in this paper, we only formulate the overall objective
of malicious nodes, which is as follows:

(4)

2262 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

TABLE I
NOTATIONS USED IN THE PROBLEM FORMULATION

TABLE II
RECORDS KEPT BY NODE S

We assume that each node has a public key and a private key.
We also assume that a node can know or authenticate the other
nodes’ public keys, but no node will disclose its private key to
the others unless it has been compromised. We do not assume
that nodes trust each other. To keep the confidentiality and in-
tegrity of the content, all packets should be encrypted and signed
by their senders when necessary. We assume that the acknowl-
edgment mechanism is supported by the network link layer. That
is, if node has transmitted a packet to node and has suc-
cessfully received it, node needs to immediately notify of
the reception through link level acknowledgment.

III. DESCRIPTION OF ARCS SYSTEM

This section presents the proposed ARCS system for au-
tonomous ad hoc networks. In the ARCS system, each node

keeps a set of records indicating the interactions with other
nodes, as listed in Table II. In a nutshell, when a node has
a packet scheduled to be sent, it first checks whether this
packet should be sent and which route should be used. When
an intermediate node on the selected route receives a packet
forwarding request, it will check whether it should forward
the packet. Once a node has successfully forwarded a packet
on behalf of another node, it will request a receipt from its
next node on the route and submit this receipt to the source of
the packet to claim credit. After a packet delivery transaction
finishes, all participating nodes will update their own records to
reflect the changed relationships with other nodes and to detect
possible malicious behavior. For each selfish node , all the
records listed in Table II will be initiated to be 0 when first
enters the network.

A. Cooperation Degree

In [19], Dawkins illustrates that reciprocal altruism is benefi-
cial for every ecological system when favors are granted simul-
taneously, and gives an example to explain the survival chances
of birds grooming parasites off each other’s head which they
cannot clean themselves. In that example, Dawkins divides the
birds into three categories: suckers, which always help; cheats,
which ask other birds groom parasites off their heads but never
help others; and grudgers, which start out being helpful to every
bird but refuse to help those birds that do not return the favor.
The simulation studies have shown that both cheats and suckers
extinct finally, and only grudgers win over time. Such coopera-
tion behaviors are also developed at length in [20] and [21].

In order to best utilize their limited resources, selfish nodes in
autonomous ad hoc networks should also act like the grudgers.
In the ARCS system, each selfish node keeps track of the
balance with any other node known by , which
is defined as

(5)

That is, is the difference between what has con-
tributed to and what has contributed to in ’s point of
view. If is a positive value, it can be viewed as the rel-
ative damage that has caused to ; otherwise, it is the relative
help that has received from .

Besides keeping track of the balance, each node also sets
a threshold for each known node in the net-
work, which we called cooperation degree. A necessary condi-
tion for to help (e.g. forwarding packet for) is

(6)

YU AND RAY LIU: ATTACK-RESISTANT COOPERATION STIMULATION IN AUTONOMOUS AD HOC NETWORKS 2263

Setting to be means that will always help
no matter what has done, as the suckers act in the example.

Setting to be means that will never help
, as the cheats act in the example. In the ARCS system, each

selfish node will set to be a relatively small
positive value, which means that initially is helpful to , and
will keep being helpful to unless the relative damage that
has caused to has exceeded , as the grudgers
act in the example where they set the threshold to be 1 for any
other bird. By specifying positive cooperation degrees, cooper-
ation among selfish nodes can be enforced, while by letting the
cooperation degrees to be relatively small, the possible damage
that can be caused by malicious nodes can be bounded.

B. Route Selection

In the ARCS system, source routing is used, that is, when
sending a packet, the source lists in packet header the complete
sequence of nodes through which the packet is to traverse. Due
to insufficient balance, malicious behavior and possible node
mobility, not all packet delivery transactions can succeed. When
a node has a packet scheduled to be sent, it needs to decide
whether it should start the packet delivery transaction and which
route should be used.

In the ARCS system, each route is specified an expiring time
indicating that after that time the route will become invalid,
which is determined by the intermediate nodes during the route
discovery procedure. Assume that has a packet scheduled to
be sent to , route is a valid route known
by with , , and being the number of
hops. Let denote the probability of node will
dropping ’s packet, and let denote the prob-
ability that a packet can be successfully delivered from to

through route at the current moment. then calculates
, as shown in (7) at the bottom of the page. That

is, a packet delivery transaction has no chance to succeed un-
less has enough balance to request help from all intermediate
nodes on the route and no node has been marked as malicious by
any other node on the route. Once a valid route with nonzero

is used to send a packet by , the expected en-
ergy consumption can be calculated as:

(8)

and the expected profit of is

(9)

Let be the expected profit per unit energy when
uses to send a packet to at the current moment, referred to
as the expected energy efficiency. That is

(10)

Then, in the ARCS system, which route should be selected is
decided as follows.

Route selection decision: Among all routes known by
which can reach , route will be selected if and only if

and for any other
.

The above decision is optimal in the sense that no other
known routes can provide better expected energy efficiency
than route . Since the accurate value of is usu-
ally not known, in the ARCS system, is estimated
as the ratio between the number of ’s failed transactions
caused by and ’s total transactions passing .

After the route with the highest expected energy efficiency
has been found by the sender , suppose it is route , in the
next step should decide whether it should use to start a data
packet delivery transaction. If the route quality is too low, simply
dropping the packet without trying may be a better choice. Let

be ’s average energy efficiency over the past

(11)

Then, in the ARCS system, the following decision rule is used.
Packet delivery decision: will use route to start a data

packet delivery transaction if and only if the following condition
holds:

(12)

The left-hand side of (12) is the expected profit when uses
to start a packet delivery transaction, and the right-hand side
of (12) is the predicted profit by simply dropping the packet
without trying, where is the penalty due to dropping a packet
and is the gain that predicts to get with
energy based on its past performance. If
is stationary over time, the above decision is optimal in the
sense that ’s total profit can be maximized under the energy
constraint.

C. Data Packet Delivery Protocol

In the ARCS system, a data packet delivery consists of two
stages: forwarding data packet stage and submitting receipts
stage. In the first stage, the data packet is delivered from its
source to its destination, while in the second stage, each par-
ticipating node on the route will submit a receipt to the source
to claim credit. Table III lists some notations to be used.

1) Forwarding Data Packet Stage: Suppose that node
is to send a packet with payload and sequence

otherwise
(7)

2264 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

TABLE III
NOTATIONS USED IN THE DATA PACKET DELIVERY PROTOCOLS

number to destination through the route
. For the sender , it first computes a signature

. Next, transmits the packet
to the next node on the route, increases

by 1, and waits for receipts to be returned by the
following nodes on route . Once a selfish node has received
the packet , first checks whether it is
the destination of the packet. If it is, after necessary verification,

returns a receipt to its previous node on the route to confirm
the successful delivery; otherwise, checks whether it should
forward the packet. is willing to forward the packet if and
only if all the following conditions are satisfied: 1) is on
route ; 2) , where is
the sequence number of the last packet that has forwarded
with being the source and being the destination; 3) the
signature is valid; 4) ; and 5) no
node on route has been marked as malicious by .

Once has successfully forwarded the packet
to the next node on route , it will

specify a time to wait for a receipt being returned by the next
node before that time to confirm the successful transmission,
which will use to claim credit from . In the ARCS system,
a selfish node sets its waiting time to be the value of
multiplied by the number of hops following this node, where

is a relatively small interval to account for the necessary
processing and waiting time (e.g., time needed for channel
contention) per hop. Since in general the waiting time is small
enough, we can assume that if a node can return a receipt to its
previous node in time, the two nodes will still keep connected.
The protocol execution of each participating selfish node in
this stage is described in Protocol 1.

Protocol 1 Forwarding data packet
stage

is the current node, is the
sender, is the destination.

is the received data
packet from ’s previous node if

; otherwise,
is the data packet generated by .

if , then
forwards to next

node, increases by 1, and
waits for receipts to be returned.

else if (and
and

), then
assigns the value of to

, and returns a receipt to
its previous node.

else
if (or

or or
) then

simply drops this packet.
else if or (the
link to ’s next node is broken),
then

drops the packet, and returns
a receipt to its previous node
which also includes the dropping
reason.

else
assigns the value of to

, forward to
its next node, and waits for a
receipt to be returned by the next
node.

end if
end if

2) Submitting Receipts Stage: In autonomous ad hoc net-
works, nodes may not be willing to forward packets on behalf
of other nodes. So after a node (e.g.,) has forwarded a packet

for another node (e.g.,), will try to
claim corresponding credit from , which can use later to re-
quest to return the favor. To claim credit from , needs to
submit necessary evidence to convince that it has successfully
forwarded packets for . In the ARCS system, in order for to
show that it has successfully forwarded a packet for , only
needs to submit a valid receipt generated by any node following

on the route (e.g.,) indicating that has successfully re-
ceived the packet. One possible format of such a receipt is

That is, the receipt consists of the message
and the signature generated by node

based on this message. For each selfish node, if it has dropped
the packet or cannot get a receipt from its next node in time, or
the received receipt is invalid, it will generate a receipt by itself
and return it to its previous node; otherwise, it will simply send
the received receipt back to its previous node on the route. The
protocol execution of each participating selfish node in this
stage is described in Protocol 2.

YU AND RAY LIU: ATTACK-RESISTANT COOPERATION STIMULATION IN AUTONOMOUS AD HOC NETWORKS 2265

Fig. 1. Update records.

Protocol 2 Submitting receipt stage
is the current node,

is the
successfully received packet to be
processed.

if (or (no valid receipts
have been returned by the next node
after waiting enough time)), then

.
Send the receipt

to ’s previous node on .
else

,
which is the returned receipt from
the next node on the route.
if

, then
Send to ’s previous node
on .

else
.

Send the receipt
to ’s previous node on .

end if
end if

D. Update Records

In the ARCS system, after a packet delivery transaction has
finished, no matter whether it is successful or not, each partici-
pating node will update its records to keep track of the changing
relationships with other nodes and to detect possible malicious
behavior. Next, we use Fig. 1 to illustrate the records updating
procedure, where is the initiator of this transaction, is the
destination, and is the associated route.

For the sender , according to the different situations, it up-
dates its records as follows.

• Case 1: has received a valid receipt signed by which
means that this transaction has succeeded. Then, for each
intermediate node , updates as follows:

(13)

• Case 2: has successfully sent a packet to its next node,
but cannot receive any receipt in time. In this case, let
be ’s next node, then updates its records as follows:

(14)

(15)

That is, refusing to return a receipt will be regarded as
malicious behavior.

• Case 3: If has received a valid receipt which is not
signed by , but signed by an intermediate node (e.g.,

), which means that either has dropped the packet or
a returned receipt has been dropped by a certain node fol-
lowing (including) on the route in the submitting re-
ceipt stage. In this case, for each intermediate node be-
tween and , still updates using (13).
Since node ’s transmission cannot be verified by ,
has enough evidence to suspect that the packet is dropped
by . To reflect this suspect, updates as
follows:

(16)

where accounts for the amount of energy that has been
wasted in this transaction with being the number of hops
between and .

If a transaction fails, also keeps a record of
for this transaction, as

well as a copy of the returned receipt if there exists.
For each intermediate node (e.g., node in Fig. 1) that

has participated in the transaction, if it is selfish, it updates its
records as follows.

• Case 1: has successfully sent the packet to node , and
has got a receipt from to confirm the transmission. In
this case, only needs to update as follows:

(17)

• Case 2: has successfully sent the packet to node , but
cannot get a valid receipt from . In this case, updates
its records as follows:

(18)

• Case 3: has dropped the packet due to link breakage
between and . Although this packet dropping is not

’s fault, since cannot prove it to , will take the
responsibility. However, since this link breakage may be
caused by who has selected a bad route, or caused by
who tries to emulate link breakage to attack , should
also record this link breakage. In this case, updates its
records as follows:

(19)

In the ARCS system, each selfish node (e.g.,) will
also set a threshold with any other
node (e.g.,) to indicate the damage that can tolerate
which is caused due to the link breakages happened be-
tween and . In this case, if exceeds

, will be put into ’s blacklist.
Similarly, if exceeds ,

will be put into ’s blacklist.
• Case 4: has dropped the packet due to the reason that

the condition in (6) is not satisfied or some nodes on are
in ’s blacklist. In this case, does not need to update
its records.

2266 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

After finishing updating its records, will also keep a copy of
the submitted receipt for possible future usage, such as resolving
inconsistent records update problem, as will be described in
Section III-F. From the above update procedure, we can see that
a selfish node should always return a receipt to confirm a suc-
cessful packet reception, since refusing to return receipt is re-
garded as malicious behavior and cannot provide any gain.

E. Secure Route Discovery

In the ARCS system, dynamic source routing (DSR) [22]
is used as the underlying routing protocol to perform route
discovery, which is an on-demand source routing protocol.
However, without security consideration, the routing protocol
itself can easily become an attacking target. For example,
malicious nodes can inject an overwhelming amount of route
request packets into the network. In the ARCS system, be-
sides necessary identity authentication, the following security
enhancements have also been incorporated into the route dis-
covery protocol.

1) When node initiates a route discovery, it will also ap-
pend its blacklist in the route request packet. After an in-
termediate node has received the request packet, it will
update its own record using the received
blacklist.

2) When an intermediate node receives a route request
packet which originates from and is not this request’s
destination, first checks the following conditions: 1)
has never seen this request before; 2) is not in ’s
blacklist; 3) ; 4) no nodes
that have been appended to the request packet are in ’s
blacklist; and 5) has not forwarded any request for
in the last interval, where
is the minimum interval specified by to indicate that

will forward at most one route request for in each
interval. will broadcast the request if and

only if all of the above conditions can be satisfied; other-
wise, will discard the request.

3) During a discovered route is being returned to the re-
quester , each intermediate node on the route appends
the following information to the returned route: the
subset of its blacklist that is not known by , the value
of if not known by , the value of

, and node ’s expected staying time at the
current position. After has received the route, for each
node on the discovered route, it updates the corre-
sponding blacklist , updates the value
of , determines the expiring time of
this route which can be approximated as the expected
minimum staying time among all nodes on the route,
and checks the consistency between and

.

F. Resolve Inconsistent Records Update

In some situations, after a node (e.g.,) has successfully for-
warded a packet for another node (e.g.,) and has sent a receipt

back to , the value of may not be increased im-
mediately by due to some intermediate node dropping the re-
ceipt returned by . In this case, the value of will
be larger than the value of , which we referred to
as inconsistent records update. As a consequence, may refuse
to forward packets for even the actual value of is
still less than , or may continue requesting

to forward packets for it when the true value of has
exceeded . Next, we describe how the inconsis-
tent records update problem is resolved in the ARCS system.

In the route discovery stage, after route has been returned
to , will check whether there exists inconsistency. If
finds that a node on route has reported a larger value
of than the value of , when calcu-
lating route quality, should use the value of to
temporarily substitute the value of . In the packet
delivery stage, when route is picked by to send packets, for
each intermediate node on route , the value of
will also be appended to the payload of the data packet.

When receives an appended value of from ,
and finds , will submit those re-
ceipts that target on but have not been confirmed by to claim
corresponding credits. We say a receipt received by at time
and targeting on has been confirmed if there exists at least
one moment before now at which and have agreed
that . Once has received an un-
confirmed receipt returned by , will check whether there is
a failed transaction record associated to this receipt. If no such
record exists, either the receipt is faked, or the corresponding
credit has been issued to . If there exists such a record, let be
the node who has signed the receipt associated to this transaction
record, that is, all nodes between and have been credited by

. Let be the node who has signed the receipt submitted by .
If is in front of on the route, should use the new receipt
singed by to replace the previous receipt signed by , and
for each intermediate node between and on the route,
should update using (13), also, if is not the des-
tination of the associated packet, should update
using (16).

G. Parameter Selection

In the ARCS system, for each selfish node , it needs to
specify three types of thresholds regarding to any other node
in the network: the cooperation degree ,
the maximum tolerable damage due to link breakage

and the minimum route request forwarding
interval , which are determined in the following
way.

For each known node , initially sets to
be a moderate value, such as a value equal to its own average
pause time. During staying in the network, will keep esti-
mating a good route discovery frequency for itself, and will set

to be the inverse of its own route discovery fre-
quency. Similarly, initially sets all link breakage thresholds
using a (relatively small) constant value , and keeps esti-
mating its own average link breakage ratio over time, assuming

. For each node , let be the total number of
transactions that simultaneously revolve and with either

YU AND RAY LIU: ATTACK-RESISTANT COOPERATION STIMULATION IN AUTONOMOUS AD HOC NETWORKS 2267

Fig. 2. Dropping packets attacks.

being ’s next node or being the initiator of the transactions,
then may set

(20)
where is the average number of hops per route.

For , if favors can be granted simultane-
ously, a small value (for example 1, as grudgers do in the
ecological example) can work perfectly. However, in many
situations favors cannot be granted immediately. For example,
after has helped several times, may not get similar
amount of help from due to that does not need help from
currently or has moved. Many factors can affect the selection
of , among them some are unknown to , such
as other nodes’ traffic patterns and behaviors, and some are
unpredictable, such as mobility, which make selecting an op-
timal value for hard or impossible. However,
our simulation studies in Section V have shown that in most
situations a relatively small constant value can achieve good
tradeoff between energy efficiency and robustness to attacks.

IV. ANALYSIS OF THE ARCS SYSTEM UNDER ATTACK

In this section, we analyze the performance of the ARCS
system under the following types of attacks: dropping packet,
emulating link breakage, injecting traffic, collusion, and
slander. Since the attacks of preventing good routes from being
discovered are mainly used to increase attackers’ chance of
being on the discovered routes, they can be regarded as part of
dropping packets or emulating link breakage attacks, and will
not be analyzed separately. Similarly, modifying or delaying
packets attacks can also be regarded as specific types of drop-
ping packets attacks, and will not be analyzed separately. The
results show that the damage that can be caused by malicious
nodes is bounded, and the system is collusion-resistant.

1) Dropping Packet Attacks: In the ARCS system, mali-
cious nodes can waste other nodes’ energy by dropping their
packets, which can happen either in the forwarding data packet
stage or in the submitting receipts stage. We use Fig. 2 as an
example to study the possible dropping packet attacks that can
be launched by malicious node . Based on in which stage

drops packets and whether will return receipts, there are
four possible attacking scenarios.

• Scenario 1: drops a packet in the forwarding data
packet stage, but creates a receipt to send back to to
confirm successful receiving from . In this scenario,
after gets the receipt, will increase by

, which equals to the total amount of energy that has
been wasted by . That is, in this scenario, the damage
caused by has been recorded by and needs to be
compensated by later if still wants to get help
from .

• Scenario 2: drops a packet in the forwarding data
packet stage, and refuses to return a receipt to . In this
scenario, although will be mistakenly charged by
which increases by , will mark

as malicious and will stop working with further.
That is, can never get help from and cause damage
to in the future.

• Scenario 3: drops the receipt returned by , but cre-
ates a receipt to send back to . In this scenario, will
be charged by , but the nodes after who have
successfully forwarded the packet will not be credited by

immediately. That is, by taking some charge (here),
can cause inconsistent records update. However, as de-

scribed in Section III-F, this inconsistency can be easily
resolved and will not cause further damage. That is,
can only cause temporary records inconsistency with the
extra payment of .

• Scenario 4: drops the receipt returned by , and re-
fuses to return a receipt to . This scenario is similar
to scenario 3 with the only difference being that in this
scenario will be mistakenly charged by , but will
be marked as malicious by and cannot do any further
damage to in the future.

From the above analysis, we can see that when a malicious
node launches dropping packet attacks, either it will be
marked as malicious by some nodes, or the damage caused
by it will be recorded by other nodes. Since for each node ,
the maximum possible damage that can be caused by is
bounded by , the total damage that can
cause is also bounded.

2) Emulating Link Breakage Attacks: Malicious nodes can
also launch emulating link breakage attacks to waste other
nodes’ energy. For example, in Fig. 2, when node has re-
ceived a request from to forward a packet to , can
just keep silent to let believe that the link between and

is broken. By emulating link breakage, can cause a
transaction to fail and waste other nodes’ energy. In the ARCS
system, each selfish node handles the possible emulating link
breakage attacks as follows: For each known node , keeps
a record to remember the damage that has
been caused due to link breakage between and , and if

exceeds the threshold ,
will mark as malicious and will never work with again.
That is, the damage that can be caused to by malicious node

who launched emulating link breakage attacks is bounded
by .

3) Injecting Traffic Attacks: Besides dropping packets,
attackers can also inject an excessive amount of traffic to over-
load the network and to consume other nodes’ valuable energy.
Two types of packets can be injected: general data packets
and route request packets. In the ARCS system, according
to the route discovery protocol, the number of route request
packets that can be injected by each node is bounded by 1 in
each time interval . For general data packets, since an
intermediate node will stop forwarding packets for node

if , the maximum damage
that can be caused to node by node launching injecting
general data traffic attacks is bounded by . In

2268 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

Fig. 3. Collusion attacks.

summary, by launching injecting traffic attacks, the maximum
damage that can be caused by a malicious node to node
is bounded.

4) Collusion Attacks: In order to increase their attacking
capability, malicious nodes may choose to collude. Next, we
show that in the ARCS system colluding among malicious
nodes cannot cause more damage to the network than working
alone, that is, the ARCS system is collusion-resistant. First, it
is easy to see that two nodes collude to launch injecting traffic
attacks cannot increase the damage due to the existence of bal-
ance threshold (cooperation degree), and two nodes colluding
to launch emulating link breakage attacks makes no sense,
since each link breakage event has only two participants. Next,
we consider two malicious nodes colluding to launch dropping
packets attacks.

Given a packet delivery transaction, we first consider the case
that the two colluding nodes are neighbor of each other. For ex-
ample, as in Fig. 2, assume that and collude. When
drops the packet, can still get (or generate by itself, since
may know ’s private key) the receipt showing that has suc-
cessfully forwarded the packet. However, this cannot increase
their total attacking capability, since needs to take the charge
for the damage caused by this packet dropping. That is, in this
case, is released from the charge by sacrificing .

If two colluding nodes are not neighbor of each other, the only
way that they can collude is that one node drops the data packet
in the forwarding data packet stage, and the other node drops the
receipt in the submitting receipt stage, as shown in Fig. 3, where
node drops the data packet and node drops the receipt.
By colluding in this way, if has returned a receipt to its pre-
vious node, will not be charged by temporarily, and all the
nodes between and cannot get credits from immediately.
For node , if will return a receipt to A, will increase

by , and if refuses to return a receipt to ,
will be marked as malicious by . That is, in this case, tem-

porarily inconsistent records update can be caused, but the col-
luding nodes will be overcharged by . However, according
to Section III-F, the inconsistency can be easily resolved.

5) Slander Attacks: In ARCS, each node can propagate its
blacklist to the network, which may give attackers chances
to slander the others. Next, we show that instead of causing
damage, such attacks can even benefit selfish nodes in some
situations. Suppose that an attacker tells the others that node

is malicious. For any selfish node , this information will
only be used when wants to calculate a route’s successful
packet delivery probability and both and are on this route.
In this situation, the successful packet delivery probability of
this route will be calculated as 0 according to (7), and this route
will not be used by , which is just one goal of secure route
discovery: preventing attackers from being on the discovered
route. In all other situations, such information will not affect

’s decision.

TABLE IV
SIMULATION PARAMETERS

Fig. 4. Self-estimated link breakage ratio.

Theorem 1: Assume that in the ARCS system there
are selfish nodes and malicious nodes

. Let ,
and be the cooperation degree, the link
breakage threshold, and the minimum route request forwarding
interval that sets for , respectively. Let be node ’s
staying time in the system, and let (which is far less
than) be the consumed energy per route request forwarding,
then the total damage that can be caused by all the
malicious nodes is bounded by

(21)

Proof: See the above analysis.
From Theorem 1, we can see that the damage that can be

caused by malicious nodes is bounded, which is determined by
the thresholds specified by each selfish node.

V. SIMULATION STUDIES

A. Simulation Configuration

In our simulations, nodes are randomly deployed inside a
rectangular space. Each node moves randomly according to the
random waypoint model [22]: a node starts at a random posi-
tion, waits for a duration called the pause time, then randomly
chooses a new location and moves toward the new location with

YU AND RAY LIU: ATTACK-RESISTANT COOPERATION STIMULATION IN AUTONOMOUS AD HOC NETWORKS 2269

Fig. 5. Performance comparison between the three systems. (a) Energy efficiency comparison. (b) Balance variation comparison. (c) Average damage comparison.

a velocity uniformly chosen between 0 and . When it ar-
rives at the new location, it waits for another random pause
time and repeats the process. The physical layer assumes a fixed
transmission range model, where two nodes can directly com-
municate with each other successfully only if they are in each
other’s transmission range. The medium access control (MAC)
layer protocol simulates the IEEE 802.11 distributed coordina-
tion function (DCF) with a four-way handshaking mechanism
[23]. Some simulation parameters are listed in Table IV.

In the simulations, each selfish node acts as a service provider
which randomly picks another selfish node as the receiver and
packets are scheduled to be generated according to a Poisson
process. Similarly, each malicious node also randomly picks an-
other malicious node as the receiver to send packets. The total
number of malicious nodes varies from 0 to 50. Among those
malicious nodes, 1/3 launch dropping packets attacks which
drop all packets passing through them whose sources are not
malicious, 1/3 launch emulating link breakage attacks which
emulate link breakage once receiving packet forwarding request
from selfish nodes, and 1/3 launch injecting traffic attacks. For
each selfish or malicious node that does not launch injecting
traffic attacks, the average packet interarrival time is 2 seconds,
while for malicious nodes launching injecting traffic attacks, the
average packet interarrival time is 0.1 second. In the simula-
tions, all data packets have the same size.

Based on selfish nodes’ forwarding decision, three systems
have been implemented in the simulations: the proposed ARCS
system, which we called “ARCS”; the ARCS system without
balance constraint (i.e., cooperation degree is set to be infinity
for all selfish nodes), which we called “ARCS-NBC”; and a
fully cooperative system, which we called “FULL-COOP.”
In “ARCS,” all selfish nodes behave in the way as described
in Section III. In “ARCS-NBC,” the same strategies as in
“ARCS” have been used to detect launching dropping packets
attacks and emulating link breakage attacks, but now (6) is
not a necessary condition to forward packets for other nodes,
and a selfish node will unconditionally forward packets for
those nodes which have not been marked as malicious by it. In
“FULL-COOP,” all selfish nodes will unconditionally forward
packets for other nodes, and no malicious nodes detection and
punishment mechanisms have been used. In all three systems,
the same route discovery procedure is used as described in
Section III-E.

We use to denote the selfish nodes and use
to denote the malicious nodes in the network.

In this section, the following performance metrics are used.

Fig. 6. Effects of injecting traffic attacks in the three systems.

• Energy efficiency of selfish nodes, which is the total profit
gained by all selfish nodes divided by the total energy
spent by all selfish nodes.

• Average damage received per selfish node, which is the
total damage received by all selfish nodes divided by the
total number of selfish nodes, that is

(22)

• Balance variation of selfish nodes, which is the standard
deviation of selfish nodes’ overall balance with the as-
sumption that , that is

(23)

By assuming , the effects caused by
malicious nodes have incorporated, which will make

deviate from 0. This metric also reflects the
fairness for selfish nodes, where implies
absolute fairness, and the increase of implies
the increase of possible unfairness for selfish nodes.

B. Simulation Results

In our simulations, each configuration has been run ten inde-
pendent rounds using different random seeds, and the result are
averaged over all the rounds. In the simulations, we set ,

, and to be 100 seconds for each selfish node

2270 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

Fig. 7. Performance comparison of the ARCS system under different cooperation degrees. (a) Energy efficiency comparison. (b) Balance variation comparison.
(c) Average damage comparison.

, which is equal to the average pause time. The running time
for each round is 5000 seconds. For each selfish node, the link
breakage ratio is estimated through its own experience, which
is the ratio between the total number of link breakages it has ex-
perienced with itself being the transmitter and the total number
of transmissions it has tried. Fig. 4 shows the estimated values
of link breakage ratio by each node, which shows that all nodes
have almost the same link breakage ratio (here 2%).

Fig. 5 shows the performance comparison among the three
systems: ARCS, ARCS-NBC, and FULL-COOP, where in
ARCS, is set to be , and the value of
is set according to (20) with . The experiments
based on other values of have also been conducted,
which shows that can achieve good tradeoff between
performance and possible damage (demonstrated in Fig. 7).
From the comparisons of selfish nodes’ energy efficiency
[Fig. 5(a)], we can see that ARCS has much higher efficiency
than ARCS-NBC and FULL-COOP when there exist mali-
cious nodes. When only selfish nodes exist, ARCS-NBC and
FULL-COOP have the same efficiency, since they work in the
same way, and both have slightly higher efficiency than ARCS
with the payment of higher balance variation of selfish nodes,
which is shown in Fig. 5(b). The balance variation comparison
shows that ARCS has much lower balance variation than
the other two systems, and keeps almost unchanged with the
increase of malicious nodes, while for the other two systems,
the balance variation increases linearly and dramatically with
the increase of malicious nodes. This comparison also implies
the lower unfairness for selfish nodes in the ARCS system. The
average damage comparison [Fig. 5(c)] shows that in ARCS the
damage that can be caused by malicious nodes is much lower
than in other two systems, and increases very slowly with the
increase of malicious nodes.

From the results shown in Fig. 5, we can also see that
although ARCS-NBC has gained a lot of improvement over
FULL-COOP by introducing mechanisms to detect dropping
packet and emulating link breakage attacks, its performance is
still much worse than ARCS. The reason is that ARCS-NBC
cannot detect and punish those malicious nodes which launch
injecting traffic attacks, so a large portion of energy has been
wasted to forward packets for those nodes. Fig. 6 illustrates the
different effects of injecting traffic attacks in the three systems,
where the vertical axis shows the percentage of damage caused
by injecting traffic attacks to the network. From these results,
we can see that in ARCS, only about 40% percentage of
damage is caused by injecting traffic attacks, in FULL-COOP

Fig. 8. Effects of injecting traffic attacks under different cooperation degrees
in the ARCS system.

this percentage increases to around 80%, while in ARCS-NBC
the percentage increases to more than 90%, although the overall
damage caused by all malicious nodes to the selfish nodes in
ARCS-NBC is less than that in FULL-COOP. In other words, in
Fig. 5(c), the gap between the results corresponding to “ARCS”
and the results corresponding to “ARCS-NBC” is caused by
injecting traffic attacks, while the gap between the results
corresponding to “ARCS-NBC” and the results corresponding
to “FULL-COOP” is caused by dropping packets/emulating
link breakage attacks. These results explain why ARCS-NBC
has much worse performance than ARCS, and clearly show that
how necessary it is to introduce mechanisms to defend against
injecting traffic attacks.

Next, we evaluate the ARCS system under different coopera-
tion degrees, where all other parameters keep unchanged. Fig. 7
shows the performance of the ARCS system by varying coop-
eration degree from 10E to 160E. From Fig. 7(a), we can see
that when the cooperation degree is 40E or more, the energy
efficiency becomes almost identical. However, Fig. 7(b) and (c)
shows that with the increase of cooperation degree, both the bal-
ance variation of selfish nodes and the average received damage
per selfish node increase. This can be explained using Fig. 8,
which shows that with the increase of cooperation degree, the
percentage of damage that is caused by injecting traffic attacks
also increases. That is, the higher the cooperation degree, the
more vulnerable to injecting traffic attacks. These results sug-
gest that a relative small cooperation degree (for example 40E)

YU AND RAY LIU: ATTACK-RESISTANT COOPERATION STIMULATION IN AUTONOMOUS AD HOC NETWORKS 2271

is enough to achieve good performance for selfish nodes, such
as high energy efficiency, low unfairness, and small damage.

VI. CONCLUSION

In this paper, we have investigated the issues of cooperation
stimulation and security in autonomous ad hoc networks, and
proposed an ARCS system to stimulate cooperation among
selfish nodes and defend against various attacks launched by
malicious nodes. In the ARCS system, each node can adap-
tively and autonomously adjust their own strategies according
to the changing environments. The analysis has shown that in
the ARCS system, the damage that can be caused by malicious
nodes can be bounded, and the cooperation among selfish nodes
can be enforced through introducing a positive cooperation
degree. At the same time, the ARCS system maintains good
fairness among selfish nodes. The simulation results have also
agreed with the analysis. Another key property of the ARCS
system is that it is fully distributive, completely self-organizing,
and does not require any tamper-proof hardware or central
management points.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and feedback. Meanwhile, W. Yu
would like to thank J. Thorsteinsson for the helpful discussions.

REFERENCES

[1] J. P. Hubaux, T. Gross, J. Y. Le Boudec, and M. Vetterli, “Toward
self-organized mobile ad hoc networks: The terminodes project,” IEEE
Commun. Mag., vol. 39, no. 1, pp. 118–124, Jan. 2001.

[2] L. Buttyan and J. P. Hubaux, “Enforcing service availability in mobile
ad-hoc network,” in Proc. 1st Annu. Workshop Mobile Ad Hoc Netw.
Comput., Boston, MA, Aug. 2000, pp. 87–96.

[3] , “Simulating cooperation in self-organized mobile ad hoc WANs,”
Mobile Netw. Applicat., vol. 8, no. 5, pp. 579–592, Oct. 2003.

[4] S. Zhong, J. Chen, and Y. R. Yang, “Sprite: A simple, cheat-proof, credit-
based system for mobile ad-hoc networks,” in Proc. IEEE INFOCOM,
San Francisco, CA, Mar. 2003, pp. 1987–1997.

[5] V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao, “Coop-
eration in wireless ad hoc networks,” in Proc. IEEE INFOCOM, San
Francisco, CA, Mar. 2003, pp. 808–817.

[6] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing misbe-
havior in mobile ad hoc networks,” in Proc. 6th Annu. Int. Conf. Mobile
Comput. Netw., Boston, MA, Aug. 2000, pp. 255–265.

[7] P. Michiardi and R. Molva, “Core: A collaborative reputation mecha-
nism to enforce node cooperation in mobile ad hoc networks,” in Proc.
IFIP—Commun. Multimedia Security Conf., Portoroz, Slovenia, Sep.
2002, pp. 107–121.

[8] S. Buchegger and J.-Y. Le Boudec, “Performance analysis of the CON-
FIDANT protocol: Cooperation of nodes fairness in dynamic ad-hoc net-
works,” in Proc. 3rd ACM Int. Symp. Mobile Ad Hoc Netw. Comput.,
Lausanne, Switzerland, Jun. 2002, pp. 226–236.

[9] L. Zhou and Z. Haas, “Securing ad hoc networks,” IEEE Netw. Mag.,
vol. 13, no. 6, pp. 24–30, Nov./Dec. 1999.

[10] Y. Zhang and W. Lee, “Intrusion detection in wireless ad-hoc networks,”
in Proc. 6th Annu. Int. Conf. Mobile Computi. Netw., Boston, MA, Aug.
2000, pp. 275–283.

[11] J. P. Hubaux, L. Buttyan, and S. Capkun, “The quest for security in
mobile ad hoc networks,” in Proc. ACM Symp. Mobile Ad Hoc Netw.
Comput., Long Beach, CA, Oct. 2001, pp. 146–155.

[12] Y. C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A secure on-demand
routing protocol for ad hoc networks,” in Proc. 8th Annu. Int. Conf. Mo-
bile Comput. Netw., Atlanta, GA, Sep. 2002, pp. 12–23.

[13] , “Rushing attacks and defense in wireless ad hoc network routing
protocols,” in Proc. ACM Workshop Wireless Security, San Diego, CA,
Sep. 2003, pp. 30–40.

[14] , “Packet leashes: A defense against wormhole attacks in wireless
networks,” in Proc. IEEE INFOCOM, San Francisco, CA, Mar. 2003,
pp. 1976–1986.

[15] , “SEAD: Secure efficient distance vector routing for mobile wire-
less ad hoc networks,” Ad Hoc Netw. J., vol. 1, pp. 175–192, 2003.

[16] P. Papadimitratos and Z. Haas, “Secure routing for mobile ad hoc net-
works,” in Proc. SCS Commun. Netw. Distrib. Syst. Modeling Simulation
Conf., San Antonio, TX, January 2002.

[17] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M. Belding-
Royer, “A secure routing protocol for ad hoc networks,” in Proc. 10th
IEEE Int. Conf. Network Protocols, Paris, France, Nov. 2002, pp. 78–87.

[18] M. G. Zapata and N. Asokan, “Securing ad hoc routing protocols,” in
Proc. ACM Workshop Wireless Security (WiSe), Atlanta, GA, Sep. 2002,
pp. 514–519.

[19] R. Dawkins, The Selfish Gene, 2nd ed. London, U.K.: Oxford Univ.
Press, 1990.

[20] R. Axelrod, The Evolution of Cooperation. New York: Basic Books,
1984.

[21] , The Complexity of Cooperation: Agent-Based Models of Compe-
tition and Collaboration. Princeton, NJ: Princeton Univ. Press, 1997.

[22] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wire-
less networks, mobile computing,” in Mobile Computing, T. Imielinski
and H. Korth, Eds. Norwell, MA: Kluwer, 1996, ch. 5, pp. 153–181.

[23] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE Standard 802.11-1007.

[24] Federal Information Processing Standards Publication 180-1, Secure
Hash Standard, Apr. 1995.

Wei Yu (S’04) received the B.S. degree in computer
science from the University of Science and Tech-
nology of China (USTC), Anhui, in 2000, and the
M.S. degree in computer science from Washington
University, St. Louis, MO, in 2002. Currently, he is
working towards the Ph.D. degree in electrical and
computer engineering at the University of Maryland,
College Park.

From 2000 to 2002, he was a Graduate Research
Assistant at the Washington University. From 2002
to 2005, he was a Graduate Research Assistant with

the Communications and Signal Processing Laboratory and the Institute for
Systems Research, University of Maryland. His research interests include se-
curity, wireless communications and networking, game theory, and wireless
multimedia.

K. J. Ray Liu (F’03) received the B.S. degree in elec-
trical engineering from the National Taiwan Univer-
sity, Taipei, Taiwan, R.O.C., in 1983, and the Ph.D.
degree in electrical engineering from the University
of California, Los Angeles (UCLA), in 1990.

He is a Professor and Director of Communications
and Signal Processing Laboratories, Electrical and
Computer Engineering Department, Institute for
Systems Research, University of Maryland, College
Park. His research contributions encompass broad
aspects of wireless communications and networking,

information forensics and security, multimedia communications and signal
processing, signal processing algorithms and architectures, and bioinformatics,
in which he has published over 350 refereed papers.

Dr. Liu is the recipient of numerous honors and awards including the IEEE
Signal Processing Society 2004 Distinguished Lecturer, the 1994 National
Science Foundation Young Investigator Award, the IEEE Signal Processing
Society’s 1993 Senior Award (Best Paper Award), the IEEE 50th Vehic-
ular Technology Conference Best Paper Award, Amsterdam, 1999, and the
EURASIP 2004 Meritorious Service Award. He received the 2005 Poole and
Kent Company Senior Faculty Teaching Award from A. James Clark School of
Engineering, University of Maryland, as well as the George Corcoran Award
in 1994 for outstanding contributions to electrical engineering education, and
the Outstanding Systems Engineering Faculty Award in 1996 in recognition
of outstanding contributions in interdisciplinary research from the Institute for
Systems Research. He is the Editor-in-Chief of the IEEE Signal Processing
Magazine, the prime proposer and architect of the new IEEE TRANSACTIONS ON

INFORMATION FORENSICS AND SECURITY, and was the founding Editor-in-Chief
of the EURASIP Journal on Applied Signal Processing. He is on the Board of
Governors of the IEEE Signal Processing Society.

	toc
	Attack-Resistant Cooperation Stimulation in Autonomous Ad Hoc Ne
	Wei Yu, Student Member, IEEE, and K. J. Ray Liu, Fellow, IEEE
	I. I NTRODUCTION AND B ACKGROUND
	II. S YSTEM M ODEL AND P ROBLEM F ORMULATION
	TABLE€I N OTATIONS U SED IN THE P ROBLEM F ORMULATION
	TABLE€II R ECORDS K EPT BY N ODE S

	III. D ESCRIPTION OF ARCS S YSTEM
	A. Cooperation Degree
	B. Route Selection
	C. Data Packet Delivery Protocol
	1) Forwarding Data Packet Stage: Suppose that node S is to sen

	TABLE€III N OTATIONS U SED IN THE D ATA P ACKET D ELIVERY P ROT
	2) Submitting Receipts Stage: In autonomous ad hoc networks, nod
	Fig.€1. Update records.

	D. Update Records
	E. Secure Route Discovery
	F. Resolve Inconsistent Records Update
	G. Parameter Selection

	Fig.€2. Dropping packets attacks.
	IV. A NALYSIS OF THE ARCS S YSTEM U NDER A TTACK
	1) Dropping Packet Attacks: In the ARCS system, malicious nodes
	2) Emulating Link Breakage Attacks: Malicious nodes can also lau
	3) Injecting Traffic Attacks: Besides dropping packets, attacker

	Fig.€3. Collusion attacks.
	4) Collusion Attacks: In order to increase their attacking capab
	5) Slander Attacks: In ARCS, each node can propagate its blackli

	TABLE€IV S IMULATION P ARAMETERS
	Fig.€4. Self-estimated link breakage ratio.
	Theorem 1: Assume that in the ARCS system there are L selfish
	Proof: See the above analysis. $\hfill\blackbox$

	V. S IMULATION S TUDIES
	A. Simulation Configuration

	Fig.€5. Performance comparison between the three systems. (a) En
	Fig.€6. Effects of injecting traffic attacks in the three system
	B. Simulation Results

	Fig.€7. Performance comparison of the ARCS system under differen
	Fig.€8. Effects of injecting traffic attacks under different coo
	VI. C ONCLUSION
	J. P. Hubaux, T. Gross, J. Y. Le Boudec, and M. Vetterli, Toward
	L. Buttyan and J. P. Hubaux, Enforcing service availability in m
	S. Zhong, J. Chen, and Y. R. Yang, Sprite: A simple, cheat-proof
	V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao,
	S. Marti, T. J. Giuli, K. Lai, and M. Baker, Mitigating routing
	P. Michiardi and R. Molva, Core: A collaborative reputation mech
	S. Buchegger and J.-Y. Le Boudec, Performance analysis of the CO
	L. Zhou and Z. Haas, Securing ad hoc networks, IEEE Netw. Mag.,
	Y. Zhang and W. Lee, Intrusion detection in wireless ad-hoc netw
	J. P. Hubaux, L. Buttyan, and S. Capkun, The quest for security
	Y. C. Hu, A. Perrig, and D. B. Johnson, Ariadne: A secure on-dem
	P. Papadimitratos and Z. Haas, Secure routing for mobile ad hoc
	K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M. Beld
	M. G. Zapata and N. Asokan, Securing ad hoc routing protocols, i
	R. Dawkins, The Selfish Gene, 2nd ed. London, U.K.: Oxford Univ.
	R. Axelrod, The Evolution of Cooperation . New York: Basic Books
	D. B. Johnson and D. A. Maltz, Dynamic source routing in ad hoc
	Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY
	Federal Information Processing Standards Publication 180-1, Secu

