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ABSTRACT

DCE-MRI is a noninvasive functional imaging technique capable
of assessing tumor microvasculature clinically. Major limitations
associated with conventional region-of-interest (ROI) based com-
partmental methods include the requirement of invasive acquisi-
tion of the input function and labor-intensive identification of the
ROIs. We propose a novel blind system identification approach for
quantitative imaging by simultaneously estimating the input func-
tion and the kinetic parameters. New statistical model is on the
pixel domain, whose parameters are initialized using a sub-space
based algorithm, and further refined by an iterative maximum like-
lihood estimation procedure. The performances of the proposed
scheme is examined extensively via simulations. The real breast
tumor DCE-MRI data are examined by determining the time ac-
tivity curves and the underlying factor images.

1. INTRODUCTION

Dynamic contrast enhanced magnetic resonance imaging (DCE-
MRI) is a noninvasive functional imaging technique, utilizing var-
ious molecular weight contrast agents to access tumor microvas-
cular characteristics which provide information about tumor mi-
crovessel structures and functions [1].

The region of interest (ROI) based compartmental model anal-
ysis is usually used for quantitative dynamic imaging [2]. In such a
conventional modelling, the measured concentration of the tracer
over time of the tissue within ROI i, referred to as tissue time-
activity curve (TAC), is often modelled as the convolution of the
regional tissue response h(i)(t) with the tracer concentration in
plasma (i.e. the input function) plus the noise, where the tissue im-
pulse response is fully characterized by some kinetic parameters.

For instance, as in [2], h(i)(t) = k
(i)
I e−k

(i)
O

t, in which the kinetic
parameters kI and kO represent the washin rate constant and the
washout rate constant, respectively. For a single ROI, estimation
of the kinetic parameters requires the input function, usually ob-
tained by taking blood samples invasively at the radial artery or
from an arterialized vein, which, however, poses health risks and
is not compatible with the clinical practice [3]. Therefore, it is
of great interest to estimate both the kinetic parameters and input
function simultaneously. Only a few works for this purpose have
been reported in literature [4]-[7].

However, the ROI-based compartment analysis still suffers from
several problems. Briefly speaking, the problem of identifying
different ROIs itself remains an essential challenge, and most of-
ten we are interested in the underlying heterogeneity characteriza-
tion. Also, since tumor vascularity may be heterogeneous even at

the microscopic level, some degree of intro-voxel heterogeneity is
likely [8]. Moreover, clinical observations suggest that multiple
biomarkers (e.g. tissue components with different kinetics) affect
the tissue impulse response simultaneously. We therefore propose
to work on the pixel domain directly while keep the base of com-
partment modeling. We plan to construct a hybrid approach for
estimating the input function and the spatial/temporal patterns of
multiple biomarkers simultaneously.

2. SYSTEM MODEL AND FORMULATION

In this paper, without loss of generality, we consider two biomark-
ers, and focus on the two-compartment model due to its popularity
in practical use. However, the schemes developed here can be gen-
eralized to cover a more case consisting of multiple biomarkers.
Using the two-compartment model [9], we have

cf (t) = k1faf (t), with af (t) = cp(t) ⊗ e−k2f t, (1)

cs(t) = k1sas(t), with as(t) = cp(t) ⊗ e−k2st,

where ⊗ denotes the convolution operation, t ≥ 0, k2f > k2s >
0, cf (t) and cs(t) are the tissue activities in the fast turnover and
slow turnover pools, respectively, at time t; cp(t) is the input func-
tion; k1f and k1s are the unidirectional transport constants from
plasma to tissues in the fast-flow and slow-flow pools, respec-
tively; k2f and k2s are similarly defined. For pixels i = 1, ..., N
within a region, we describe the measured pixel TAC cm(i, t) as

cm(i, t) = k1f (i)af (t)+k1s(i)as(t)+vp(i)cp(t)+ε(i, t), (2)

with k1f (i) and k1s(i) being the local permeability parameters
associated with pixel i; vp(i) means the plasma volume in pixel
i; and the noise term ε(i, t). Let t = {t1, t2, ..., tn} indicate the
uniform sampling times of the measurements. Let cm(i), af , as,
cp, and ε(i) be the corresponding discrete versions sampled at t.
Based on the discrete model, we have

af
�
= H(k2f )cp; as

�
= H(k2s)cp, (3)

where the convolution matrix H(k2f ) is Toeplitz determined by
e−k2f t. For each pixel i, we have the discrete model

cm(i) = As(i) + ε(i), (4)

with A = [af ,as, cp], and s(i) = [k1f (i), k1s(i), vp(i)]T .
In our problem, the input cp(t) also needs to be estimated

based on the measurements cm(i, t)’s. Here we consider a para-
metric model of the input function proposed in [10]. To remove
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the redundant parameters, we set a1 = 1, and we have the discrete
model

cp =

(
t1eλ1t1 eλ1t1 eλ2t1 eλ3t1

t2eλ1t2 eλ1t2 eλ2t2 eλ3t2

.

.

.

.

.

.

.

.

.

.

.

.

)(
1

−a2 − a3
a2
a3

)
�
= B(λ)b

(5)
in which λ1 < λ2 < λ3 < 0, the vector λ = {λ1, λ2, λ3}, where
λj’s (in min−1) and aj’s (in µCi/ml/min) are the model param-
eters representing the eigenvalues and the coefficients. Now we
note that the signal-matrix A is fully characterized by parameters
k2f , k2s,λj’s, and aj’s, since

A = [H(k2f )B(λ)b,H(k2s)B(λ)b,B(λ)b].

We now study the likelihood function of the pixel TAC mea-
surements and formulate the corresponding high-dimensional opti-
mization problem. Assume that the noise ε(i, t) is both temporally
and spatially white Gaussian distributed, with zero mean and un-
known variance σ2. Therefore, the complete parameter set is de-
scribed as θ = {k2f , k2s, cp, s(1), ..., s(N), σ2} in our problem.
Write the whole observations as X = [cm(1), cm(2), ..., cm(N)],
and we can compute the overall likelihood function of X, f(X; θ).
With A is fixed, the ML estimate of s(i) and σ2 can be derived.
Substituting the ML estimates of σ2 and s(i)’s into the overall
likelihood, we can show that the ML estimates of θs, where θs =
{k2f , k2s, λ1, λ2, λ3, a2, a3}, are obtained by solving

θ̂s = arg min
θs

Tr{(I − A(AT A)−1AT )R̂} �
= arg min

θs

L(θs),

(6)
with the constraints: k2f > k2s > 0 and λ1 < λ2 < λ3 < 0,
where Tr means the trace operation, R̂ is the sample covariance
matrix expressed as R̂ = 1

N

∑N

i=1
cm(i)cm(i)T . Therefore, our

estimation problem is modelled as a high-dimensional optimiza-
tion problem. Different numerical algorithms can be applied to
obtain the ML estimate by solving the above seven-dimensional
optimization problem. In this paper, we employ RFSQP (Reduced
Feasible Quadratic Programming) algorithm to solve the above
constrained nonlinear optimization problem 1, and use the results
for comparison.

Based on the estimate of θs, we can reconstruct the curves
af (t), as(t) and cp(t), and it is straightforward to estimate s(i)’s,
which represent the factor images revealing the tissue spatial het-
erogeneity. The high-dimensional numerical approach requires
heavy computational cost, and convergence will not always achieve.
Therefore, it is of great interest to find an efficient scheme.

3. PROPOSED SCHEME

We propose a scheme consisting of three stages. First, we de-
velop a subspace based algorithm to obtain the initial estimates of
the parameters. Secondly, the iterative ML technique is applied
to improve the estimation accuracy, where each iteration includes
five sub-steps by performing minimization with respect to differ-
ent sub-sets of parameters. Thirdly, any prior information (belief)
will be further evaluated to adjust the estimations.

Sub-space Based Algorithm
Define f0(α) be the values of eαt sampled at the uniform sampling

1For Academic Institutions, the free source code of RFSQP is available
from the website http://www.aemdesign.com/.

time vector t, similarly define f1(α) as sampled teαt. According
to the model in (2), our analysis on Laplace-transform shows that
the signal sub-space S is characterized by exponential decaying
signals and the first order derivation of an exponential decaying
signal with parameter λ1, meaning that we have

cm(i) = [f0(−k2f ), f0(−k2s), f0(λ1), f1(λ1), f0(λ2), f0(λ3)]c(i)

+ ε(i) = Sc(i) + ε(i), (7)

where the coefficient vector c(i) indicates the weight of each sig-
nal component at pixel i. Now we observe the covariance matrix:

R̂ = SDST + σ2In = QsΛsQ
T
s + σ2QwQT

w , (8)

with D = E{c(i)c(i)T }, where Qs and Qw consist of signal
and noise eigenvectors, respectively, and the diagonal matrix Λs.
In our problem, since the signal components represented in S are
coherent as a result of the convolution data model in (2), there is a
rank deficiency in matrix D.

A well-known technique to re-store the rank of the signal co-
variance matrix is the so-called smoothing [11]. To achieve the full
rank M of D, similarly, we employ the smoothing idea: we split
the TACs into a number of overlapping sub-TACs with length ns;
we can show that the signal components in the sub-TACs are iden-
tical up to different scalings, and the covariance matrices based on
sub-TACs are then averaged. Now, based upon the eigen-structure
of R̂, we are particularly interested in one subspace based algo-
rithm, the MUSIC(Multiple SIgnal Classification), because of its
wide success in many areas [11]. Therefore, we compute MUSIC-
like algorithms as

S0(α) =
1∑

ns

m=M+1
|qT

mf0(α)|2
; S1(α) =

1∑
ns

m=M+1
|qT

mf1(α)|2
(9)

where 0 < eα < 1, and qm are noise eigenvectors. Similar to
MUSIC spectrum which exhibits peaks in the vicinity of true fre-
quency components, here the peaks correspond to the exponent
parameters of interest (e.g., k2f , k2s, λi’s). We use the constraints
to help the mapping between the peaks and the exponent param-
eters. Based on the mapping, several sets of the estimates of the
exponent parameters can be used as parallel initial estimates. We
need to further estimate the coefficients of the input model a2 and
a3 by minimizing the cost function as defined in (6).

Iterative Likelihood Maximum (ILM)
Since the subspace based method may not always yield sufficient
accuracy, we need to fully exploit the underlying data model and
apply the ML technique to improve the accuracy. To reduce the
computational cost, we propose an iterative alternative, called the
iterative likelihood maximization. The main idea is to achieve
multidimensional minimization (or maximization) by solving suc-
cessive lower-dimensional minimization (or maximization) prob-
lems iteratively. This idea has its root in the Alternative Maxi-
mization (AM) technique [12]. At iteration (k + 1), the update of
the estimate θ

(k+1)
s is obtained by solving the following one- or

two-dimensional minimization problems:
- Sub-step 1: Update the ML estimates of the parameter pair (λ2,
a2), according to the cost function in (6), subject to λ

(k)
1 < λ2 <

λ
(k)
3 , while all other parameters are held fixed.

- Sup-step 2: Update the ML estimates of the parameter pair (λ3,
a3), with subject to λ

(k+1)
2 < λ3.

- Sub-step 3: Update the ML estimates of the parameter λ1, with
subject toλ1 < λ

(k+1)
2 .

- Sub-step 4: Update the ML estimates of the kinetic parameter
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k2f , with subject to k2f > k
(k)
2s .

- Sub-step 5: Updating θ̂s accordingly, then update the ML esti-
mates of the kinetic parameter k2s, with subject to k

(k+1)
2f > k2s.

These sub-steps are iteratively applied until the convergence is
achieved. Since a minimization is performed at every sub-step, the
value of the cost function L(θs) keeps decreasing with the index k.
Intuitively, the algorithm reaches the bottom of the cost function
L(θs) along lines parallel to the axes.

Further Adjustment
Given that A is fixed and that the inequality constraints k1f (i) ≥
0, k1s(i) ≥ 0 and vp(i) ≥ 0, for each pixel i, since cm(i) fol-
lows a N(As(i), σ2I) distribution, estimating the factor coeffi-
cients s(i) equals to solve a constrained optimization problem

ŝ(i) = arg min
s(i)

||cm(i) − As(i)||2 subject to s(i) ≥ 0. (10)

The Lagrange multiplier theorem is to solve this problem.

4. SIMULATED DATA RESULTS

The proposed scheme should provide for each parameter an accu-
rate estimate; it should accurately estimate the three factor TACs
associated with the extracted from the whole-tumor tissue kinetics
(i.e., af (t),as(t) and cp(t)). As in [5], we consider the coefficient
of variation (CV) and the relative bias

CV (p) =
std(p̂)

p̄
; bias(p) = |p − p̄

p
|, (11)

where p represent the true value of the individual parameter, std
means standard deviation, p̄ is the empirical mean value.

Let y and ŷ be the true and estimated factor TAC, respectively.
To evaluate performance with regard to the objectives, we calcu-
late the correlation coefficient (CC) between the estimated factor
TACs ŷ and the true ones y. We also study the norm of the cor-
responding residuals defined as (ŷ − y), since it is desirable for
an estimator to fit the real factor curve in a least-square sense. To
make a fair comparison, we perform “centering” and “normaliza-
tion” on the three factor TACs over time t before we calculate the
above performance measures.

Simulation runs are used to test the accuracy and reliability of
the proposed scheme. The input function cp(t) is generated from
the parametric model proposed in [10]. We consider a multi-region
significantly-overlapped case. The simulated tumor phantom con-
sists of three underlying components as shown in Fig. 1(a), where
a lighter color means a high amplitude. The coefficients (e.g.
{k1f (i)}) are randomly drawn from one of the two uniform distri-
butions: {k1f (i)} and {k1s(i)} are from the uniform distributions
U(0.1, 0.4) and U(0.8, 1), and {vp(i)} are from U(0.2, 0.3) and
U(0.4, 0.8). The TACs are sampled from 0 to 10 minutes with the
uniform sampling period 15 seconds. The noise level is chosen as
σ2 = 30 to yield a similar SNR observed in real image data.

Based on 100 simulations runs, we study the performance mea-
sures discussed above. Table 1 shows the statistical results of esti-
mating the kinetic parameters. It is worth mentioning that the com-
putational complexity of the proposed scheme is much lower than
that of RFSQP. As mentioned earlier, we only report the estimate
of the ratios a2/a1 and a3/a1 to avoid the redundant parameter.
Within each cell of the table, we report the corresponding result of
RFSQP before the sign | and that of the proposed scheme after the
sign |. For instance, 0.266|0.227 means that the relative bias 0.266

of k2f obtained from the RFSQP algorithm is 0.266, which it is
0.277 from the proposed scheme. From this table, we can see that
the resulting CVs and relative biases are reasonably small. Over-
all the proposed scheme provides comparable performance in es-
timating parameters, compared with RFSQP. However, it is worth
mentioning that the accuracy in estimating individual parameter
is of less importance in our problem. We are more interested in
identifying different signal components and find out their space
patterns within a tumor region.

For each factor TAC, we study the resulting correlation coef-
ficient and the residual norm. Their empirical means and standard
deviations are shown in Table 2. We note that the proposed scheme
provides a little worse but very close performance to that of RF-
SQP. An interesting observation is that both schemes works well in
estimating the slow-flow factor curve as(t), although it was noted
earlier that the proposed scheme works much worse in estimating
the kinetic parameter k2s. It can be seen that the proposed scheme
provides high accuracy in estimating the curves af (t),as(t) and
cp(t) which characterize the underlying components in this tumor
phantom case.

We are particularly interested in estimating the factor images.
One example is shown in Fig. 1. It can be seen that the proposed
scheme provides high accuracy in estimating the factor images
which demonstrate the spatial heterogeneity of each component.

5. REAL DATA RESULTS

We now examine the DCE-MRI study of breast cancer patients.
The data was acquired at NIH laboratory, where the Gadolinium
DTPA was used as the contrast agent, and 3D scans of DCE-MRI
were performed every 30 seconds for a total of 11 minutes after
the injection. Fig. 2(a) shows the input function estimated by the
proposed scheme. In addition, we also plot the estimated factor
curves for the fast-flow and the slow flow. The factor TACs follow
compartmental kinetics and their shapes are what we expect. To
further examine the results, based on the above estimate of the pa-
rameters, we reconstruct the factor images (i.e. s(i)’s) in Fig. 2(b).
It is noted that the boundary region is dominated by the fast flow,
while the inside region is dominated by the slow flow. Meanwhile,
the input signal component is observed everywhere in some sense,
with stronger energy around edges. The observations match with
the clinical opinions. The fast slow parameters on the left of tumor
area are more active than those of the other parts. Future work will
involve studies with a microsphere based gold standard of flow to
validate the proposed scheme.

6. CONCLUSION

The goal of this research is to develop efficient methods for char-
acterizing multiple biomarkers and estimating the input function
in dynamic imaging. We investigated the system model on the
pixel domain consisting of multiple biomarkers, and developed an
integrated scheme including iterative steps to estimate the kinetic
parameters and the input function simultaneously. Based on sev-
eral performance measures, the simulation results illustrated that
the proposed scheme is able to quantify all the unknown parame-
ters, provides reliable estimations of factor TACs, and proves very
promising in examining the spatial heterogeneity in tissue dynam-
ics on pixel-by-pixel basis. Furthermore, we studied the result on
brain PET, where the results clearly reveal the spatial heterogene-
ity in tumor structure which matches with the clinical belief.
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parameter p k2f k2s λ1 λ2 λ3 a2/a1 a3/a1

true value 2.5 0.4 -4.1339 -0.2191 -0.0104 0.0257 0.0245
bias(p) 0.266|0.227 0.196|0.607 0.122|0.012 0.302|0.326 2.128|2.663 0.062|0.013 1.618|1.856

CV (p) 0.138|0.229 0.179|0.188 -0.061|-0.107 -0.299|-0.829 -0.201|-0.284 0.312|1.336 0.381|0.312

Table 1. Estimation performance of the parameters for the noise level σ2 = 30, based on 100 simulation runs.

factor TAC af (t) as(t) cp(t)
CC (0.973,0.079)|(0.935,0.085) (0.995,0.003)|(0.996,0.009) (0.973,0.025)|(0.951,0.0442)

residual norm (0.053,0.159)|(0.13,0.171) (0.010,0.006)|(0.0082,0.0179) (0.053,0.049)| (0.0975,0.0884)

Table 2. Performance of estimating the factor TACs af (t), as(t) and cp(t). The mean and standard deviation are calculated.
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Fig. 1. Factor images in the simulated tumor phantom. (a) the
true factor images; and (b) the estimated factor images.
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