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Abstract— The robustness of space-time coding techniques
for wireless channels that exhibit both temporal and spatial
correlation is investigated. A general space-time covariance model
is developed and employed to evaluate the exact pairwise error
probability for several space-time codes. A significant degra-
dation in the performance of space-time coding techniques is
observed for cases where the scatterers are located in close
proximity to the mobile and the spacing between transmit
antennas is a fraction of a wavelength. The conditions for which
the commonly used assumption of independent transmission
paths is valid are investigated as a function of the scattering
radius and the spacing of the transmit and receive antennas.

I. INTRODUCTION

Wireless systems employing multiple transmit and receive
antennas have the potential for tremendous gains in channel ca-
pacity through exploitation of independent transmission paths
due to scattering. Transmit diversity, achieved through the use
of space-time coding techniques at the base station is a recent
innovation motivated by the need for higher throughput in
the wireless channel. A simple two-branch transmit diversity
scheme was first proposed by Alamouti [1]. It was demon-
strated that this scheme provides the same diversity order as a
wireless system employing a single transmit antenna and two
receive antennas and utilizing maximal-ratio combining (i.e.
classical receive diversity). The bit-error-rate (BER) perfor-
mance of the proposed scheme was evaluated assuming that
the path from each transmit antenna to each receive antenna
experiences mutually uncorrelated Rayleigh amplitude fading.

Tarokh et al. [2] proposed additional space-time block codes
utilizing three and four transmit antennas. These codes are
based upon complex-valued orthogonal designs [3] and have
the feature that only linear processing is required at the
receiver for decoding. In recently published work Wang et
al. [4] derive the exact pairwise error probability for space-
time coding over quasi-static or fast-fading Rayleigh channels
in the presence of spatial fading correlation. For analytical
tractability, the authors assume the channel matrix can be
decomposed as a product of the square roots of the transmit
and receive correlation matrices, respectively. The effects
of spatial correlation on space-time coding performance are

investigated for several scenarios but it is unclear how the
parameters chosen relate to physical scattering parameters
such as effective scattering radius, etc.

The majority of the research to date on space-time cod-
ing techniques has employed the assumption of uncorrelated
transmission paths without regard for the conditions under
which this assumption is justified. The degree of correlation
between channel transmission paths from a transmit antenna
to a receive antenna depends significantly on the scattering
environment and on the antenna separation at the transmitter
and receiver. For example, if the majority of the channel
scatterers are located in close proximity to the mobile then the
transmission paths will be highly correlated unless the transmit
antennas are sufficiently separated in space. Early research
that characterized the spatial and temporal characteristics of
the mobile radio channel was performed by Jakes [5] and
Clarke [6]. In these works a geometric scattering model was
employed that places scatterers uniformly on a circular ring a
fixed distance from the mobile. More recently, Chen et al. [7]
extended this ’circular ring’ scatterer model to include multiple
antennas at the base station, a single antenna at the mobile and
Doppler effects due to motion of the mobile. Shiu et al. [8]
investigated the effects of fading correlation on the capacity
of multiple-antenna wireless systems by employing the Jakes
model to multiple antennas at the base station as well as the
mobile. However, Doppler effects due to mobile motion were
not considered. Abdi [9] developed at space-time correlation
model for multiple antenna wireless systems by employing the
’circular ring’ scattering geometry but allowing a non-uniform
distribution of scatterers. Specifically, the von Mises density
was used to describe the angle of arrival of the multipath with
respect to the mobile. Doppler effects are included in this
model. Independently, Safar [10] derived a special case of this
model in which the angle of arrival was uniformly distributed.

In the work presented here we develop a general space-
time covariance model based upon scatterer geometry, transmit
and receive antenna geometry and a linear motion model for
the mobile. The model is applicable to arbitrary scatterer
geometry and includes Doppler effects due to mobile motion.
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The model is evaluated for the special case of the ’circular
ring’ scattering geometry due to Jakes and is used to quantify
the performance of space-time coding techniques for wireless
channels that exhibit both temporal and spatial correlation.
The conditions under which the transmission paths can be
considered to be independent are quantified in terms of the
required antenna spacing and scattering radius. Additionally,
the worst-case error performance for several space-time codes
is evaluated in terms of physical parameters such as transmit
and receive antenna spacing, scattering radius and normalized
Doppler frequency.

II. CHANNEL MODEL AND PAIRWISE ERROR

PROBABILITY

Consider a wireless system employing M transmit antennas
and N receive antennas. The signal received at the qth antenna
at time t is

yq(t) =
√

ρ

M

M∑
p=1

hp,q(t)cp(t) + zq(t) (1)

where ρ denotes the signal-to-noise ratio per receive antenna,
hp,q(t) is the complex path gain between the pth transmit
antenna and the qth receive antenna at time t, cp(t) denotes
the space-time code symbol transmitted by the pth antenna at
time slot t and zq(t) is independent complex Gaussian noise
with zero mean and unit variance. Each space-time signal is
described by a T ×M matrix C with the columns correspond-
ing to the space dimension and the rows corresponding to the
time dimension Each entry in the code matrix C consists of
linear combinations of the complex-valued signal constellation
variables x1, x2, . . . , xk. These variables are determined by the
type of modulation employed (e.g. M-QAM, M-PSK, etc.) and
the specific data to be encoded. The space-time code symbol
cp(t) is chosen as the entry in the code matrix corresponding
to the pth column and tth row.

Equation (1) can be re-written in vector form as [12], [15]

Y =
√

ρ

M
DH + Z (2)

where the NT × MNT matrix D is constructed from the
space-time signal matrix C as

D = IN ⊗ diag [D1,D2, · · · ,DM ] (3)

Di = diag (ci(1), ci(2), · · · , ci(T )) , i = 1, 2, · · · ,M. (4)

and ⊗ denoting the tensor matrix product. The MNT × 1
channel vector H is defined by

H =
(
h

′
1,1, · · · ,h

′
M,1, · · · ,h

′
1,N , · · · ,h

′
M,N ,

)′

(5)

hi,j = (hi,j(1), hi,j(2), · · · , hi,j(T ))
′

(6)

The NT × 1 received signal vector Y is defined by

Y = (y1(1), · · · , y1(T ), · · · , yN (1), · · · , yN (T ))
′

(7)

and similarly for the NT × 1 noise vector Z.

The pairwise error probability given the channel vector H
is

Pr
(
C → C̃ | H

)
= Q

(√ ρ

2M

∥∥(D − D̃
)
H
∥∥2
)

(8)

where ‖x‖ denotes the norm of the vector x, i.e. ‖x‖2 = x†x
and Q(x) denotes the Gaussian Q function.

Using the form of the Gaussian Q function due to Craig [13]
and a result from Turin [14],[15] regarding the characteristic
function of a quadratic form of a complex Gaussian vector we
have following expression for the pairwise error probability
between C and C̃ is

Pr
(
C → C̃

)
=

1
π

∫ π
2

0

K∏
i=1

(
1 +

ρ

M

λi

4 sin2 θ

)−1

dθ (9)

with K corresponding to the rank of the matrix(
D − D̃

)
R
(
D − D̃

)†
(10)

{λi}K
i=1 its eigenvalues and R = E

{
HH†}.

Given space-time codes C and C̃ and the channel (space-
time) covariance matrix R the pairwise error probability can
be calculated from (9). In the sequel, the worst-case pairwise
error probability is determined from (9) for all pairs of space-
time signals C and C̃ and employing the union bound. The
next section discusses the development of the space-time
covariance model for the channel.

III. SPACE-TIME COVARIANCE MODEL

In this section we present a space-time covariance model
that is applicable to arbitrary scatterer geometry, multiple
antennas at the base station and the mobile, and includes
Doppler effects due to mobile motion. The resulting model
is then evaluated for the special case of the ’circular ring’
scattering geometry.

The complex path gain between the pth antenna at the
mobile and the rth antenna at the base station is denoted by
hp,r(t). It consists of contributions from K discrete scatterers
with the mth scatterer characterized by its amplitude Am,
phase ψm and spatial location �xm. All scatterers are assumed
to be coplanar with the mobile and base station. The spatial
locations of the array phase centers for the mobile and base
are �xmobile and �xbase, respectively. The spatial location of
the pth antenna at mobile is denoted by �xp

mobile and the
spatial location of the rth antenna at the base station is
denoted by �xr

base. Figure 1 illustrates the geometry for the
scattering model. Assuming a plane wave with frequency fc

is transmitted by the base, the expression for the complex path
gain hp,r(t) is:

hp,r(t) =
K−1∑
m=0

Am exp (jψm) exp [−j2πfcτm(t)] (11)

× exp
[
+j�km

mobile · �xp
mobile + j�km

base · �xr
base

]
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Fig. 1. Scattering Model Geometry

In the previous expression τm(t) denotes the path delay
associated with the mth scatterer and

�km
mobile =

2π
λ

(cos θm, sin θm, 0) (12)

�km
base =

2π
λ

(cosφm, sinφm, 0)

with λ denoting the transmitted wavelength. The angle θm

corresponds to the angle of arrival at the mobile associated
with the signal re-radiated from the mth scatterer. The phases
associated with the mth and nth scatterers, ψm and ψn, are
assumed independent and uniformly distributed on (−π, π)
and independent of all other random quantities. With this
assumption the expression for the correlation between the
transmission paths associated with the signal received at the
pth element of the mobile array and transmitted from the
rth element of the base array and the signal received by the
qth element of the mobile array and transmitted from the sth

element of the base array at time lag ∆t is

E
{
hp,r(t)h∗q,s(t+ ∆t)

}
= (13)

E
{K−1∑

m=0

A2
m exp [j2πfc (−τm(t) + τm(t+ ∆t))]

× exp
[
+j�km

mobile · (�xp
mobile − �xq

mobile)
]

× exp
[
+j�km

base · (�xr
base − �xs

base)
]}

In order to specify the path delay associated with the mth

scatterer, τm(t), some assumptions about the motion of the
mobile must be made. In what follows we employ a linear
approximation for the path delay. Specifically,

τm(t) ≈ τ0
m +

|�v|t
c

cosαm (14)

where τ0
m corresponds to the static (time-invariant) portion

of the path delay and αm is the angle between the mobile
velocity vector �v = |�v| cos (γ) and the line joining the initial
mobile location and the location of the mth scatterer. In this
expression c denotes the speed of light and |�x| denotes the
norm of the vector �x.

Employing the linear approximation for the path delay, we
have the following expression for the space-time correlation
function

E
{
hp,r(t)h∗q,s(t+ ∆t)

}
= exp (−j2πfcT ) (15)

× E
{K−1∑

m=0

A2
m exp

[
j2πfc

( |�v|∆t
c

cosαm

)]

× exp
[
+j�km

mobile · (�xp
mobile − �xq

mobile)
]

× exp
[
+j�km

base · (�xr
base − �xs

base)
]}

Define

�xr
base − �xs

base = drs
base (cos ξrs

base, sin ξ
rs
base, 0) (16)

�xp
mobile − �xq

mobile = dpq
mobile (cos ξpq

mobile, sin ξ
pq
mobile, 0)

The term drs
base corresponds to the distance between the rth

and sth array elements at the base and ξrs
base corresponds to the

angle between the line joining the array elements and the x-
axis. Similarly, dpq

mobile corresponds to the distance between
the pth and qth array elements at the mobile and ξpq

mobile

corresponds to the angle between the line joining the array
elements and the x-axis.

Utilizing (16) and cosαm = − cos (γ − θm), (15) becomes

E
{
hp,r(t)h∗q,s(t+ ∆t)

}
= exp (−j2πfc∆t) (17)

E
{K−1∑

m=0

A2
m exp [−j2πfd∆t cos (θm − γ)]

× exp
[
+j

2π
λ
drs

base cos (φm − ξrs
base)

]

× exp
[
+j

2π
λ
dpq

mobile cos (θm − ξpq
mobile)

]}
where fd = fc

|�v|
c corresponds to the maximum Doppler shift

associated with the mobile. Given the array geometry at the
mobile and the base station, the velocity vector associated
with the mobile, and the joint probability density for Am, φm,
and θm, (17) can be used to compute the desired space-time
correlation.

A special case of the previous result is also of interest.
Consider the case for which most of the scatterers are in
the vicinity of the mobile. From the perspective of the base
station, the angular spread of the multipath is small. Define
d = |�x0

mobile − �xbase| and Rm = |�x0
mobile − �xm|. d is the

distance between the initial mobile location and the base and
Rm corresponds to the scattering radius associated with the
mth scatterer. If d � Rm then the angle φm ≈ Rm

d sin θm

and small angle approximations may be used for sinφm and
cosφm. Due to space restrictions the resulting expression for
the space-time correlation is not presented for this case.

Equation (17) is now evaluated for the case of the ’circular
ring’ scattering model attributed to Jakes [5] and small angular
spread. While there are other scattering models that are based
upon measurements and are more realistic, see [16],[17], for
example, the Jakes model yields a closed-form expression for
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the complex path correlation. For the Jakes model the radius
of each scatterer is fixed, i.e. Rm = R, and the angle of arrival
θm is independent for each scatterer and uniformly distributed
on (−π, π). It is further assumed that the scatterer amplitude
is fixed, i.e. Am = A. With these assumptions, evaluating the
expectation in (17) yields

E
{
hp,r(t)h∗q,s(t+ ∆t)

}
= MA2 exp (−j2πfc∆t) (18)

× exp
[
j2π

(
drs

base

λ
cos ξrs

base

)]

× J0

(
2π

[(
drs

base

λ

R

d
sin ξrs

base +
dpq

mobile

λ
sin ξpq

mobile

− fd∆t sin γ
)2

+
(
dpq

mobile

λ
cos ξpq

mobile − fd∆t cos γ
)2
]1/2)

where J0(·) denotes the zeroth-order Bessel function. This
result is in agreement with that derived earlier in [10] and
[9] for the special case of isotropic scattering.

IV. EXPERIMENTAL RESULTS

In this section we evaluate the worst-case block error
probability using the Jakes ’circular ring’ scattering model for
several space-time codes employing two and four transmit an-
tennas and up to three receive antennas. Linear array geometry
was employed at the base and mobile for all results. Variations
in both spatial and temporal correlation are considered and
the results are compared to the case of an uncorrelated (space
and time) channel. The scattering radius for the Jakes model
was varied from R=10,50,200m and the distance between the
mobile and base (array phase centers) was fixed at d=1000m.
The smallest value for the scattering radius yields the ratio
R/d = 0.01 and corresponds to angular spread due to
multipath of approximately 1◦ from the perspective of the base
station. The mobile location was broadside to the base antenna
array and its velocity was chosen such that the maximum
Doppler frequency was approximately fd=78Hz corresponding
to a carrier frequency of 850MHz and a maximum speed
of 100km/hr. The space-time symbol period Ts was chosen
such that the normalized Doppler frequency was fdTs=0.0033
corresponding to quasi-static fading with a symbol to fading
ratio of approximately 300:1.

The space-time block codes investigated include the orthog-
onal code [1],[2],[3], the orthogonal code with sphere packing
[12], the diagonal algebraic code [18],[19] and the cyclic code
[20].

This section presents results for the quasi-static
(fdTs=0.0033) and uncorrelated wireless channels with
variations in spatial correlation due to transmit antenna
spacing, receive antenna spacing and scattering radius for the
Jakes model. Results for two transmit antennas are presented
first followed by results for four transmit antennas.

A. 2 Transmit Antennas

For 2 transmit antennas the orthogonal code due to Alamouti
[1] was used with a 16-QAM symbol constellation. For the

diagonal algebraic code we also chose 16-QAM symbols and
the unitary rotation matrix was chosen to be

1√
2

(
1 ejπ/4

1 −ejπ/4

)
(19)

For all space-time codes the spectral efficiency was 4 bits/s/Hz.
Figure 2 shows the worst-case block error probability versus

signal to noise ratio and scattering radius for 2 transmit
antennas (λ/2 spacing) and 1 receive antenna. The normalized
Doppler frequency for this case was fdTs=0.0033, represent-
ing quasi-static fading. To achieve a block error probablity
of 10−2 for the uncorrelated channel approximately 26.4dB
signal to noise ratio is required for the diagonal algebraic
code. The orthogonal code and orthogonal code with sphere
packing realize performance improvements of 1.4dB and
1.8dB, respectively, over the diagonal algebraic code for the
uncorrelated channel. For a scattering radius of R=10m, ap-
proximately 38.4dB signal to noise ratio is required to achieve
a block error probability of 10−2 for the diagonal algebraic
code. The orthogonal code and orthogonal code with sphere
packing yield improvements of 0.4dB and 0.6dB, respectively,
for this case. These results highlight the dependence of space-
time coding performance on spatial correlation for the quasi-
static channel. Fractional wavelength antenna spacing at the
transmitter and small scattering radius yield transmission paths
that are highly correlated and result in degraded performance
relative to the uncorrelated channel. Increasing the spacing of
the transmit antennas mitigates this effect to a certain extent.
It was found that an antenna spacing of 30λ is required to
achieve performance within 0.5dB of the uncorrelated channel
for 10−2 block error probability. For a carrier frequency of
850MHz the transmitted wavelength is λ=0.35m.

Figure 3 shows the results for 2 transmit antennas (5λ spac-
ing) and 2 receive antennas (λ/2 spacing) and fdTs=0.0033.
A signal to noise ratio of 17.3dB is required to achieve a block
error probability of 10−2 for the diagonal algebraic code and
an uncorrelated channel. The orthogonal code and orthogonal
code with sphere packing achieve gains of 0.6dB and 1.1dB,
respectively, over the diagonal algebraic code for the uncorre-
lated channel. For the channel with scattering radius R=10m
the required signal to noise ratios to achieve 10−2 block error
probability are 21.2, 21.0 and 20.6dB, respectively, for the
diagonal algebraic code, orthogonal code, and orthogonal code
with sphere packing.

B. 4 Transmit Antennas

For the case of 4 transmit antennas we investigated three
space-time codes having a spectral efficiency of 2 bits/s/Hz.
These codes are: the orthogonal code with sphere packing [12],
the cyclic code [20], and the diagonal algebraic code with
unitary rotation matrix

1
2




1 ejπ/8 ej2π/8 ej3π/8

1 −ejπ/8 ej2π/8 −ej3π/8

1 jejπ/8 −ej2π/8 −jej3π/8

1 −jejπ/8 −ej2π/8 jej3π/8


 (20)
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Fig. 2. Orthogonal code with 16-QAM symbols (solid curve), orthogonal
code with sphere packing (dashed curve), diagonal algebraic code (dotted
curve). Worst-case block error probability versus signal to noise ratio and
scattering radius, 2 transmit antennas (λ/2 spacing), 1 receive antenna, fdTs

= 0.0033.
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Fig. 3. Orthogonal code with 16-QAM symbols (solid curve), orthogonal
code with sphere packing (dashed curve), diagonal algebraic code (dotted
curve). Worst-case block error probability versus signal to noise ratio and
scattering radius, 2 transmit antennas (5λ spacing), 2 receive antennas (λ/2
spacing), fdTs = 0.0033.

and QPSK signal constellation. Figure 4 shows the worst-
case block error probability versus signal to noise ratio and
scattering radius for 4 transmit antennas (λ/2 spacing) and 1
receive antenna. The normalized Doppler frequency for this
case was fdTs=0.0033, representing quasi-static fading. To
achieve a block error probablity of 10−4 for the uncorrelated
channel a signal to noise ratio of approximately 22.6dB is
required for the cyclic code. The diagonal algebraic and
the orthogonal code with sphere packing realize performance
improvements of 2.2dB and 3.0dB, respectively, over the
cyclic code for the uncorrelated channel. For a scattering
radius of R=10m, approximately 42.8dB signal to noise ratio
is required to achieve a block error probability of 10−4 for
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Fig. 4. Orthogonal code with sphere packing (dashed curve), diagonal
algebraic code (dotted curve), cyclic code (dash-dotted curve). Worst-case
block error probability versus signal to noise ratio and scattering radius, 4
transmit antennas (λ/2 spacing), 1 receive antenna, fdTs = 0.0033.

the cyclic code. The diagonal algebraic and the orthogonal
code with sphere packing yield improvements of 0.4dB and
2.0dB, respectively, for this case. Note that the differences in
performance of the various space-time codes diminishes as the
scattering radius becomes small. Also note that roughly 20dB
additional signal to noise ratio is required to maintain a block
error probability of 10−4 for a scattering radius of R=10m
compared with the uncorrelated channel. Figure 5 shows the
worst-case block error probability versus signal to noise ratio
and transmit antenna spacing for scattering radius R=10m and
normalized Doppler frequency fdTs=0.0033. It was found that
a transmit antenna spacing of 40λ was required to achieve
performance within 0.5dB of that for the uncorrelated channel
at a block error probability of 10−4.

Figure 6 shows the results for 2 receive antennas (λ/2 spac-
ing) and 4 transmit antennas (5λ spacing) for fdTs=0.0033
and scattering radius R=10,50,200m and the uncorrelated
channel. For the case of 2 receive antennas the cyclic code
achieves a block error probability of 10−4 at a signal to noise
ratio of 14.4dB for the uncorrelated channel. A performance
improvement of 1.8dB and 2.1dB, respectively, is observed
for the diagonal algebraic code and orthogonal code with
sphere packing for the uncorrelated channel. For the case of 3
receive antennas (not shown) the cyclic code achieves a block
error probability of 10−4 at a signal to noise ratio of 10.9dB
for the uncorrelated channel. A performance improvement of
1.3dB and 1.4dB, respectively, is observed for the diagonal
algebraic code and orthogonal code with sphere packing for
the uncorrelated channel.

V. CONCLUSIONS

We have investigated the robustness of several space-time
codes for wireless channels that exhibit both spatial and
temporal correlation. The best-case wireless channel for all
space-time codes was uncorrelated in space and time.
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Fig. 5. Orthogonal code with sphere packing (dashed curve), diagonal
algebraic code (dotted curve), cyclic code (dash-dotted curve). Worst-case
block error probability versus signal to noise ratio and transmit antenna
spacing, 4 transmit antennas (λ/2 spacing), 1 receive antenna, fdTs = 0.0033,
R=10m.
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Fig. 6. Orthogonal code with sphere packing (dashed curve), diagonal
algebraic code (dotted curve), cyclic code (dash-dotted curve). Worst-case
block error probability versus signal to noise ratio and scattering radius, 4
transmit antennas (5λ spacing), 2 receive antennas (λ/2 spacing), fdTs =
0.0033.

For the quasi-static wireless channel (fdTs = 0.0033), spatial
correlation caused by fractional wavelength spacing at the
transmitter or scatterers located in close proximity to the
mobile, resulted in significant performance degradation. For
example, for the case of 2 transmit antennas there was a 13dB
difference in signal-to-noise ratio required to achieve 10−2

block error probability for the uncorrelated channel compared
to the channel with scattering radius R=10m for λ/2 transmit
antenna spacing. It was found that increasing the spacing of
transmit antennas to 30λ ( 10.5m) yielded performance within
0.5dB of that for the uncorrelated channel for all space-time
codes. For the case of 4 transmit antennas there was a 21dB
difference in signal-to-noise ratio required to achieve 10−4

block error probability for the uncorrelated channel compared
to the channel with scattering radius R=10m for λ/2 transmit
antenna spacing. For this case it was found that increasing
the spacing of transmit antennas to 40λ ( 14.0m) yielded
performance within 0.5dB of that for the uncorrelated channel
for all space-time codes.
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