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Split Recursive Least- Squares: Algorithms, 
Architectures, and Applications 
An-Yeu Wu, Member, IEEE, and K. J. Ray Liu, Senior Member, IEEE 

Abstract- In this paper, a new computationally efficient al. 
gorithm for adaptive filtering is presented. The proposed Split 
Recursive Least-Squares (Split RLS) algorithm can perform the 
approximated RLS with O(N)  complexity for signals having 
no special data structure to be exploited (e.g., the signals in 
multichannel adaptive filtering applications, which are not shifts 
of a single-channel signal data), while avoiding the high compu- 
tational complexity (0( N 2 ) )  required in the conventional RLS 
algorithms. Our performance analysis shows that the estimation 
bias will be small when the input data are less correlated. 
We also show that for highly correlated data, the orthogonal 
preprocessing scheme can be used to improve the performance 
of the Split RLS. Furthermore, the systolic implementation of 
our algorithm based on the QR-decomposition RLS (QRD-IUS) 
array as well as its application to multidimensional adaptive 
filtering is also discussed. The hardware complexity for the 
resulting array is only O ( N )  and the system latency can be 
reduced to O(log, N ) .  The simulation results show that the Split 
RLS outperforms the conventional RLS in the application of 
image restoration. A major advantage of the Split IUS  is its 
superior tracking capability over the conventional RLS under 
nonstationary environments. 

I. INTRODUCTION 
HE FAMILY OF recursive least-squares (RLS) adaptive T algorithms are well known for their superiority to the 

LMS-type algorithms in both convergence rate and misadjust- 
ment [l], [ 2 ] .  In general, the RLS algorithms do not impose 
any restrictions on the input data structure. As a consequence 
of this generality, the computational complexity is O ( N 2 )  
per time iteration, where N is the size of the data matrix. 
This becomes the major drawback for their applications as 
well as for their cost-effective implementation. To alleviate 
the computational burden of the RLS, the family of fast 
RLS algorithms such as fast transversal filters, RLS lattice 
filters, and QR-decomposition based lattice filters (QRD- 
LSL), have been proposed [2]. By exploiting the special 
structure of the input data matrix, they can perform RLS 
estimation with O ( N )  complexity. One major disadvantage 
of the fast RLS algorithms is that they work for data with 
shifting input only (e.g., Toeplitz or Hankel data matrix). In 
many applications like multichannel adaptive array processing 
and image processing, the fast RLS algorithms cannot be 
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applied because no special matrix structure can be exploited. 
In this paper, we propose an approximated RLS algorithm, 
which is called the Split RLS, based on the projection method. 
By applying multiple decompositions of the signal space and 
making suitable approximations, we can perform RLS for 
nonstructured data with O ( N )  complexity. Thus, both the 
complexity problem in the conventional RLS and the data 
constraint in the fast RLS can be :solved. 

The projection method has been used to solve large and 
sparse consistent linear equations ,such as partial differential 
equations (PDE). Given a linear equation Ax = b ,  where 
A E R M x N , b  E R M X 1 ,  there aIe two kinds of projection 
methods to solve it. For consistent systems ( M  = N ) ,  the 
linear equation is decomposed into several smaller linear 
equations by “row-partitioning”. Then 2 can be solved by 
iteration methods such as Kaczmarz projection method and 
Cimmino projection method [3]-[5]. For inconsistent systems 
( M  > N ) ,  A is decomposed into smaller submatrices by 
“column-partitioning”. Then x and the residual can be solved 
by gradient-based iteration method 161. Because the whole data 
matrix is used to compute the gradient, it is nonadaptive in 
nature and the convergence rate dlepends on the property of 
the A matrix. 

In this paper, we will use the concept of column-partitioning 
to solve the nonstructured RLS so that the computational com- 
plexity can be reduced. The signal space A is first partitioned 
into two equal-dimensional signal subspaces. After performing 
RLS on each subspace, we try to find an approximated optimal 
projection vector (of the the whole signal space) from the two 
optimal projection vectors of each signal subspace. Through 
the steps of decomposition and approximation, the complexity 
of the RLS can be reduced by nearly half. If now we repeatedly 
apply the same decomposition arid approximation to each 
signal subspace, the RLS estimation can be solved with O ( N )  
complexity by this “divide-and-conquer’’ approach. We shall 
call such RLS estimation the Split RLS. The systolic imple- 
mentation of the Split RLS based on the QR-decomposition 
RLS (QRD-RLS) systolic array in [7] is also proposed. The 
hardware complexity for the resulting RLS array can be 
reduced to O ( N )  and the system liitency is only O(log, N ) .  

It is noteworthy that since approximation is made while 
performing the Split RLS, our approach is not to obtain exact 
least-squares (LS) solutions. The approximation errors will in- 
troduce misadjustment (bias) to the LS errors. In order to know 
under what circumstances the algorithm will produce small 
and acceptable bias, we also provide some basic analyzes for 
the performance of the Split RLS. ‘The analyzes together with 
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the simulation results indicate that the Split RLS works well 
when applied to broad-band/less-correlated signals. Based on 
this observation, we also propose the orthogonal preprocessing 
scheme to improve the performance of the Split RLS. By using 
the transformed signals, which are less correlated than the 
original ones, as the inputs of the Split RLS, we can lower 
the bias even if the inputs are narrow-bandhighly correlated 
signals. 

In the last part of this paper, we apply the Split RLS to 
the multidimensional adaptive filtering (MDAF) based on the 
architecture in [XI. By incorporating the well-known McClel- 
lan Transformation (MT) with the Split IUS systolic array, 
we can perform two-dimensional (2-D) adaptive filtering with 
only O ( N )  hardware complexity and with unit throughput rate. 
Due to the fast convergence rate of the Split RLS, the Split 
RLS performs even better than the full-size QRD-RLS in the 
application of real-time image restoration. This indicates that 
the Split IUS is preferable under nonstationary environment. 

The rest of this paper is organized as follows. The projection 
method and the Split RLS algorithm are derived in Section 11. 
The systolic implementation of the proposed algorithm based 
on the QRD-RLS array is then described in Section 111. The 
performance analysis and simulation results are discussed 
in Section IV. An improved Split RLS algorithm using the 
orthogonal preprocessing scheme is considered in Section V. 
Finally, the application of the Split RLS in 2-D adaptive fil- 
tering is presented in Section VI followed by the conclusions. 

11. THE PROJECTION METHOD 
> 

Given an observation data matrix A = [a1 , a2, 

RM without any exhibited structure and the desired signal 
vector y E R M x l ,  the LS problem is to find the optimal 
weight coefficients 

which minimize the LS errors 

In general, w is of the form [9] 

w = ( ~ 5 i - l ~ ~ ~ .  (3) 

We also have 

i j = A W = P y ,  C = y - i j  (4) 

where y is the optimal projection of y on the column space 
of A , P  = A(ATA)-lAT is the projection matrix, and E is 
the optimal residual vector. The principle of orthogonality 
ensures that e is orthogonal to the column space of A. 
For RLS algorithms that calculate exact LS solution, such 
a direct projection to the N-dimensional space takes O ( N 2 )  
complexity for each iteration. Knowing this, in order to reduce 
the complexity, we shall try to perform projection onto spaces 
of smaller dimension. 

To motivate the idea, let us consider the LS problem with 
the partition A = [AI ,  A2], where AI,  A2 E R" Now 
instead of projecting y directly onto the space spanned by 
A (denoted as span{A}), we project y onto the two smaller 

4 

Fig. 1. Geometric interpretation of the projection method. 

subspaces, span{Al} and span{&}, and obtain the optimal 
projections y1 and y2 on each subspace (see Fig. 1). The next 
step is to find a "good" estimation of the optimal projection 
$, say ijapprox. If we can estimate a 1- or 2-D subspace from 
y1 and y2 and project the desired signal y directly on it to 
obtain ijapprox, the projection spaces become smaller and the 
computational complexity is reduced as well. There are two 
basic criteria for a good estimation of y. First, it should be 
in the column space of A matrix; i.e., it must be a linear 
combination of the column vectors. Secondly, it should be as 
close to the real projection y as possible so that the estimation 
error can be reduced. In the following section, we propose 
two estimation methods based on their geometric relationship 
in the Hilbert space. 

2.1 Estimation Method I (Split RLS I )  

projections y1 and y2 together, i.e., 
The first approach is simply to add the two subspace 

Bapprox 51 + 5 2 .  ( 5 )  

This provides the most intuitive and simplest way to esti- 
mate yapprox. We will show later that as g1 and y2 are more 
orthogonal to each other, jjapprox will approach to the optimal 
projection vector y. Once ijapprox is formed, we can project 
the desired signal y onto it to obtain the approximated residual 
vector eapprox. The right angle between yapprox and eapprox, as 
shown in Fig. 1, denotes the orthogonal relationship between 
these two vectors. On the other hand, there exists some bias 
Ae = 2approx -e = $-$approx as a result of the approximated 
LS estimation. Since the bias vector Ae is a linear combination 
of j j  and ijapprox, it lies in the signal space span{A} and is 
orthogonal to 8 (hence the right angle between Ae and e). 

Let Fig. 2(a) represent one of the existing RLS algorithms 
that project y onto the N-dimensional space of A and compute 
the optimal projection y (or E ,  depending on the requirements) 
for the current iteration. The complexity is O ( N 2 )  per time 
iteration for the data matrix of size N .  Now using Fig. 2(a) 
as a basic building block, we can construct the block diagram 
for estimation method I as shown in Fig. 2(b). Because the 
whole projection space is first split into two equal but smaller 
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Fig. 2. 
algorithm. (c) The SP-RLS I1 algorithm. (d) The TSP-RLS I1 algorithm. 

Block diagram for (a) a N-input RLS algorithm. (b) The SP-RLS I 

subspaces to perform the RLS estimation, we shall call this 
approach the Split RLS (SP-RLS). It can be easily shown 
that the complexity is reduced by nearly half through such 
a decomposition. 

The RLS algorithm based on estimation method I (SP-US 
I) can be stated as follows, where RLS(A, y, N )  denotes the 
RLS algorithm in Fig. 2(a) and returns $(n) (or G(n)), the last 
element of y (or 2)) for the current iteration. 

Algorithm 1 (SP-RLS I) Given the input data vector 
a(.) = [ u l ( n ) ,  U , ( % ) ,  . . . , a ~ ( n ) ] ~  and the desired signal 
y ( n )  at time n, the SP-RLS I computes the current approxi- 
mated optimal residual Gapprox (n) as follows: 

SP-RLS I 
1 .  Update the data matrix and the desired data vector by 

2. Decompose A(n) into two equal-dimensional data ma- 
trices as A(n) = [A,(n),A2(n)]. Then compute the current 
optimal projection of each subspace by 

Gl(.) = RWA1 (.I, , NP) ,  
G2(n) =RLS(Aa(n),y(n), N / 2 ) .  

3. Update the estimated optimal projection vector 

2.2 Estimation Method II (Split RLS II) 

In estimation method I, we try to project y onto the 
estimated optimal projection vector yapprox. In this ap- 
proach, we will project y directliy onto the 2-D subspace 
A e span(y,,ij,}. As a result, the estimation shall be more 
accurate with slight increase in complexity. 

As with estimation method I, we can construct the block 
diagram for estimation method I1 [see Fig. 2(c)] which is 
similar to Fig. 2(b) except for the post-processing part. The 
projection residual on span{yl, fjz} is computed through a 
2-input RLS block with ijl and $r2 as the inputs. The RLS 
algorithm based on estimation method I1 (SP-RLS 11) is as 
follows: 

Algorithm 2 (SP-RLS 11) Algorithm SP-RLS I1 is similar 
to the SP-RLS I except that step 3 and 4 are modified as: 

3. Construct the n-by-2 matrix A(n) by 

where A ( 0 )  = 0. 

Gapprox (n): 
4. Project the desired signal y(n) onto A(n) to obtain 

&lprox(n) = RLS(4n),y(n), 2 ) .  

2.3 Tree-Split RLS based on Estimation Method I and I1 

In estimation method I and 11, we try to reduce the com- 
plexity by making one approximation at the last stage. Now 
consider the block diagram in Fig. 2(c). If we repeatedly 
expand the two building blocks on the top by applying the 
same decomposition and approximation, we will obtain the 
block diagram in Fig. 2(d). We shall call this new algorithm the 
Tree-Split IUS algorithm (TSP-RILS) due to its resemblance 
to a binary tree. The TSP-RLS algorithm based on Fig. 2(d) 
is shown below. 

Algorithm 3 (TSP-RLS 11) Given the input data vector 
U(.) = [ul(n), u2(n) ,  + .  . , u ~ ( n ] ] ~  and the desired signal 
y ( n )  at time n, the TSP-RLS I1 computes the current approx- 
imated optimal residual\ Gapprox (n  ) as follows: 

TSP-RLS I1 
Initialization: A(l) (0) = 0, for 1 = 0,1, . . . , log, N ,  where 

AQ) denotes the data matrix at the lth stage in the TSP-RLS. 
1. Set 1 = O,qo)(n) = u(n),  aind update y(n) as 

2. Update A([)(%) as 

A I(. - 1) 
= [ ] 

3. If N > 2 ,  compute the approximated RLS for the current 

a) Decompose A(l)(n) into 
stage: 

A ( l ) h )  = [Al,(2)(4, AZ,( l)(4,.  . * > AN/2,(1)(41 

where A,,(l)(n) is a n-by-2 data matrix. 
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b) Compute &(n) via 

&(n) = RLS(A,,(l)(n),y(n),2), forz = 1 , 2 , . . .  ,N/2. 

c) Form the output vector of the current stage as @(,,(n) = 

d) Set the input vector to the next stage as a(l+l)(n) = 

e) Set 1 = 1 + 1,N = N/2. Repeat step 2 4 .  
4. Otherwise (reach the final stage), apply the RLS to 

['h(n),@Z(n),*' .  , 5 N / 2 ( n ) l T .  

Y(1) (n).  

compute &approx(n): 

&approx(nn) = RLS(A(l)(4,Y(n),") 

and exit. 
Likewise, we can derive the TSP-RLS algorithm from 

estimation method I (TSP-RLS I) by using the block diagram 
in Fig. 2(b). Note that the basic structure of the TSP-RLS 
I1 is a regular binary tree with identical RLS computation 
blocks in the nodes and leaves. It can be easily shown that 
the computational complexity of the TSP-RLS algorithm is 
( N  - l)C2, where C2 denotes the computational complexity 
per time iteration for a 2-input RLS block. Hence, we need 
only linear complexity for the computation of the TSP-RLS 
11. This is also true for the TSP-RLS I. 

111. SYSTOLIC IMPLEMENTATION 

In this section, we present the systolic implementation of 
the above algorithms. First of all, we should note that each 
RLS building block in Fig. 2 is independent of choices of 
l U S  algorithms. Because the QRD-RLS array in [7] can 
compute the RLS estimation in a fully pipelined way, it is 
a good candidate for our purpose. However, the original array 
computes only the optimal residual. In order to obtain the two 
optimal subspace projections jjl and Y2,  a delayed version 
of y(n) (the desired signal at time n) should be kept in the 
rightmost column of the QRD-RLS array. Once the residual 
is computed, we can use 

&(n) = Y (.) - &(n) 
Q2(.) = Y(n)  - Z2(n) (6) 

to obtain the two subspace projections. Also, the delayed 
y(n) can be sent to the next stage as input so that no global 
communication is required. Fig. 3 shows the modified QRD- 
RLS systolic array and the detailed operations of its processing 
elements (PE's). In the forthcoming discussions, we shall refer 
to the modified QRD-RLS array and the QRD-RLS array in 
[7] as the projection array and the residual array, respectively. 

Now based on the block diagram in Fig. 2, we can imple- 
ment the Split RLS algorithms in the following way: For those 
RLS blocks which need to compute the optimal projection, 
the projection array is used for their implementations, while 
for those RLS blocks which need to compute the optimal 
residual (usually in the last stage), the residual array is used. 
The resulting systolic implementations of the SP-IUS I,II and 
the TSP-RLS I1 are demonstrated in Fig. 4(a), (b), and (c), 
respectively. 

Lemma 1 The two TSP-RLS systolic arrays (TSP-RLS 1,II) 
consist of O ( N )  angle computers and rotators, and the total 
system delay is O(10g2 N). 

Proofi Suppose an N-input TSP-RLS I1 array requires 
AN angle computers and RN rotators. From Fig. 4(b), we 
have 

AN = 2 A ~ / 2  + 2, 
RN = 2 R ~ / 2  + 3.7. (7) 

By repeatedly expanding AN and RN,  we can deduce that 
AN = 2(N - 1) and R N  = 3(N - 1). Next, let the total 
system delay for an N-input SP-RLS I1 array be TN.  From 
Fig. 4(b), we have 

TN = T N / ~  f 3.  (8) 

Then TN of the TSP-RLS II can be computed as 

TN = ( T ~ / 2 2  + 3 )  + 3 = . . . = 3(1 + 1) = 3 log2 N (9) 

where 1 = log, N -  1 is the depth of the binary tree in Fig. 4(c). 
Likewise, it can be shown that AN = RN = 2N - 1 and 
TN = 2(10g2 N + 1) for the TSP-RLS I array. 

A comparison of hardware cost for the full-size QRD-RLS 
in [7] (denoted as FULL-RLS), SP-RLS, TSP-RLS, and QRD- 
LSL [2, ch. 181, is listed in Table I. As we can see, the 
complexity of the TSP-RLS is comparable with the QRD-LSL 
which requires shift data structure. 

0 

Iv. PERFORMANCE ANALYSIS AND SIMULATION RESULTS 
It is noteworthy that our approach is not an exact LS 

solution since the constructed yapprox is just an approximation 
of the optimal projection vector. This approximation error will 
introduce misadjustment (bias) to the LS estimation. In the 
sequel, we will try to analyze the bias for SP-RLS I and SP- 
RLS I1 by investigating the relationship between the optimal 
projection of the whole space, ij, and the optimal projections 
of the two equal-dimensional subspaces, i j l and Y2. Due to the 
multiple RLS approximations in the TSP-RLS algorithm, it is 
almost impossible to provide an exact close-form solution to 
the final output of the TSP-RLS. Nevertheless, the analysis of 
the SP-RLS algorithms can give us an idea that under what 
conditions will the algorithms produce small and acceptable 
misadjustment. 

4.1 Estimation Error for SP-RLS I 
Consider the LS problem in (2) and decompose the column 

space of A into two equal-dimensional subspaces, i.e., A = 
[AI, Az]. Let wT = [w:, w:], then the optimal projection 
vector ij can be represented as 

(10) 
A A  jj = Aw = y1 + y2 

where yl = Alwl and y2 = Azw2. From the normal equations 

(1 1) ATAW = AT y 

A ~ A ~ W I  + ATAzW2 = Ayy, 

ATA1&1+ AifA2w2 = Aify. (13) 

we have 

(12) 
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PE 

PE 
Operation 

a22 

912 

a13 

Anele ComDuters 

Yout 

If xin = 0 then 

otherwise 
c t l ;  s t o ;  

r' = J- 
c t rfr'; s t xin fr' 
r t r '  

end 
Tout t q i n  

Rotators I 

X in 

1 
xout 

xout t CX;,, - sr 
r i- sxin + er 

Fig. 3 .  Modified QRD-RLS array (Projection array) and its PE operations. 

Let ii,, Y a ,  i = 1,2 ,  be the optimal weight vectors and the 
optimal projection vectors when considering two subspaces 
span(A1) and span(A2) separately. From (10) and ( l l ) ,  they 
are given by 

w, = (ATA,)-lATy, i, = A,i i , ,  i = 1,2 .  (14) 

Premultiplying A1(AYA1)-l on (12) and using (14), we 
have 

Rotators I1 

Xin Yin 

. .  
xout Yout 

xout t cxin - sr 
r t sxin + er 

gout t Yin 

-- 
Modified IMultiplier -- 

Xin Pin 

xout t Yin - F i n  

Yout 4- Yan 

Similarly, from (13) and (14) we can obtain 

A2(ATA2)-1ATA1w1 4- A2612 = A2Wz. (16) 

By the definitions of @l ,&, ,@l ,&,  (15) and (16) can be 

(17) 
(18) 

where Pa, i = 1 , 2  are the projection operators defined in 
Section 11. 

written as 

$1 + ply2  := Y l ,  

P 2 $ 1  + $2 I= y2 
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Fig. 4. Systolic 

Y atin,,. . . . .aN y a,. . . . . . 

Rotator 

1-input 
Residual 

Array 

8 : Modified Multiplier 

: Multiplier in [7] &ppr*x 

(4 

Y 

@ Modified Multiplier 

@ . Mulhplier in [7] 
A 
eapprox 

(b) (C) 

implementation of (a) the SP-RLS I (b) the SP-RLS 11. (c) the TSP-RLS I1 

TABLE I 

QRD-LSL REQUIRES SHIFT DATA STRUCTURE 

Substituting (17)-(19) into (20) yields 
COMPARISON OF HARDWARE COST FOR THE FULL-RLS, SP-RLS, 

TSP-RLS, AND QRD-LSL, WHERE THE 

IIAelI12 = IIY - Y1 - Y2112 = lI~1Y2 + PzY1112. (21) 

In order to lower the bias value, PlYZ and P2yl  should be as 
small as possible. Note that 

PIG2 = A1 (ATA1)-1ATA2W2 = Al@r:@l2W2 (22) 

In SP-RLS I, we estimate the optimal projection by 

Yappox = Y1 + Y 2 >  (19) where @%.,, = ATA, is the deterministic correlation matrix. 
When the column vectors of A1 and A2 are more orthogonal 
to each other, p612 and @21 will approach to zero and the bias 

and the estimation error (bias) is given by 

llAelI12 = Ileapprox - ell2 = Ili - $ a p p r o x l 1 2 .  (20) is reduced accordingly. 
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4.2 Estimation Error for  SP-RLS II TABLE I1 
LIST OF THE AR(4) MODELS USED IN EXPERIMENT 

1 (WITH POLES AT p1 ef?d1 AND pzef-14~) Consider the block diagram of the SP-IUS I1 in Fig. 2(c). 

W 4 )  P1 
The optimal projection of y onto the space span {ijl, 5,) can 
be written as 

I 0.5 - 0.95 

where k = [,k1, ,&,IT is the optimal weight vector. From the 
normal equations, we have 

Using the facts that 

we can simplify (25) as follows: 

Then the optimal weight vector can be solved as 

where 
-1 

a = (1 - --) 0 2  Y% 
llY11I2 llV21I2 

Note that yTy2 = I lyl I I 1 1jj2 I I cos 8, where 8 denotes the angle 
between g1 and y2. Hence, we can rewrite a as 

(30) a = (1 - cos2 8) -1 = csc2 8. 

From Fig. 1, we have 
2 2 

IIeapproxII = I I Y I I  - I I ~ a p p r o x I I ~  
- 2 T  
- I I Y I I  - Y yapprox 

= llY1I2 - ~111~1112 - ~ 2 l 1 ~ 2 l l 2 .  (31) 

The use of (28) into (31) yields 
2 

(Ieapproxll = JIY - csc2 qyT& + Y%) 
= llY1I2 - csc2 W ( Y  - 5 2 )  + 5% - Y1)I 
= llYIl2 - csc2 811@1 - 52112. (32) 

Thus, the bias of SP-IUS I1 is given by 

((Ae2(I2 = ((eapprox(12 - 

= llY1I2 - csc2 ellvl - $21l2 - (llY112 - 11Y1I2) 

= llj)12 - csc2 ellyl - y2112. (33) 

For any given 8 ,  it can be shown that (see Appendix) IlAe21I2 
is bounded by 

IlAe21I2 L llAe1Il2. (34) 

This implies that the performance of SP-IUS I1 is better 
than that of SP-RLS I in terms of estimation error. 

4.3 Bandwidth, Eigenvalue Spread, and Bias 

From (21) and (33) we know that the orthogonality between 
the two subspaces span {AI} and span {Az}  will significantly 
affect the bias value; i.e., signals with different degrees of 
orthogonality will have different bias values for the Split RLS 
algorithm. However, in practice, the evaluation of degree of 
orthogonality for multidimensional spaces is nontrivial and 
computationally intensive (e.g., CS-decomposition [ 10, pp. 
75-78]). Without loss of generality, we will only focus our 
discussion on single-channel case, where the data matrix A 
consists of only shifted data and the degree of orthogonality 
can be easily measured. In such a case, the degree of orthogo- 
nality can be measured through two indices: the bandwidth and 
the eigenvalue spread of the data. If the signal is less correlated 
(orthogonal), the autocorrelation fuinction has smaller duration 
and thus larger bandwidth. Noise processes are examples. 
On the other hand, narrow-band processes such as sinusoidal 
signals are highly correlated. If the data matrix is completely 
orthogonal, all the eigenvalues are the same and the condition 
number is one. This implies that if the data matrix is more 
orthogonal, it will have less eigenvalue spread. It is clear from 
our previous discussion that the SF'-IUS will render less bias 
for the broad-band signals than for the narrow-band signals. 

As to the TSP-IUS, note that the output optimal projection 
is a linear combination of the input column vectors. If the 
inputs to one stage of the TSP-RLS array are less correlated, 
the outputs of this stage will still be less correlated. As an 
example, suppose now the inputs of the TSP-RLS I1 array are 
completely orthogonal, we have 

5% W 2 z - 1 ~ 2 z - 1  + W 2 z ~ 2 z ,  for i = 1 , 2 , .  . . , N / 2  (35) 

where w 2 z - l  and WzZ are the optimal weight coefficients in 
each subarray. It can be easily seen that yTy, = 0, for i # j .  
The orthogonality of the original inputs is still preserved at 
the next stage. Therefore, the signad property at the first stage 
such as bandwidth plays an important role in the overall 
performance of the TSP-IUS. 

It should be noted that since each IUS block in the SP-IUS 
and TSP-IUS performs RLS filtering, the outputs of the Split 
RLS algorithms are still LS-type minimization (in the extreme 
case, the Split RLS is equivalent to the conventional RLS when 
all data column vectors are orthogonal to each other). Besides, 
the data dimension of each IUS block in the Split IUS is much 
smaller than that of the conventional IUS in which the desire 
signal is projected onto the whole data matrix. Therefore, the 
Split RLS should converge at least as fast as the conventional 
RLS. The only difference is the bias value, which is caused by 
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Fig. 5. Simulation results of Ar(4).1, 11, 111, IV, where the square root of the spectral dynamic range D is also plotted for companson 

the approximation steps in the Split RLS, after the algorithm 
converges. In what follows, the aforementioned observations 
will be verified by extensive computer simulations. 

4.4 Simulation Results 
In the following simulations, we will use the autoregressive 

(AR) process of order p (AR(p)) to generate the simulation 
data 

P 

u(n) = w,u(n - i) + v ( n )  (36) 
t=1 

where w(n) is a zero-mean white Gaussian noise with power 
equal to 0.1. Besides, the pole locations of the AR processes 
are used to control the bandwidth property: As the poles 
are approaching the unit circle, we will have narrow-band 
signals; otherwise, we will obtain broad-band signals. All the 
simulation results are based on the average of 100 independent 
trials. 

In the first experiment, we try to perform fourth-order linear 
prediction (LP) with the AR(4) processes using the SP-RLS 
and TSP-RLS systolic arrays described in Section 111. In this 
case, the SP-RLS I1 is equivalent to the TSP-RLS I1 because 
they have identical implementations. Table I1 shows the AR(4) 

TABLE I11 
LIST OF THE AR(8) MODELS USED IN EXPERIMENT 2 

models used in this experiment. In model I and 11, the two 
poles are at the same radii varied from 0.5 io 0.95. In model 
I11 and IV, one pole is fixed and the other is variable. For each 
model, the LP problem is repeated for ten times by varying 
the poles location from 0.5 to 0.95 with 0.05 increment. The 
simulation results are shown in Fig. 5, in which the x-axis 
represents the location of the variable poles in model I-IV, 
and g-axis represents the average output noise power after 
convergence. Ideally the output should be the noise process 
v ( n )  with power equal to 0.1. As we can see, when the 
bandwidth of input signal becomes wider, the bias is reduced. 
This agrees perfectly with what we expected. 

Beside the bias values, we also plot the square root of the 
spectral dynamic range D (ihe ratio of the maximum to the 
minimum amplitude on the AR power spectrum) associated 
with each AR model. It is known that the eigenvalue spread 
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Fig. 6. Simulation results of AR(Q.1, 11, 111, IV, where the square root of the spectral dynamic range (D) is also plotted for comparison. 

of the data signal is bounded by the spectral dynamic range 
E1 11 

where U ( e J w )  is the spectrum of U(.). From the simulation 
results, we see the consistency between the bias value and the 
spectral dynamic range. This indicates that the performance 
of the Split RLS algorithms is also affected by the eigenvalue 
spread of the input signal. This phenomenon is similar to what 
we have seen in the LMS-type algorithms. 

In the second experiment, we extend the previous exper- 
iment to perform eighth-order LP for four AR(8) processes. 
The setting for the poles is listed in Table 111. The simulation 
results, shown in Fig. 6, again validate the bandwidth-bias 
relationship. Beside the bias effect, two observations can be 
made from these two experimental results: 

1) The SP-RLS performs better than the TSP-RLS. This is 
pretty much due to the number of approximation stages 
in each algorithm. 

2) The overall performance of SP-IUS I1 is better than that 
of SP-RLS I. This agrees with our analysis in (34). 

Next we want to examine the convergence rate of our 
algorithm. An AR(7) model is used to generate data and 

the sum of the current inputs is used as the desired signal. 
The output should be zero after it converges. Fig. 7 shows 
the convergence curve for the 8-input FULL-RLS and the 
TSP-IUS I1 after applying the same initial perturbation. It is 
interesting to note that although the TSP-RLS I1 has some 
bias after it converges, its convergence rate is faster than 
that of the FULL-IUS. This is due to the fact that the 
O(log, N )  system latency of the TSP-RLS is less than the 
O ( N )  latency of the FULL-RLS. Also, to initialize an 8-input 
full-size array takes more time than to initialize the three small 
cascaded 2-input arrays. The property of faster convergence 
rate is especially preferred for the tracking of parameters in 
nonstationary environments. In Section VI we will provide an 
image restoration simulation to veiify this observation. 

v. PROJECTION METHOD WITH ORTHOGONAL hEPROCESSING 

In the previous sections, we have seen that the Split RLS 
performs very well when the input signal is less correlated 
(or broad-band). However, in many applications, processing of 
highly correlated (or narrow-band) :signals is inevitable. We are 
thus motivated to investigate a way to improve the Split RLS 
algorithm when dealing with highly correlated signals. From 
the analyzes in Section IV, we know that the estimated optimal 
projection will approach to the real optimal projection when all 
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Fig. 7. Learning curve of the FULL-RLS and TSP-RLS I1 after applying 
the same initial perturbation 

subspaces are more orthogonal to each other. Therefore, if we 
can preprocess the data matrix such that the column spaces be- 
come more orthogonal (less correlated) to each other, a better 
performance is expected. Such a concept has been employed in 
the "Transform domain LMS algorithm" (TDLMS) [ 121-[ 141, 
as well as in the row-partitioning projection methods [3] ,  [4]. 
It is clear that Gram-Schmidt orthogonalization will render 
an excellent performance. However, the O ( N 2 )  complexity 
prevents us from considering it. 

5.1 Transform-Domain LS Problem 

A is first transformed into another data matrix 2 
In transform-domain signa! processing, the input data matrix 

Z = A T  (38) 

where T is an unitary transformation matrix of rank N .  The 
transform-domain LS problem is to find the optimal weight 
vector k = [ k l ,  k z ,  . . . .  k ~ ] ~  which minimizes the LS error 
llZk - y/1I2 in the transform domain. Because 2 and A span 
the same signal space, the LS error will be the same as in 
(2). The transformation process can be viewed as a set of 
filter banks with equally spaced mainlobes [14]. Each column 
vector of 2 corresponds to the output signal of a given filter 
in the filter banks. Therefore, the column vectors of 2 will 
be less correlated than those of A. This helps us to obtain a 
better Gapprox according to our observations in (21) and (33). 

The operation for the Split €US with orthogonal preprocess- 
ing is as follows: We first perform the orthogonal transform 
on the current data vector, then the transformed data are 
used as the inputs of the Split RLS. In our approach, the 
Discrete Cosine Transform (DCT) is used as the preprocessing 
kernel. As to the hardware implementation, we can employ the 
time-recursive DCT lattice structure in [ 151 to continuously 
generate the transformed data. Fig. 8 shows the SP-RLS I array 
with DCT preprocessing. The transform-domain data are first 
generated through the DCT lattice structure, then are sent to 
the SP-RLS I array to perform the RLS filtering. The TSP- 
FUS array with the preprocessing scheme can be constructed 
in a similar way. Since both the DCT lattice structure and the 

a, . . . . . .  %n %+,. ... .aN 

. . . .  . . .  2,. .i& y zN)2+1.. ZN Y . . . . . . .  . . . . . . .  

@ : Modified Multiplier 

0 : ~ u ~ t i p l i ~  in 171 4lpprox 

Fig. 8. SP-RLS I array with orthogonal preprocessing. 

6 K  4 I 

2 I 
I 

I 

TSP-RLS array require O( N )  hardware complexity, the total 
cost for the whole system is still O(N). 

In addition to the two aforementioned transforms, for the 
purpose of further decorrelation, we also propose a new 
preprocessing scheme called the Swapped DCT (SWAP-DCT) 

domain data. In the DCT preprocessing given in Fig. 8, the 
input data is partitioned as 

based on the DCT. Suppose 2 = [zl, z2, . . . .  ZN] is the DCT- 

A1 = [Zl, x2,. . I > "21, 

A2 = [zN/2+1 3 z N / 2 + 2 ,  (39) 

To make the input data more uncorrelated, we permute the 
transformed data column as 

A1 = [Zl,z3, ' '  ' ,ZZlc-l, ' '  ' , X N - l ]  

(40) 

in the SWAP-DCT preprocessing scheme. Fig. 9 shows the 
spectrum of the normal DCT partitioning and the SWAP- 
DCT partitioning. Recall that the eigenvalue spread will affect 
the bias value, and the eigenvalue spread is bounded by the 
spectral dynamic range. It is obvious that the SWAP-DCT 
preprocessing scheme will have better performance due to the 
smaller eigenvalue spread in both AI and A2. 
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Fig. 10. Simulation result of AR(4).1, 11, 111, IV with preprocessing schemes. 
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5.2 Simulation of the TSP-RLS with Orthogonal Preprocessing 

To validate our arguments for the orthogonal preprocessing, 
we will repeat the two experiments in Section IV-4 for the 
TSP-RLS I1 with the preprocessing schemes (DCT and SWAP- 
DCT). The simulation results are given in Figs. 10 and 11. In 
general, the TSP-RLS with DCT preprocessing gives fairly 
significant improvement in the bias value over the TSP-RLS 
without any preprocessing (Normal TSP-RLS). Nevertheless, 
some exceptions can be found in AR(4).III and AR(8).III. It 
is as expected that the SWAP-DCT performs better than the 
DCT in most cases. This supports our assertion for the effect 
of the SWAP-DCT. 

VI. APPLICATION TO MULTIDIMENSIONAL 
ADAPTIVE FILTERING 

In this section, we apply the Split RLS to the multidi- 
mensional adaptive filtering (MDAF) based on the MDAF 
architecture in [8]. In [8], the McClellan Transformation (MT) 
1161 was employed to reduce the total parameters in the 2- 
D filter design, and the QRD-RLS array in [17] was used as 
the processing kernel to update the weight coefficients. In our 
approach, we replace the QRD-RLS array with the TSP-RLS 
array. This results in a more cost-effective MDAF architecture. 
The simulation results also indicate that the fast convergence 

rate of the TSP-RLS helps to improve the performance of the 
MDAF in the application of image restoration. 

6.1 2-0 Adaptive Filtering using McClellan Transformation 

N ,  the frequency response can be written as 
Given a 1-D zero-phase FIR filter with support - N  5 i 5 

N N 
H ( w )  = h, COS ( i w )  == h,T,[cosw] (41) 

where Tz[.] denotes the Chebyshev polynomial of degree i .  
Using the transformation of variables [16] 

z=o r=O 

F(w1,wz)  + ICOSW, (42) 

we obtain the MT 2-D frequency response 
N 

H(w1,wa) = h Z [ F ( w 1 , w z ) l .  (43) 
z=o 

The MT is a near-optimal design method for 2-D filters [18, 
Chap. 41. It decomposes the design problem into the design 
of the 1-D prototype FIR filter, h,,  i = 0,1, .  . . , N ,  and the 
2-D transformation function, F ( w l ,  w ~ ) .  The former defines 
the frequency response along the :!-D frequency plane, while 
the latter, which is usually a mal l  fixed 2-D zero-phase 



656 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-11: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 43, NO. 9, SEPTEMBER 1996 

AR(8).1 AR(8).111 

0 17 

0 16 

0 15 

5 014 

013 

D---o Normal TSP-RLS II 
Q-+ With DCT 
M Wth SWAP-DCT 

Q--E Normal TSP-RLS II 
Q-4Wl th  DCT 
M W i I h  SWAP-DCT 

if 

2 012 
4 011 

0 10 

0 09 

008 

0 07 
0 60 0 70 080 090 100 050 

Pole Locations Pole Locations 

AR(8).11 AR(8).1V 
0.251 , , I , I , I , I 0.15' ' ' ' ' ' ' ' ' 

0.23 - 

0.21 - 

0.19 - 

8 0.17 
m .g 0.15 - 
z .  
2 0.13 - 

0.11 - 
d 

0 14 

0 13 - Wlth DCT 
-With SWAP-DCT 

8 
p 012 2 
z" 2 011 

a I 
0 10 

0 09 

008 

Pole Localions 

Fig. 11. Simulation result of AR(8).I, 11, 111, IV with preprocessing schemes. 

FIR filter, maps the 1-D frequencies into contours in the 2- 
D frequency plane. Fig. 12 shows the block diagram which 
performs 2-D filtering based on the MT and the Chebyshev 
recursion [19][8]. Each PE is a linear systolic array realizing 
the 2-D transformation function in (42) with xt(n1,n2),i = 
0, I , . . .  , N ,  as the PE output. y(nl,n2) is the desired 2-D 
signal, and h = [ho, h l ,  . . . , h ~ ] *  is the tap coefficient vector 
of the I-D prototype filter. In [ X I ,  h is updated by considering 
Fig. 12 as a multichannel LS problem, i.e., h is obtained by 
minimizing the LS error 

lle(n1,nz)1l2 = Il!/(n1,nz) - i I ( n 1 , n 2 ) / l 2  

M FULL-FILS 
o--O Normal TSP-RLS II 

8---cl Wfih SWAP-DCT 
1 P 

I 0.60 0.70 0.80 0.90 1 .oo 
Pole Locations 

Fig. 12. Block diagram of the McClellan Transformation 

for each incoming data. For the systolic implementation, h is 
solved through the QRD-IUS array in [17] with z , (nl ,  nz)'s 
and y(n1,nz) as the array inputs. However, the opposite 
data wavefront in the QRD-RLS array as well as the O ( N 2 )  
hardware complexity makes the system inappropriate for cost- 
effective pipelined processing. 

In some applications, such as image restoration and image 
registration, the estimation error e(nl ,n2)  is the only param- 
eter of interest. In such a case, we can modify the MDAF 
structure in [XI  by replacing the QRD-RLS array with the 

FULL-US array since the latter produces the LS error in 
a fully pipelined way. To further reduce the hardware com- 
plexity, we can employ the TSP-RLS array as the processing 
kernel. As a result, we can perform 2-D adaptive filtering with 
O ( N )  hardware complexity and with unit throughput rate. 

6.2 Simulation with TDALE 
The performance of the proposed MDAF architecture is 

examined by applying it to a two-dimensional adaptive line 
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Fig. 13. Block diagram of the TDALE. 

10.0 3.0 0.0 
12.0 8.0 6.0 
10.5 9.0 7.6 
10.9 9.8 8.7 

(c) ( 4  

Fig. 14. (a) Original LENA image. (b) Noisy input image with SNR = 3.7 
dB (noise variance = 1000). (c) Output of TDALE with full-size QRD-RLS 
array (SNR = 9.2 dB). (d) Output of TDALE with TSP-RLS array (SNR 
= 10.0 dB). 

enhancer (TDALE) [20], [21] for image restoration. The block 
diagram is depicted in Fig. 13. The primary input is the well- 
known “LENA” image degraded by a white Gaussian noise. 
A 2-D unit delay z ~ l z ~ l  is used as a decorrelation operator 
to obtain the reference image. The image signal is fed into the 
system in the raster scanned format-from left to right, top 
to bottom. After the input image goes through the TSP-IUS 
array, the generated estimation error is subtracted from the 
reference signal to get the filtered image. For comparison, we 
also repeat this experiment using the FULL-RLS array. 

The simulation results are shown in Table IV and in Fig. 14. 
We can see that the performance of the TSP-RLS is better than 
the 2-D joint process lattice structure in E211 when the signal- 
to-noise ratio (SNR) is low. It is also interesting to note that 
the TSP-FUS outperforms the FULL-IUS. As we discussed 
in Section IV-.4, although the TSP-IUS has misadjustment 
after convergence, it converges faster than the FULL-IUS. 
This fast-tracking property is preferable under nonstationary 
environments where convergence is very unlikely. Please 
note that this is an example to demonstrate the fast-tracking 
property of the TSP-RLS. For restoration of highly correlated 
images, the scheme in E221 can provide better performance. 

VII. CONCLUSION 
In this paper, we introduced a new O ( N )  fast algorithm 

and architecture for the RLS estimation of nonstructured data. 
Compared with the conventional IUS, this new approach is 
sub-optimal in the sense that it introduces extra bias to the LS 
estimations. Nevertheless, we have shown that the bandwidth 
and/or the eigenvalue spread of the input signal can be used 
as a good performance index for these algorithms. Therefore, 

the users will have small bias when dealing with broad- 
band/less-correlated signals. For narrow-band signals, we can 
also employ the orthogonal preprocessing to improve its 
performance. If the data are highly correlated, the eigenspace 
approach in [22] can reduce the complexity from O ( N 2 )  to 
O ( N r ) ,  where T is the numerical rank of the data matrix. 
Indeed, it is the “dual” idea to the problem considered in this 
paper. 

The low complexity as well as the fast convergence rate of 
the proposed algorithm makes it suitable for IUS estimation 
under the nonstationary or fast-changing environments where 
the data matrix has no structure. For example, one possible 
application of the Split RLS is in the Sidelobe Canceller (SLC) 
since the inputs of the auxiliary arrays are mainly noises that 
are broad-band signals in nature. The fast tracking capability 
of the Split RLS algorithm, as demonstrated in the image 
restoration simulations, provides a very promising potential 
for parameter tracking under nonsta tionary environments. Fur- 
thermore, the systolic architecture of the Split IUS is fully 
parallel and pipelined and thus provides a high-throughput 
implementation for real-time applications. 

APPENDIX 
In this Appendix, we will show that the bias of SP-IUS I1 

is bounded by that of SP-IUS I. From (21) and (33), we have 

IIAe1112 = I l i  - 51 - 52112, 

1 l ~ e 2 1 1 ~  - csc2t) l l j j1  - j j 2 1 I 2 .  (45) 

Note that csc2 0 2 1 for any 8. Thus, 

IlAe11I2 - IlAe21I2 
2 I l i  - 51 - 52112 - I l i1 l2  + 1151 - 52112 

= 2[(1151112 + llY21I2) - YYYl +Y2)1. (46) 
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From (17) and (18), we have 

llY11I2 = llY11I2 + 2YTY2 + Y W l Y 2 ) >  

11Y21I2 = l l i 2 l l 2  + 2BTf2 + Y T ( P 2 $ 1 )  

Y T ( P l Y 2 )  = B W 2 Y l )  = $ 3 2  

11Y11I2 + II521l2 = 1191l2 + 2 Y 3 2  + Y P l Y 2 )  +YT(P2Y1) .  

(47) 
(48) 

where the fact that 

(49) 

is used. Combining (47) and (48) yields 

(50) 

On the other hand, 

Y Y Y l  + Y2) =Y’KY1 + ply,) + ($2 + P 2 Y l ) I  

= lli112 + CT(Pli2) + BT(P2Y1) .  (51) 

Substituting (50) and (51) into (46) and applying the fact in 
(49), we have 

IIAe1112 - IIAe2112 

2 2 [ 2 5 3 ,  - *T(PlY,) - B;(P251)1 = 0 (52) 

which leads to I lAe2112 5 IIAe,112. 0 
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