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Computerized Radiographic Mass Detection—Part Il:
Decision Support by Featured Database Visualization
and Modular Neural Networks

Huai Li, Yue Wang, K. J. Ray Liu*, Shih-Chung B. Lo, and Matthew T. Freedman

Abstract—Based on the enhanced segmentation of suspicioug Diagital : " Decision &
mass areas, further development of computer-assisted mass detec

tion may be decomposed into three distinctive machine learning imaging W Evaluation
tasks: 1) construction of the featured knowledge database; 2) map- : b I‘a- '|'
! ntariace

ping of the classified and/or unclassified data points in the data- ]
base; and 3) development of an intelligent user interface. A decision | IITIEEE i Knowledge

support system may then be constructed as a complementary ma- F'ml;e_'s:am Encoding
chine observer that should enhance the radiologists performance in : Cliniczan T
mass detection. We adopt a mathematical feature extraction pro- ... _._L_ :

cedure to construct the featured knowledge database from all the | Faatura - Cfi-ine |n|:=i1: Festurad

suspicious mass sites localized by the enhanced segmentation. Th : =P

optimal mapping of the data points is then obtained by learning the Exdraction Database
generalized normal mixtures and decision boundaries, where a is
developed to carry out both soft and hard clustering. A visual ex- Fig. 1. Major components in CAD.
planation of the decision making is further invented as a decision

support, based on an interactive visualization hierarchy through . . . . i
the probabilistic principal component projections of the knowledge clinical duties, where the pathways of achieving ultimate perfor

database and the localized optimal displays of the retrieved raw Mance enhancement taken'by the machine observer and human
data. A prototype system is developed and pilot tested to demon- observer may not necessarily be close. For example, CAD sys-
strate the applicability of this framework to mammographic mass tems may attack the tasks that the radiologists cannot perform

detection. well or find difficult to perform. Because of generally larger size
Index Terms—Feature extraction, knowledge database, mass de- and complex appearance of masses, especially the existence of
tection, neural network, visual explanation. spicules in malignant lesions, as compared with microcalcifi-

cations, feature-based approaches are largely adopted in many
CAD systems [1]-[4], [6], [7]- Kegelmeyer has first reported
romising results for detecting spiculated tumors based on local
N _OR[?ER_t(_) improve mass lesion _detecti_on and classigge characteristics and Laws texture features [7]. Zwiggelaar
cation in clinical screening and/or diagnosis of breast cagy g|developed a statistical model to describe and detect the
cers, many sophisticated computer-assisted diagnosis (CA{Bhormal pattern of linear structures of spiculated lesions [1].
systems have been recently developed [1]-{10]. Although th@ssemeijeet al. [2] proposed to identify stellate distortions
clinical roles of the CAD systems may still be debatable, thg, ysing the orientation map of line-like structures. Petgtk
fundamental role should be complementary to the radiologistg’ presented to reduce the false positive detection by combining
the breast tissue composition information [4]. Zhahgl. used
Manuscript received February 3, 1997; revised January 9, 2001. Tiilse Hough spectrum to detect spiculated lesions [6].
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between the human supervised case selection in training andhe major differences between our work and the previous
the machine dominant mass candidates selection in testimgrk [1]-[10] are as follows.

may exist. Second, the featured knowledge database is often) we construct a knowledge database by combining both
high-dimensional with complex internal structures. Imposing  expert and machine selected cases where the assignment
a heuristically dESiQHEd neural network for Iearning from the of class memberships (e.g., mass and nonmass classes) is
training data set may prevent a correct identification of the  supervised by the radiologists or pathological repéer
intrinsic data structure and an accurate estimation of the class g|| the cases are collected.
boundaries. There may also exist the mismatch between the2) we impose a model identification procedure to determine
data structure and classifier architecture or between the class the optimal number and kernel shape of the local clus-
boundaries and decision boundaries. Furthermore, since the ters within each of the two classes in a high-dimensional
machine observer and human observer may not detect the same feature space. The model is then estimated using the ex-
set of masses, the “black box” nature of most CAD systems to  pectation—maximization (EM) algorithm and information
the clinical users will prevent a natural on-line integration of theory.
human intelligence and further upgrade of a CAD system. An 3) We develop a PMNN, which is considered as a nonlinear
interactive user interface should be considered to leverage the classifier, to carry out the mapping function of the knowl-
complementary roles of the CAD in the clinical practice. edge database. In the knowledge database, the decision
As a step toward improving the performance of a CAD likelihood boundaries and the class prior probabilities are
system, we have put considerable efforts to conduct various determined in a separate fashion, and the structure of
studies and develop reliable image enhancement and lesion se- PMNN is optimized by adapting to the database structure.
lection techniques. The methods and results have been reported) We derive a probabilistic principal component projection
in [24], where the purposes of the research were to localize the  scheme to reduce the dimensionality of the feature space
potential mass sites and help accurate feature extraction. This for natural human perception. The scheme leads to a hi-
paper addresses the further development of computer-assisted erarchical visualization algorithm allowing the complete
mass detection based on the 1) construction of the featured data setto be analyzed at the top level, with best separated

knowledge database; 2) mapping of the classified and/or un-  clusters and subclusters of data points analyzed at deeper
classified data points in the database; and 3) development of an |eyels.

intelligent user interface (IUD). The clinical goal is to eIimin'atel-he framework of the proposed method for mass detection is
th.e false po§|t|ve sites that correspond to norma! de.ns_e t'SSHﬁgtrated in Fig. 2. A detailed description of this paper is orga-
with mass-likeappearances through featured d|scr|m|nat|0|ﬂ]-zed as follows. In Section I, the procedure of the knowledge

We adopt a mathematical feature exiraction procedure 10 CQfiahase construction is described. The data mapping process
struct the featured knowledge database from all the SuspiciQus Iy o ; . ,
of decision making is presented in Section lll. Section IV

mass sites localized by the enhanced segmentation. The optimal

mapping of the data points is then obtained by learning t éesents the design of the IUI for the CAD systems. Finally,

generalized normal mixtures and decision boundaries, wherd'3/°" results and discussions are summarized in Section V.
probabilistic modular neural network (PMNN) is developed to

carry out both soft and hard clustering. A visual explanation of Il. KNOWLEDGE DATABASE CONSTRUCTION

the decision maki_ng is fqrthe_r invgznte_d asa decision supportgjyen the available information contained in the raw data of
tool, based on an interactive visualization hierarchy through they s sites and in order to establish machine intelligence carried
probabilistic principal component projections of the knpwledggut by various machine observers, a knowledge database may
database and the localized optimal displays of the retrieved rgy . onstrycted in a multidimensional feature space. It should be
data. The motivation of this work comes from the following, ,,nasized however that the knowledge acquired by the human
considerations. First, though both h.uman ‘?‘”d ma_lchlne ain uses much more sophisticated processes than the artificial
SEIVers use th? st;amke setlograw ddata;)ln th? d|agnqst|c stagﬁs Sems. Though feature extraction has been a key step in most
const_ryctlon of the knowle ge atabase for ”a'T“”g machi étern analysis tasks, the mathematical procedures are often
classifiers and that accomplished by human brains are ind {the intuitively and heuristically. The general guidelines are:
different. Thus, the knowledge database should be established = "~ "7 ™ ' e '
with both machine and expert organized representative casesl) Discrimination: Features of patterns in different classes
Second, a quantitative understanding of the knowledge database Should have significantly different values.

used by the machine observer should be acquired to logically2) Reliability: Features should have similar values for the
compare and/or predict the performance of CAD systems with  patterns of the same class.

respect to the human observers without possible under- or3) Independenceteatures should not be strongly correlated
over-estimation, and to optimize the feature extraction and o each other.

design of the machine learner for best final performance. 4) Optimality: Some redundant features should be deleted.
Finally, since the human and machine observers indeed take A small number of features is preferred for reducing the
different learning and intelligence pathways, an IUl should be =~ complexity of the classifier.

developed to visually (e.g., transparently) explain the entire Many useful image features have been suggested previously
internal decision making process of the CAD system to thgy both image processing and pattern analysis communities
human observer to enhance the clinical decision when facifig]-[13]. These features can be divided into three categories,
either consistent or conflicting opinions. namely, intensity features, geometric features, and texture
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Fig. 2. The flow diagram of mass detection in digital mammograms.

features, whose values are calculated from the pixel matrices
of the regions of interest (ROIs). Though these features are

mathematically well defined, they may not be complete sinc
they cannot capture all of the capable aspects of human p
ception nature. Thus, in this study, we have included seve
additional expert-suggested features to reflect the radiologis
experience. The typical features are summarized in Table
where Fig. 3 shows the raw image of corresponding featur
sites.

The joint histogram of the feature point distribution extracte
from true and false mass regions are investigated, and the f
tures that can better separate the true and false mass reg
are selected for further study. Our experience has suggested
three features, i.e., the site area, two measured compactness
cularity), and difference entropy, were having better discrim
nation and reliability properties. Their definitions are given a
follows.

1) Compactness 1

o ==t

> ®

where A is the area of the actual suspected region, and

A, is the area of the overlapped region.#fand the ef-

fective circleA., which is defined as the circle whose area
is equal tad and is centered about the corresponding cen-

troid of A.
2) Compactness 2

P
47 A

whereP is the boundary perimeter, antlis the area of
region.

C; = @)

TABLE |
THE SUMMARY OF MATHEMATICAL FEATURES

Feature Sub-Space \ Features

A. Intensity Features . contrast measure of ROIs;
. standard derivation inside ROIs;

. mean gradient of ROIs boundary

B. Geometric Features . area ieasure;
. circularity measure;
. deviation of the normalized radial length;

. boundary roughness;

C. Texture Features . energy measure;

. correlation of co-occurrence matrix;
. inertia of co-occurrence matrix;

. entropy of co-occurrence matrix;

. inverse difference moment;

6. sum average;

7. sum entropy;

8. difference entropy;

9. fractal dimension of surface of ROI;

R R 2 SV I e (S U SVl VA SO

3) Difference Entropy

L—1
DHd,e = - Z pm—y(k) 1nga:—y(k) (3)
k=0
where
L—-1 L-1
Po—y(k) =Y Y pae(i, i), li—jl=k (4
i=0 j=0

Several important observations are worth reiteration:

1) The knowledge database that will be used by the CAD
system are constructed from the cases selected by both
lesion localization procedure and human expert’'s experi-
ence. This joint set provides more complete knowledge to
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Fig. 3.
patch; (b) segmentation; (c) boundary extraction.

2)

3)

I1l. DATA MAPPING FOR DECISION MAKING

The decision making support by a CAD system addresses the
problem of mapping a knowledge database, given a finite set
of data examples. The mapping function can therefore be inter-
preted as a quantitative representation of the knowledge about
the mass lesions contained in the database [14]. Instead of map-
ping the whole data set using a single complex network, it is
more practical to design a set of simple class subnets with local
mixture clusters, each one of which represents a specific region
of the knowledge space. Inspired by the principleiefde-and-
conquerin applied statistics, PMNN has become increasingly

(a) popular in machine learning research [14], [15], [19]-[22]. In
F this section, we present its applications to the problem of map-
ping from databases in mass detection, with a constructive cri-
terion for designing the network architecture and the learning
algorithm that are governed by information theory [25].

A. Statistical Modeling

The quantitative mapping of a database may be decomposed
into three distinctive learning tasks: the detection of the struc-
ture of each class model with local mixture clusters; the estima-
tion of the data distributions for each induced cluster inside each
class; and the classification of the data into classes that realizes
the data memberships. Recently, there has been considerable
success in using finite mixture distributions data mapping [15],
[17], [18], [20]. Assume that the data poirsin a multidimen-

sional database come fraM classeq &, ..., &, ..., dnm}y
and each class contairs,. clusters{6;, ..., 6y, ..., 0k },

whered,. is the model parameter vector of clasandd,, is the
kernel parameter vector of clusterwithin classr. The class
conditional probability measure for any data point inside the
classr, i.e., the standard finite mixture distribution (SFMD), can
be obtained as a sum of the following general form:

K,

@) = mglilfy) (5)
k=1

_ _ wheren;, = P(§k|&,,) with a summation equal to one, and
One example of mass segmentation and boundary extraction. (a) Mass: ¢ s the kernel function of the local cluster distribution.
For the model of global class distributions, we denote the
Bayesian prior for each class B, ). Then the sufficient sta-
the machine observer. In particular, during the interacti\zlgs(tgjg(;cg;\rgQ%tg;?t?cig ¥eosb;:5£i;%the posterior probability
decision making, CAD system can still provide opinion *~ """

when the cases are missed by the localization procedure P(&) f(&;]6)
but presented to the system by the radiologists. p(Z;)
The knowledge database is defined quantitatively in a . M I
high dimensional feature space. It provides not only th¥Nerep(&:) = >_,_y P(&n) f(Zily).
knowledge for training the machine observer, but also an o )
objective base for evaluating the quality of feature extraB: Class Distribution Learning

tion or network’s learning capability, and the on-line vi- Class distribution learning addresses the combined estima-
sual explanation possibility. tion of regional paramete(sry, §k) and detection of the struc-
The assignment of the cases’ class memberships (etgral parametef,. and the kernel shape ¢f-) in (5) based on
mass and nonmass classes) is supervised by the raditihe observationg,.. One natural criterion used for learning the
gists or pathological reports. A complete knowledge dataptimal parameter values is to minimize the distance between
base includes three subsets: raw data of mass-like sitt® SFMD, denoted by,.(i), and the class data histogram, de-
corresponding feature points, and class membership fested by fi (i) [17]. In this paper, we use relative entropy

bels. (Kullback-Leibler distance), suggested by information theory

P(G,|#;) = (6)
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[25], as the distance measure (for simplicity we ysgi) to C. Decision Boundary Learning

denotef (ild,.) in our formulation), given by The objective of data classification is to realize the class

Fu () membershig;,. for ea_ch data points based on the observation
g (7) Z; and the class statistigsP(s,.), f(u|@,)}. Itis well known

G that the optimal data classifier is the Bayes classifier since
it can achieve the minimum rate of classification error [26].
I@I?s-,\asuring the average classification error by the mean squared
lfe'}lr'orE, many previous researchers have shown that minimizing

alent to the soft-split classification-based method under the CE"'by adjusting the parameters of class statistics is equivalent to

terion of maximum “k.e“hOOd (ML) [2.3]' . ... directly approximating the posterior class probabilities when
o e ot SN WO h o s ol (15 25} n greral for e

AR _ > Mmultiple class problem the optimal Bayes classifier (minimum
the class distribution, called model selection [15]. The obje%% P P P y (

D(fx, |lfr) = Zj Fr, (i) lo

We have previously shown that when relative entropy is used
a distance measure, the distance minimization method is eq

. ) . - verage error) classifies input patterns based on their posterior
tive here is to propose a systematic strategy for determining

i babilities: inputz; is classified to clas@, if

optimal number and kernel shape of local clusters, when the

prior knowledge is not available. This is indeed the case when P&, |;) > P(&;]7;) (12)
the structure of the mass lesion patterns for a particular typef§

cancer may be arbitrarily complex, so correct identification %
the database structure is very important. Thu_s, it will _be 0_'65 [cation has been intuitively and directly applied to the learning
able to have a neural network structure that is adaptive, in t Class statistics from the training data set

sense that the number and kernel shape of local clusters are Neirect learning of posterior probability is a complex task.

fixed beforehand. In this paper, we applied two popular infos oot effort has been made in designing the classifier as an
mao'luoq theoretldc C”t?”?’ "F" thﬁ Akalkg |n1;§)rmatlé)nl C”tle”qr(]-zstimator of the posterior class probability [19]. By closely in-
and minimum description length to guide the model se eCtI(Uéstigating the global class distribution modeling, we found that

procedure [24]. the classifier design for data classification can be dramatically

As the cognterpart.for adaptive mode| se!ectpn, there a§ﬁ’nplified at the learning stage. Reuvisit (6), since the class prior
many numerical techniques to perform ML estimation of clust rrobability P(&,) is a known parameter when a supervised

parameters [17]. For example, EM algorithm first calculates t 1€arning i ; : ol o

| : L g is applied, the posterior class probabilftyJ,. |Z;) can
posterior Bayesian probabilities of the data through the obserya: pi-inad without any further effort. Thus, by conditioning
tions and the current parameter estimaigsstep) and then up- Pé !

. : . . P(&,.), the problem is formulated as a supervised classification
dates parameter estimates using generalized mean ergod|cI ning of the class conditional likelihood densitya|, ).
orems {/-step). The procedure cycles back and forth betwe% s, an efficient supervised algorithm to learn the class
these two steps. The successive iterations increase the Iikelih88

. . ditional likelihood densities called the “decision-based
of the model parameters. The scheme provides Wlnner-takesrélgming,, [21] is adopted in this paper. The decision-based

probability (Bayesian “soft”) splits of the data, hence allowin arning algorithm uses thmisclassifiedlata to adjust the den-

the data to contribute simultaneously to multiple clusters. Fgﬁy functions f(i@|,), which are initially obtained using the

the sake of smp_hqty, we assume th? kerr_lel Shf‘pe of Iocgl Cllﬂﬁisupervised learning scheme described previously, so that the
ters to be a multidimensional Gaussian with mggpand vari-

I\ Wi 7o the EM aluorith foll minimum classification error can be achieved. Define itie
ancet . Vve summarize the aigorithm as Tollows. class discriminant functiow,.(Z;, w) to be P(d,.) f(Z;|d;).

Fall j # r. Itshould be noted that in the formulation of classi-
ier design, the optimal criterion used for the future data classi-

1) E-Step:for training Sample?(_t),t =1,..., N,compute Given a set of training patter’ = {%;;i = 1,2, ..., M}.
the probabilistic membership The setX is further divided into the “positive training set”
(m) () Xt ={Z;% € &,i = 1,2,..., N} and the “negative
B0 (t) = Thr Py (#9|3,) ®) trainingset’ X ={Z; & ¢ &, t = N+1, N+2, ..., M}
kr Zf’;l W,(c:l)pgcm)(f(t)@*). If the misclassified training pattern is from positive training

set, reinforced learning will be applied. If the training pattern
2) M-Step: compute the updated parameter estimates  belongs to the negative training set, we anti-reinforce the
learning, i.e., pull the kernels away from the problematic

N . . . .
m 1 m regions. The boundary refinement is summarized as follows:
ot = D) (@ 9 y
o Reinforced
- . N Learning: with) = wl) 4l (d(t))Vp(x(t), w)
—(m—+1 m g (2 ’
o = N D Z hy? (87 (10)  Antireinforced
T t=1 . .
* N Learning:  wUtD = w() — g/ (d(t)) V(x(t), w)
m 1 : m — = m
D = 0 W0 [ - ) a3
N7, t=1 PMNN is a probabilistic modular network designed espe-

o man)] T cially for data classification where a Bayesian decomposition of
X [37 = Mg } . (11) the learning process provides a unique opportunity to optimize
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Class 1: True Mass
Class 2: False Mass

Probability Winner

p(x1 / p(x[2)

N
Expert 1 Expert 2
01 95 @ The ——
Gating |— Tk | Gating
Factor | TUK1 ————{_Factor
A py(x|1) B(x[1) p(x[2) P4(x[2)
Cluster 1| « « o« |Cluster K Cluster K| « « « |Cluster 1
¢ i . .

T Feature Vector x

Fig. 4. The structure of the PMNN.

the structure of training scheme [14], [22]. Since the informatiomhereZi":T1 T = 1 andpr(3,.) = N(fk, L) IS @ multi-
about class population is, in general, physically uncorrelatddnensional Gaussian distribution within cluskeof classr.
with the conditional features about the individual class, a decou-

pled two-step training, in terms of both network structure and IV. |NTERACTIVE VISUAL EXPLANATION

learning rule, makes much more sense than that in the conven- ) . o
tional posterior-type neural networks, i.e., the conditional like- In order to improve the utlity of the CAD systems in clinical

lihood of each class and the class Bayesian prior should be BFActice, an 1Ul is highly desired. Different from many previ-
justed separately in the classification spaces. Thus, PMNN cQiSly Proposed approaches, we have organized our database
sists of several disjoint subnets and a winner-takes-all netwofiem both mathematical-localized and radiologist-selected

The subnet outputs of the PMNN are designed to model the [ikB2SS-like cases, and formed the featured knowledge database

lihood functions (likelihood-type network) which are first estiP@sed on both mathematical-based and radiologist-selected

mated from equally presented class samples, and the final {B29€ features. This qﬁ-lme effort should enhance the_ per-
cision boundaries are determined simply weighting the likefformance of the machine observer through better quality of
hood by the class populations. Foh&classification problem, training set and optimal design of neural network archl_tecture.
PMNN containsM different class subnets, each of which rep2Ur €Xperience has suggested, however, that further improve-

resents one data class in the database. Within each subnet, St 0f CAD systems requires on-line natural integration of

eral neurons (or clusters) are applied in order to handle pr(mi-man -|nteII|gence with the comlputer’ output, since h“_”,‘a”
lems which have complicated decision boundaries. The outpR&/CePtion has and can play an important role in the clinical
of class subnets are fed into a winner-take-all network. TIgCision making. In this research, we have pilot developed an
winner-take-all network categorizes the input pattern to the dtd Where the major functions include: 1) interactive visual

class whose subnet produces the highest output value. explanation of the CAD decision making process; 2) on-line

The structure of the PMNN used in this study is shown ifetrieval of the optimally displayed raw data and/or similar
Fig. 4. The PMNN consists of two subnets. Within each subn&@S€S: and 3) supervised upgrade of the knowledge database by

there are several neurons (or clusters). The outputs of class @gliologist-driven input of the “unseen” and/or “typical” cases.

nets are fed into a probability winner processor, which categg-ur preliminary studies have shown that the visual presentation

rizes the input pattern to the data class whose subnet produ@ER0th raw data and CAD results to radiologists may provide
the highest probability value. The training scheme of the PMNKSUal cues for improved decision making. _ _

is based on the unsupervised learning. Each subnet is traine@S @ step toward l-Jnder.standlng the complex. mf_orr_naqon
individually, and no mutual information across the classes m4¢m data and relationships, structural and discriminative
be utilized. In our study, one modular expert is trained to g§nowledge reveals insight that may prove useful in data
tect true masses, and the other is trained to detect false masQidng. Hierarchical minimax entropy modeling and proba-
After training, the feature vectors extracted from ROIsub afilIStic principal component projection are proposed for data
entered to this network to classify true or false masses. In p&yplanation, which is both statistically principled and visually

training and testing processes, we assume that the feature \c;&e_ctive at revealing all of the interesting aspects of the data
tors; in classr (r = 1 M) is a mixture of multidimen- set. The methods involve multiple use of standard finite normal
3 — Syt

sional Gaussian distributions, i.e., mixture models and probabilistic principal component projec-
K, tions. The strategy is that the top-level model and projection

(@3 = Z T D2 (T D) (14) should explain the en_tire d.ata set, best revealing the presence
=1 of clusters and relationships, while lower-level models and
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projections should display internal structure within individua
clusters, such as the presence of subclusters and attribute tre
which might not be apparent in the higher-level models ar
projections. With many complementary mixture models an
visualization projections, each level will be relatively simple
while the complete hierarchy maintains overall flexibility yet
still conveys considerable structural information. In particulal
a probabilistic principal component neural network is deve
oped to generate optimal projections, leading to a hierarchic
visualization algorithm. This algorithm allows the complete
data set to be analyzed at the top level, with best separal
subclusters of data points analyzed at deeper levels.
Research evidence suggests that for analysis of complex ¢
high-dimensional data sets, structure decomposition and dime
sionality reduction are the natural strategies in which the mode
based approach and visual explanation have proven to be pc
erful and widely-applicable [27]. However, there is a trade-of
between maximizing (structure decomposition) and minimizin
(dimensionality reduction) the entropy of the system. In thi
research, a minimax entropy approach is adopted through 1’
use of progressive model identification and principal compo-
nent projection. The complete visual explanation hierarchy g 5. The hierarchical view of computed features for mass and nonmass
generated by performing principal projection (dimensionalitsemples (Database A, see Table II).
reduction) and model identification (structure decomposition)

in two iterative steps using information theoretic criteria, EM abvherep(t|k, 4) again represent independent latent models [27].
gorithm, and probabilistic principal component analysis (PCAWith a soft partitioning of the data set via EM algorithm, data
Hierarchical probabilistic principal component visualization inpoints will effectively belong to more than one cluster at any
volves: 1) evaluation of posterior probabilities for mixture datgiven level. This step is automatically available in our approach
set; 2) estimation of multiple principal component axes fromince the estimation of parent latent model involves the calcula-
probabilistic data set; and 3) generation of a complete hieraraiih of posterior probabilities denoted by.. Thus, the effective
of visual projections. input values are;;,x; for an independent visualization space
Suppose the data spacedalimensional with coordinates ;, corresponding to the visualization spacén the hierarchy.
Y1, .-, ya and the data set consists of a sedeadimensional |t should be emphasized thptobabilistic means both neural
vectors{t;} wherei = 1, ..., N. Now consider a three-di- network based learning and posterior probability weighted in-
mensional (3-D) latent space= (1, =2, x3)" together with puts. Further projections can again be performed by using the
alinear function which maps the latent space to the data spacegctive input values:;, z; . t; for the visualization subspace
y = Wx-+b whereW is adx 3 matrix andb is ad-dimensional ;. Fig. 5 shows the hierarchical view of computed features for
mean vector. If we introduce a probability distributiefx) over mass and nonmass samples. In Fig. 5, a hierarchical visualiza-
the latent space given by a Gaussian estimated from the Iat@@,ﬁ view of a h|gh dimensional feature data set was gener-
variables{x; }, then a similar full-dimensional Gaussian distriated using hierarchical data visualization algorithm. One hun-
bution in data space can be defined by convolving this disttired and 25 real cases were involved, among them 75 are mass
bution with a general diagonal Gaussian conditional probabilifftes, 50 are nonmass sites. Nine features were computed on 125
distributionp(t|x, A4) in data space whetk, is the covariance cases. The dimension of the resulted feature data set became 125

matrix, resulting in a final form of x 9 (Database A, see Table Il). Hierarchical visualization tool
£) — " d 15 e_nables_ the V|sua_\l|zat|0n of high dlmen5|onal data set throu_gh
p(t) /p( |x)p(x)dx (1) Gimension reduction and data modeling so that data distribution

where the log likelihood function for this model is givenby=  features of the data set can be well recognized. For instance, the
>, logp(t;). SupposéV is determined by the PCA, ML can beclusters and subclusters of mass and nonmass data points and the
used to fit the model to the data and hence determine valuesifoundaries of the clusters can be revealed for further research
the parameters andA 4 [27]. Using a soft clustering of the datapurpose.

set and multiple PCAsub corresponding to the clustersia In the use of a hierarchical minimax entropy mixture model,
ture of latent models takes the form pft) = i‘:ol mrp(tlk) an interactive visualization environment is required to enable a
whereK| is the number of components in the mixture, and thiéexible computerized experiment such that a human-database
parametersr;, are the prior probabilities corresponding to thénteraction can be performed effectively. We have developed an
component®(t|k). Each component is an independent latemteractive environment for visualizing five-dimensional (5-D)
model with PCA projectiorW,, and parameterb, andAy,. data sets, based on state-of-the-art computer graphics toolkits
This procedure can be further extended to a hierarchical msuch as object-oriented OpenGL and Openlinventor. With a
ture model formulated by(t) = Y"1, n >-; mkp(tlk, j) sophisticated set of various kinds of simulated lights, color
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TABLE I
THE SUMMARY OF EXPERIMENTAL DATABASES
Database Descriptions
A Nine features extracted from 75 mass sites and 50 non-mass sites. Used for

visualizing hierarchically projected high dimensional feature space.
Result is presented in Figure 5.

B A simulated two-dimensional feature space. Used to show the effect of
model selection on decision boundary estimation. Result is shown in Figure 6.
C ORL standard database. Used to show the improvement of PMNN with
decision-based learning. Result is discussed in the text.
D The training data set consisting of 50 mammograms, with 50 true mass sites

and 50 false mass sites. Three most discriminatory features are extracted. Used
for both PMNN training and visualization. Result is given in Figure 7.

E The testing data set consisting of 46 mammograms, with 23 normal cases

and 23 biopsy proven mass cases with each of them having at least one

true mass site. Three most discriminatory features, the same

as database D, are extracted. Used to test the overall performance of

our CAD system prototype where the mass candidates were selected using

the method reported in Part I, automatically. Result

is shown in Figure 8 and also discussed in the text.

texturing editors, and 3-D manipulator and viewers (we hawusing the proposed criteria, the intrinsic data structure was
integrated 3-D mouse and stereo glass units into our existiogrrectly identified. According to the principle of designing the
system), our system allows one to examine the volumetidptimal structure of PMNN and visual explanation hierarchy,
data sets with any viewpoint and dynamically walk through ithe result of these criteria also determines the most appropriate
internal structures to better understand the spatial relationshipsnber of mixture components in the corresponding PMNN
among clusters and decision surfaces present. One of the nawst projected cluster decomposition. Two PMNN with different
important features in our approach is to attach the decision sarehitecture orders were designed and trained to determine
face to the 3-D probability cloud in support of decision makinghe classification boundaries between the two classes. The
and to link each data point in the visualization space to its raslassification results are shown in Fig. 6(a) and (b). The result
data so that the user can on-line retrieve the corresponding riawrig. 6(a) is with the right cluster number in Class 2, while
data such as an original image for interim decision making. the result in Fig. 6(b) is with the wrong cluster number in
Class 2. From this simple experiment, we have shown that
the decision boundary with the right cluster number may be
much more accurate than that with heuristically determined
In this section, we present the experimental results using ttlaster number, since the decision boundary between class 1
information theoretic criteria and PMNNs to generate the mapnd class 2 will be determined by four cross points in the first
ping function of the featured database, and the preliminary mase while in the second case the decision boundary will be
sults using the hierarchical minimax entropy projections to codetermined by only two cross points. It should be emphasized
duct visual explanation of the decision making. For the valid#hat the error of data classification is theoretically controlled
tion of the database mapping using the proposed algorithrbg,the accuracy in estimating the decision boundaries between
global relative entropy (GRE) value between the (SFMD)ardasses, and the quality of the boundary estimates is indeed
the joint histogram is used as an objective measure to evaludépendent upon the correct structure of the class likelihood
the fithess of the mapping function. A summary of the databadesction.
we used in our study is presented in Table II. As we have discussed before, although the knowledge
As we have discussed in Sections Il and 1V, model selectiatatabase contains both machine-localized and human-selected
is the first and a very important learning task in mapping @ases, in clinical settings “unseen” and/or subtle cases con-
database and the objective of the procedure is to determiribute the major false positives. We have also pilot tested the
both the number and the kernel shape of local clusters in ed®MINN method to the so-calledM + 1 classes” problem,
class. This procedure is used not only in the data mapping for which the disease pattern under testing could be either
decision making but also in the structure decomposition ffnom one of the M classes, or from some other unknown
hierarchical visual explanation. Our experience has suggesttaisses (the “unknown” class or the “intruder” class). Note that
that an incorrect model selection will affect the performandée unknown class probability is often very hard to estimate
of data-classification based decision making. For the sakelmfcause of the lack of sufficient training samples (for example,
simplicity, we discuss this conclusion in the following 2-Din the mass detection problem, the unknown classes include the
example. Let us form a simulated featured database with tR®Isub over the normal tissues). In our experiment, PMNN
major features that well characterize the two targeted classases different decision rule from that of thé/" classes”
as it shown in Fig. 6 (Database B, see Table Il). The groumdoblem: patterre; belongs to class if both of the following
truth is that class 1 contains only one local cluster while class@nditions are true: a}(&J,., &) > ¢(J;, &), Vi # r, and b)
contains two local clusters. With a model selection proceduéd,., ;) > T. T is a threshold obtained by decision-based

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
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Fig. 6. The classification examples with a two-dimensional (2-D) simulated database (Dabase B, see Table Il). (a) Class 2 contains two lo¢h) Cleters
2 contains one local cluster.

learning. Otherwise patters; belongs to the unknown class.Therefore, the shrinking step is applicable for mass cases and
We observed consistent and significant improvement in classifean save computation time.
cation results compared with the pure Bayesian decision. UsingAfter the segmentation, the area index feature was first used
the ORL (Olivetti Research Laboratory, Cambridge, U.Kfp eliminate the nonmass regions. In our study, we/Aet=
standard database (Database C, see Table Il), our experiehce 7 pixels and4,; = 75 x 75 pixels as the thresholdd,;
has shown an increase of correct detection rate from 70%cdwmrresponds to the smallest size of masses (3 mm), and an ob-
90% [14]. ject with a area of 75¢ 75 pixels corresponds to 30 mm in the

In the third experiment, we use the proposed classifier to digriginal mammogram. This indicates that the scheme can de-
tinguish true masses from false masses based on the feattwesall masses with sizes up to 30 mm. Masses larger than 30
extracted from the suspected regions. The objective is to redumem are rare cases in the clinical setting. When the segmented
the number of suspicious regions and identify the true massesgion satisfied the conditiod; < 4 < A, the region was
150 mammograms, each of them contains at least one masssidered to be suspicious for mass. For the purpose of repre-
case of varying size and location, were selected in our stugdgntative demonstration, we have selected a 3-D feature space
The areas of suspicious masses were identified following thensisting of compactness I, compactness I, and difference en-
proposed procedure with biopsy proven results. Fifty mammuepy. According to our investigation, these three features have
grams with biopsy proven masses were selected from the 156 better separation (discrimination) between the true and false
mammograms for training (Database D, see Table Il). The mamass classes. It should be noticed that the feature vector can
mogram set used for testing contained 46 single-view mamasily extend to higher dimensionality. A training feature vector
mograms: 23 normal cases and 23 with biopsy proven masseswas constructed from 50 true mass ROIsub and 50 false mass
(Database E, see Table II) which were also selected from the B0Isub (Database D, see Table Il). The training set was used to
mammograms. All mammograms were digitized with an imagdeain two modular probabilistic decision-based neural networks
resolution of 10Q:m x 100.m/pixel by the laser film digitizer separately. In addition to the decision boundaries recommended
(Model: Lumiscan 150). The image sizes are 1292560 x by the computer algorithms, a visual explanation interface has
12 bpp. For this study, we shrunk the digital mammograms witiso been integrated with 3-D to 2-D hierarchical projections.
the resolution of 40Q:m by averaging 4x 4 pixels into one Fig. 7(a) shows the database map projection with compactness
pixel. According to radiologists, the size of the small massesdefinition | and difference entropy. Fig. 7(b) shows the data-
3-15 mm. The middle size of masses is 15-30 mm. The largase map projection with compactness definition Il and differ-
size of masses is 30-50 mm, which are rare in mammograraace entropy. Our experience has suggested that the recogni-
A 3-mm object in an original mammogram occupies 30 pixet¥on rate with compactness | are more reliable than that with
in a digitized image with a 10@:m resolution. After reducing compactness Il. In order to have more accurate texture informa-
the image size by four times, the object will occupy the randimn, the computation of the second-order joint probability ma-
of about seven to eight pixels. The object with the size of seveix py 4(¢, §) is only based on the segmented region of the orig-
pixels is expected to be detectable by any computer algorithimal mammogram. For the shrunk mammograms, we found that
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Fig. 7. The data mapping results (Database D, see Table Il). -0- denotes true mass cases; -*- denotes false mass cases. (a) The mapping using @®mpactnes
The mapping using compactness Il

Fig. 8. One example of the mass detection using the proposed approach (Database E, see Table II).

the difference entropy had better discrimination with- 1. The have biopsy proven masses) (Database E, see Table II). Fig. 8
difference entropy used in this study was the average of valst®ws a representative mass detection result on one mammo-
atd =0°, 45°, 907, and 135. gram with a stellate mass. After the enhancement, ten regions
We have conducted a preliminary study to evaluate the pa&ith brightest intensity were segmented. Using the area crite-
formance of the algorithms in real case detection, in which 6—1i6n, too large and too small regions were eliminated first and
suspected masses/mammogram were detected and requiredHfigrrest regions were submitted to the PMNN for further eval-
ther clinical decision making. We found that the proposed clagation. The results indicated that the stellate mass lesion was
sifier can reduce the number of suspicious masses with a seasiectly detected.
tivity of 84% at 1.6 false positive findings/mammogram based For further evaluation, receiver operating characteristic
on the testing data set containing 46 mammograms (23 of théROC) method may be employed. However, we do not feel
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ROC analysis will provide really a better evaluation but awisualization hierarchy through the probabilistic principal com-
alternative method to this case. First, most ROC analygisnent projections of the knowledge database and the localized
reported by others were based on different database thus @pémal displays of the retrieved raw data. A prototype system
not comparable since ROC results are highly data-dependeves developed and pilot tested to demonstrate the applicability
Second, ROC analysis only indicate an “overall” performane# this framework to mammographic mass detection.

with limitations at least in twofold: it is for multithreshold thus
the corresponding system may not be optimal to a particular
application where only one threshold is needed; and it cannotl_
provide a mathematically traceable feedback to improve the
performance of the system or the one component in the system:
Third, currently used FROC analysis package imposes sev PAI
assumptions on the distributions of the cases which are invalid
in most applications and particularly untrue in our situation. For
example, our assumptions about the data distributions is SFNM1]
that is clearly different from the restricted conditions imposed
by the application of existing FROC analysis algorithm. In our
approach, a quantitative mapping of the knowledge databasél]
is performed with hierarchical SFMD modeling and should
be perfectly (at least in the theoretical sense) carried out by
the corresponding PMNN classifier. In other words, optimal
decision making should have already been achieved accordin
to the Bayesian rule. It is reasonable to acknowledge thal
in order to compare the overall performance with the other
systems, an ROC study may be further conducted. We areES]
currently working on developing a new generation of FROC
analysis package with a caution to remove the forementioned
problems.

Another important consideration with the present approach
is the measure of quality in visual explanation [29]. This is not
a glamorous area, but progress in this area is eminently criticaP]
to the future success of visual exploration [28]. What is the cor-
rect matrix for a direct projection of a particular multimodal data (8]
set? How effective was a particular visualization tool? Did the g,
user come to the correct conclusion? It may be agreeable that
the benchmark criteria in visual exploration are very different
and difficult [28]. As shared by Bishop and Tipping [27], we [10]
believe that in data visualization there is no objective measure
of quality, and so it is difficult to quantify the merit of a partic-
ular data visualization technique, and the effectiveness of su:,lﬁl]
a techniques is often highly data-dependent. The possible altgn2]
native is to perform a rigorous psychological evaluation using
simple and controlled environment, or to invite domain experts; 3
to direct evaluate the efficacy of the algorithm for a specified
task. For example, we can compare the domain expert’s perfof4]
mances with and without the system aid. In that case, the ROC
method may be used to evaluate the performance of our algqs)
rithm when used by the radiologists. While the optimality of
these new techniques is often highly data-dependent, we wou[gG]
expect the hierarchical visualization model to be a very effective
tool for the data visualization and exploration in many applica-[m
tions.

In summary, we employed a mathematical feature extractiof18]
procedure to construct the featured knowledge database fro
all the suspicious mass sites localized by the enhanced segm
tation. The optimal mapping of the data points was then obf0]
tained by learning the generalized normal mixtures and decision
boundaries. A visual explanation of the decision making Waéu]
further invented as a decision support, based on an interactive

]

(6]
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