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Computerized Radiographic Mass Detection—Part II:
Decision Support by Featured Database Visualization

and Modular Neural Networks
Huai Li, Yue Wang, K. J. Ray Liu*, Shih-Chung B. Lo, and Matthew T. Freedman

Abstract—Based on the enhanced segmentation of suspicious
mass areas, further development of computer-assisted mass detec-
tion may be decomposed into three distinctive machine learning
tasks: 1) construction of the featured knowledge database; 2) map-
ping of the classified and/or unclassified data points in the data-
base; and 3) development of an intelligent user interface. A decision
support system may then be constructed as a complementary ma-
chine observer that should enhance the radiologists performance in
mass detection. We adopt a mathematical feature extraction pro-
cedure to construct the featured knowledge database from all the
suspicious mass sites localized by the enhanced segmentation. The
optimal mapping of the data points is then obtained by learning the
generalized normal mixtures and decision boundaries, where a is
developed to carry out both soft and hard clustering. A visual ex-
planation of the decision making is further invented as a decision
support, based on an interactive visualization hierarchy through
the probabilistic principal component projections of the knowledge
database and the localized optimal displays of the retrieved raw
data. A prototype system is developed and pilot tested to demon-
strate the applicability of this framework to mammographic mass
detection.

Index Terms—Feature extraction, knowledge database, mass de-
tection, neural network, visual explanation.

I. INTRODUCTION

I N ORDER to improve mass lesion detection and classifi-
cation in clinical screening and/or diagnosis of breast can-

cers, many sophisticated computer-assisted diagnosis (CAD)
systems have been recently developed [1]–[10]. Although the
clinical roles of the CAD systems may still be debatable, the
fundamental role should be complementary to the radiologists’
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Fig. 1. Major components in CAD.

clinical duties, where the pathways of achieving ultimate perfor-
mance enhancement taken by the machine observer and human
observer may not necessarily be close. For example, CAD sys-
tems may attack the tasks that the radiologists cannot perform
well or find difficult to perform. Because of generally larger size
and complex appearance of masses, especially the existence of
spicules in malignant lesions, as compared with microcalcifi-
cations, feature-based approaches are largely adopted in many
CAD systems [1]–[4], [6], [7]. Kegelmeyer has first reported
promising results for detecting spiculated tumors based on local
edge characteristics and Laws texture features [7]. Zwiggelaar
et al.developed a statistical model to describe and detect the
abnormal pattern of linear structures of spiculated lesions [1].
Karssemeijeret al. [2] proposed to identify stellate distortions
by using the orientation map of line-like structures. Petricket
al. presented to reduce the false positive detection by combining
the breast tissue composition information [4]. Zhanget al.used
the Hough spectrum to detect spiculated lesions [6].

Although many previously proposed approaches have led
to impressive results [1]–[5], [7], several fundamental issues
remain unresolved in the application of CAD systems. Fig. 1
shows a general block diagram of CAD systems. Previous
research has demonstrated that: 1) breast cancer is missed on
mammograms in part because the optical density and contrast
of the cancer is not optimal for human observer; 2) com-
puter-based detection appears to be more affected by different
criteria than human perception; 3) the challenges and pathways
to the human or machine observers may be quite different, and
4) decision making by the CAD systems are largely not trans-
parent to the user. For example, the training cases contributing
to the database are often selected by the human observer
while the featured knowledge database is constructed through
mathematical pathways of feature extraction. The mismatch
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between the human supervised case selection in training and
the machine dominant mass candidates selection in testing
may exist. Second, the featured knowledge database is often
high-dimensional with complex internal structures. Imposing
a heuristically designed neural network for learning from the
training data set may prevent a correct identification of the
intrinsic data structure and an accurate estimation of the class
boundaries. There may also exist the mismatch between the
data structure and classifier architecture or between the class
boundaries and decision boundaries. Furthermore, since the
machine observer and human observer may not detect the same
set of masses, the “black box” nature of most CAD systems to
the clinical users will prevent a natural on-line integration of
human intelligence and further upgrade of a CAD system. An
interactive user interface should be considered to leverage the
complementary roles of the CAD in the clinical practice.

As a step toward improving the performance of a CAD
system, we have put considerable efforts to conduct various
studies and develop reliable image enhancement and lesion se-
lection techniques. The methods and results have been reported
in [24], where the purposes of the research were to localize the
potential mass sites and help accurate feature extraction. This
paper addresses the further development of computer-assisted
mass detection based on the 1) construction of the featured
knowledge database; 2) mapping of the classified and/or un-
classified data points in the database; and 3) development of an
intelligent user interface (IUI). The clinical goal is to eliminate
the false positive sites that correspond to normal dense tissues
with mass-likeappearances through featured discrimination.
We adopt a mathematical feature extraction procedure to con-
struct the featured knowledge database from all the suspicious
mass sites localized by the enhanced segmentation. The optimal
mapping of the data points is then obtained by learning the
generalized normal mixtures and decision boundaries, where a
probabilistic modular neural network (PMNN) is developed to
carry out both soft and hard clustering. A visual explanation of
the decision making is further invented as a decision support
tool, based on an interactive visualization hierarchy through the
probabilistic principal component projections of the knowledge
database and the localized optimal displays of the retrieved raw
data. The motivation of this work comes from the following
considerations. First, though both human and machine ob-
servers use the same set of raw data in the diagnostic stage, the
construction of the knowledge database for training machine
classifiers and that accomplished by human brains are indeed
different. Thus, the knowledge database should be established
with both machine and expert organized representative cases.
Second, a quantitative understanding of the knowledge database
used by the machine observer should be acquired to logically
compare and/or predict the performance of CAD systems with
respect to the human observers without possible under- or
over-estimation, and to optimize the feature extraction and
design of the machine learner for best final performance.
Finally, since the human and machine observers indeed take
different learning and intelligence pathways, an IUI should be
developed to visually (e.g., transparently) explain the entire
internal decision making process of the CAD system to the
human observer to enhance the clinical decision when facing
either consistent or conflicting opinions.

The major differences between our work and the previous
work [1]–[10] are as follows.

1) We construct a knowledge database by combining both
expert and machine selected cases where the assignment
of class memberships (e.g., mass and nonmass classes) is
supervised by the radiologists or pathological reportafter
all the cases are collected.

2) We impose a model identification procedure to determine
the optimal number and kernel shape of the local clus-
ters within each of the two classes in a high-dimensional
feature space. The model is then estimated using the ex-
pectation–maximization (EM) algorithm and information
theory.

3) We develop a PMNN, which is considered as a nonlinear
classifier, to carry out the mapping function of the knowl-
edge database. In the knowledge database, the decision
likelihood boundaries and the class prior probabilities are
determined in a separate fashion, and the structure of
PMNN is optimized by adapting to the database structure.

4) We derive a probabilistic principal component projection
scheme to reduce the dimensionality of the feature space
for natural human perception. The scheme leads to a hi-
erarchical visualization algorithm allowing the complete
data set to be analyzed at the top level, with best separated
clusters and subclusters of data points analyzed at deeper
levels.

The framework of the proposed method for mass detection is
illustrated in Fig. 2. A detailed description of this paper is orga-
nized as follows. In Section II, the procedure of the knowledge
database construction is described. The data mapping process
for decision making is presented in Section III. Section IV
presents the design of the IUI for the CAD systems. Finally,
major results and discussions are summarized in Section V.

II. K NOWLEDGE DATABASE CONSTRUCTION

Given the available information contained in the raw data of
mass sites and in order to establish machine intelligence carried
out by various machine observers, a knowledge database may
be constructed in a multidimensional feature space. It should be
emphasized however that the knowledge acquired by the human
brain uses much more sophisticated processes than the artificial
systems. Though feature extraction has been a key step in most
pattern analysis tasks, the mathematical procedures are often
done intuitively and heuristically. The general guidelines are:

1) Discrimination: Features of patterns in different classes
should have significantly different values.

2) Reliability: Features should have similar values for the
patterns of the same class.

3) Independence:Features should not be strongly correlated
to each other.

4) Optimality: Some redundant features should be deleted.
A small number of features is preferred for reducing the
complexity of the classifier.

Many useful image features have been suggested previously
by both image processing and pattern analysis communities
[11]–[13]. These features can be divided into three categories,
namely, intensity features, geometric features, and texture
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Fig. 2. The flow diagram of mass detection in digital mammograms.

features, whose values are calculated from the pixel matrices
of the regions of interest (ROIs). Though these features are
mathematically well defined, they may not be complete since
they cannot capture all of the capable aspects of human per-
ception nature. Thus, in this study, we have included several
additional expert-suggested features to reflect the radiologists’
experience. The typical features are summarized in Table I,
where Fig. 3 shows the raw image of corresponding featured
sites.

The joint histogram of the feature point distribution extracted
from true and false mass regions are investigated, and the fea-
tures that can better separate the true and false mass regions
are selected for further study. Our experience has suggested that
three features, i.e., the site area, two measured compactness (cir-
cularity), and difference entropy, were having better discrimi-
nation and reliability properties. Their definitions are given as
follows.

1) Compactness 1

(1)

where is the area of the actual suspected region, and
is the area of the overlapped region ofand the ef-

fective circle , which is defined as the circle whose area
is equal to and is centered about the corresponding cen-
troid of .

2) Compactness 2

(2)

where is the boundary perimeter, andis the area of
region.

TABLE I
THE SUMMARY OF MATHEMATICAL FEATURES

3) Difference Entropy

(3)

where

(4)

Several important observations are worth reiteration:

1) The knowledge database that will be used by the CAD
system are constructed from the cases selected by both
lesion localization procedure and human expert’s experi-
ence. This joint set provides more complete knowledge to
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(a)

(b)

(c)

Fig. 3. One example of mass segmentation and boundary extraction. (a) Mass
patch; (b) segmentation; (c) boundary extraction.

the machine observer. In particular, during the interactive
decision making, CAD system can still provide opinion
when the cases are missed by the localization procedure
but presented to the system by the radiologists.

2) The knowledge database is defined quantitatively in a
high dimensional feature space. It provides not only the
knowledge for training the machine observer, but also an
objective base for evaluating the quality of feature extrac-
tion or network’s learning capability, and the on-line vi-
sual explanation possibility.

3) The assignment of the cases’ class memberships (e.g.,
mass and nonmass classes) is supervised by the radiolo-
gists or pathological reports. A complete knowledge data-
base includes three subsets: raw data of mass-like sites,
corresponding feature points, and class membership la-
bels.

III. D ATA MAPPING FOR DECISION MAKING

The decision making support by a CAD system addresses the
problem of mapping a knowledge database, given a finite set
of data examples. The mapping function can therefore be inter-
preted as a quantitative representation of the knowledge about
the mass lesions contained in the database [14]. Instead of map-
ping the whole data set using a single complex network, it is
more practical to design a set of simple class subnets with local
mixture clusters, each one of which represents a specific region
of the knowledge space. Inspired by the principle ofdivide-and-
conquerin applied statistics, PMNN has become increasingly
popular in machine learning research [14], [15], [19]–[22]. In
this section, we present its applications to the problem of map-
ping from databases in mass detection, with a constructive cri-
terion for designing the network architecture and the learning
algorithm that are governed by information theory [25].

A. Statistical Modeling

The quantitative mapping of a database may be decomposed
into three distinctive learning tasks: the detection of the struc-
ture of each class model with local mixture clusters; the estima-
tion of the data distributions for each induced cluster inside each
class; and the classification of the data into classes that realizes
the data memberships. Recently, there has been considerable
success in using finite mixture distributions data mapping [15],
[17], [18], [20]. Assume that the data pointsin a multidimen-
sional database come from classes ,
and each class contains clusters ,
where is the model parameter vector of class, and is the
kernel parameter vector of clusterwithin class . The class
conditional probability measure for any data point inside the
class , i.e., the standard finite mixture distribution (SFMD), can
be obtained as a sum of the following general form:

(5)

where with a summation equal to one, and
is the kernel function of the local cluster distribution.

For the model of global class distributions, we denote the
Bayesian prior for each class by . Then the sufficient sta-
tistics according to the Bayes’ rule, are the posterior probability

given a particular observation

(6)

where .

B. Class Distribution Learning

Class distribution learning addresses the combined estima-
tion of regional parameters and detection of the struc-
tural parameter and the kernel shape of in (5) based on
the observations . One natural criterion used for learning the
optimal parameter values is to minimize the distance between
the SFMD, denoted by , and the class data histogram, de-
noted by [17]. In this paper, we use relative entropy
(Kullback–Leibler distance), suggested by information theory



306 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 4, APRIL 2001

[25], as the distance measure (for simplicity we use to
denote in our formulation), given by

(7)

We have previously shown that when relative entropy is used as
a distance measure, the distance minimization method is equiv-
alent to the soft-split classification-based method under the cri-
terion of maximum likelihood (ML) [23].

Another important issue concerning unsupervised distribu-
tion learning is the detection of the structural parameters of
the class distribution, called model selection [15]. The objec-
tive here is to propose a systematic strategy for determining the
optimal number and kernel shape of local clusters, when the
prior knowledge is not available. This is indeed the case when
the structure of the mass lesion patterns for a particular type of
cancer may be arbitrarily complex, so correct identification of
the database structure is very important. Thus, it will be desir-
able to have a neural network structure that is adaptive, in the
sense that the number and kernel shape of local clusters are not
fixed beforehand. In this paper, we applied two popular infor-
mation theoretic criteria, i.e., the Akaike information criterion
and minimum description length to guide the model selection
procedure [24].

As the counterpart for adaptive model selection, there are
many numerical techniques to perform ML estimation of cluster
parameters [17]. For example, EM algorithm first calculates the
posterior Bayesian probabilities of the data through the observa-
tions and the current parameter estimates (-step) and then up-
dates parameter estimates using generalized mean ergodic the-
orems ( -step). The procedure cycles back and forth between
these two steps. The successive iterations increase the likelihood
of the model parameters. The scheme provides winner-takes-in
probability (Bayesian “soft”) splits of the data, hence allowing
the data to contribute simultaneously to multiple clusters. For
the sake of simplicity, we assume the kernel shape of local clus-
ters to be a multidimensional Gaussian with meanand vari-
ance . We summarize the EM algorithm as follows.

1) E-Step: for training sample , , compute
the probabilistic membership

(8)

2) M-Step: compute the updated parameter estimates

(9)

(10)

(11)

C. Decision Boundary Learning

The objective of data classification is to realize the class
membership for each data points based on the observation

and the class statistics . It is well known
that the optimal data classifier is the Bayes classifier since
it can achieve the minimum rate of classification error [26].
Measuring the average classification error by the mean squared
error , many previous researchers have shown that minimizing

by adjusting the parameters of class statistics is equivalent to
directly approximating the posterior class probabilities when
dealing with the two class problem [13], [26]. In general, for the
multiple class problem the optimal Bayes classifier (minimum
average error) classifies input patterns based on their posterior
probabilities: input is classified to class if

(12)

for all . It should be noted that in the formulation of classi-
fier design, the optimal criterion used for the future data classi-
fication has been intuitively and directly applied to the learning
of class statistics from the training data set.

Direct learning of posterior probability is a complex task.
Great effort has been made in designing the classifier as an
estimator of the posterior class probability [19]. By closely in-
vestigating the global class distribution modeling, we found that
the classifier design for data classification can be dramatically
simplified at the learning stage. Revisit (6), since the class prior
probability is a known parameter when a supervised
learning is applied, the posterior class probability can
be obtained without any further effort. Thus, by conditioning

, the problem is formulated as a supervised classification
learning of the class conditional likelihood density .
Thus, an efficient supervised algorithm to learn the class
conditional likelihood densities called the “decision-based
learning” [21] is adopted in this paper. The decision-based
learning algorithm uses themisclassifieddata to adjust the den-
sity functions , which are initially obtained using the
unsupervised learning scheme described previously, so that the
minimum classification error can be achieved. Define theth
class discriminant function to be .
Given a set of training patterns .
The set is further divided into the “positive training set”

and the “negative
training set” .
If the misclassified training pattern is from positive training
set, reinforced learning will be applied. If the training pattern
belongs to the negative training set, we anti-reinforce the
learning, i.e., pull the kernels away from the problematic
regions. The boundary refinement is summarized as follows:

Reinforced

Learning:

Antireinforced

Learning:
(13)

PMNN is a probabilistic modular network designed espe-
cially for data classification where a Bayesian decomposition of
the learning process provides a unique opportunity to optimize
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Fig. 4. The structure of the PMNN.

the structure of training scheme [14], [22]. Since the information
about class population is, in general, physically uncorrelated
with the conditional features about the individual class, a decou-
pled two-step training, in terms of both network structure and
learning rule, makes much more sense than that in the conven-
tional posterior-type neural networks, i.e., the conditional like-
lihood of each class and the class Bayesian prior should be ad-
justed separately in the classification spaces. Thus, PMNN con-
sists of several disjoint subnets and a winner-takes-all network.
The subnet outputs of the PMNN are designed to model the like-
lihood functions (likelihood-type network) which are first esti-
mated from equally presented class samples, and the final de-
cision boundaries are determined simply weighting the likeli-
hood by the class populations. For a-classification problem,
PMNN contains different class subnets, each of which rep-
resents one data class in the database. Within each subnet, sev-
eral neurons (or clusters) are applied in order to handle prob-
lems which have complicated decision boundaries. The outputs
of class subnets are fed into a winner-take-all network. The
winner-take-all network categorizes the input pattern to the data
class whose subnet produces the highest output value.

The structure of the PMNN used in this study is shown in
Fig. 4. The PMNN consists of two subnets. Within each subnet,
there are several neurons (or clusters). The outputs of class sub-
nets are fed into a probability winner processor, which catego-
rizes the input pattern to the data class whose subnet produces
the highest probability value. The training scheme of the PMNN
is based on the unsupervised learning. Each subnet is trained
individually, and no mutual information across the classes may
be utilized. In our study, one modular expert is trained to de-
tect true masses, and the other is trained to detect false masses.
After training, the feature vectors extracted from ROIsub are
entered to this network to classify true or false masses. In both
training and testing processes, we assume that the feature vec-
tors in class ( ) is a mixture of multidimen-
sional Gaussian distributions, i.e.,

(14)

where and is a multi-
dimensional Gaussian distribution within clusterof class .

IV. I NTERACTIVE VISUAL EXPLANATION

In order to improve the utility of the CAD systems in clinical
practice, an IUI is highly desired. Different from many previ-
ously proposed approaches, we have organized our database
from both mathematical-localized and radiologist-selected
mass-like cases, and formed the featured knowledge database
based on both mathematical-based and radiologist-selected
image features. This off-line effort should enhance the per-
formance of the machine observer through better quality of
training set and optimal design of neural network architecture.
Our experience has suggested, however, that further improve-
ment of CAD systems requires on-line natural integration of
human intelligence with the computer’ output, since human
perception has and can play an important role in the clinical
decision making. In this research, we have pilot developed an
IUI where the major functions include: 1) interactive visual
explanation of the CAD decision making process; 2) on-line
retrieval of the optimally displayed raw data and/or similar
cases; and 3) supervised upgrade of the knowledge database by
radiologist-driven input of the “unseen” and/or “typical” cases.
Our preliminary studies have shown that the visual presentation
of both raw data and CAD results to radiologists may provide
visual cues for improved decision making.

As a step toward understanding the complex information
from data and relationships, structural and discriminative
knowledge reveals insight that may prove useful in data
mining. Hierarchical minimax entropy modeling and proba-
bilistic principal component projection are proposed for data
explanation, which is both statistically principled and visually
effective at revealing all of the interesting aspects of the data
set. The methods involve multiple use of standard finite normal
mixture models and probabilistic principal component projec-
tions. The strategy is that the top-level model and projection
should explain the entire data set, best revealing the presence
of clusters and relationships, while lower-level models and



308 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 4, APRIL 2001

projections should display internal structure within individual
clusters, such as the presence of subclusters and attribute trends,
which might not be apparent in the higher-level models and
projections. With many complementary mixture models and
visualization projections, each level will be relatively simple
while the complete hierarchy maintains overall flexibility yet
still conveys considerable structural information. In particular,
a probabilistic principal component neural network is devel-
oped to generate optimal projections, leading to a hierarchical
visualization algorithm. This algorithm allows the complete
data set to be analyzed at the top level, with best separated
subclusters of data points analyzed at deeper levels.

Research evidence suggests that for analysis of complex and
high-dimensional data sets, structure decomposition and dimen-
sionality reduction are the natural strategies in which the model-
based approach and visual explanation have proven to be pow-
erful and widely-applicable [27]. However, there is a trade-off
between maximizing (structure decomposition) and minimizing
(dimensionality reduction) the entropy of the system. In this
research, a minimax entropy approach is adopted through the
use of progressive model identification and principal compo-
nent projection. The complete visual explanation hierarchy is
generated by performing principal projection (dimensionality
reduction) and model identification (structure decomposition)
in two iterative steps using information theoretic criteria, EM al-
gorithm, and probabilistic principal component analysis (PCA).
Hierarchical probabilistic principal component visualization in-
volves: 1) evaluation of posterior probabilities for mixture data
set; 2) estimation of multiple principal component axes from
probabilistic data set; and 3) generation of a complete hierarchy
of visual projections.

Suppose the data space is-dimensional with coordinates
and the data set consists of a set of-dimensional

vectors where . Now consider a three-di-
mensional (3-D) latent space together with
a linear function which maps the latent space to the data space by

where is a matrix and is a -dimensional
mean vector. If we introduce a probability distribution over
the latent space given by a Gaussian estimated from the latent
variables , then a similar full-dimensional Gaussian distri-
bution in data space can be defined by convolving this distri-
bution with a general diagonal Gaussian conditional probability
distribution in data space where is the covariance
matrix, resulting in a final form of

(15)

where the log likelihood function for this model is given by
. Suppose is determined by the PCA, ML can be

used to fit the model to the data and hence determine values for
the parameters and [27]. Using a soft clustering of the data
set and multiple PCAsub corresponding to the clusters, amix-
ture of latent models takes the form of
where is the number of components in the mixture, and the
parameters are the prior probabilities corresponding to the
components . Each component is an independent latent
model with PCA projection and parameters and .
This procedure can be further extended to a hierarchical mix-
ture model formulated by

Fig. 5. The hierarchical view of computed features for mass and nonmass
samples (Database A, see Table II).

where again represent independent latent models [27].
With a soft partitioning of the data set via EM algorithm, data
points will effectively belong to more than one cluster at any
given level. This step is automatically available in our approach
since the estimation of parent latent model involves the calcula-
tion of posterior probabilities denoted by . Thus, the effective
input values are for an independent visualization space

, corresponding to the visualization spacein the hierarchy.
It should be emphasized thatprobabilistic means both neural
network based learning and posterior probability weighted in-
puts. Further projections can again be performed by using the
effective input values for the visualization subspace
. Fig. 5 shows the hierarchical view of computed features for

mass and nonmass samples. In Fig. 5, a hierarchical visualiza-
tion view of a high dimensional feature data set was gener-
ated using hierarchical data visualization algorithm. One hun-
dred and 25 real cases were involved, among them 75 are mass
sites, 50 are nonmass sites. Nine features were computed on 125
cases. The dimension of the resulted feature data set became 125

9 (Database A, see Table II). Hierarchical visualization tool
enables the visualization of high dimensional data set through
dimension reduction and data modeling so that data distribution
features of the data set can be well recognized. For instance, the
clusters and subclusters of mass and nonmass data points and the
boundaries of the clusters can be revealed for further research
purpose.

In the use of a hierarchical minimax entropy mixture model,
an interactive visualization environment is required to enable a
flexible computerized experiment such that a human-database
interaction can be performed effectively. We have developed an
interactive environment for visualizing five-dimensional (5-D)
data sets, based on state-of-the-art computer graphics toolkits
such as object-oriented OpenGL and OpenInventor. With a
sophisticated set of various kinds of simulated lights, color
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TABLE II
THE SUMMARY OF EXPERIMENTAL DATABASES

texturing editors, and 3-D manipulator and viewers (we have
integrated 3-D mouse and stereo glass units into our existing
system), our system allows one to examine the volumetric
data sets with any viewpoint and dynamically walk through its
internal structures to better understand the spatial relationships
among clusters and decision surfaces present. One of the most
important features in our approach is to attach the decision sur-
face to the 3-D probability cloud in support of decision making,
and to link each data point in the visualization space to its raw
data so that the user can on-line retrieve the corresponding raw
data such as an original image for interim decision making.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present the experimental results using the
information theoretic criteria and PMNNs to generate the map-
ping function of the featured database, and the preliminary re-
sults using the hierarchical minimax entropy projections to con-
duct visual explanation of the decision making. For the valida-
tion of the database mapping using the proposed algorithms,
global relative entropy (GRE) value between the (SFMD)and
the joint histogram is used as an objective measure to evaluate
the fitness of the mapping function. A summary of the databases
we used in our study is presented in Table II.

As we have discussed in Sections III and IV, model selection
is the first and a very important learning task in mapping a
database and the objective of the procedure is to determine
both the number and the kernel shape of local clusters in each
class. This procedure is used not only in the data mapping for
decision making but also in the structure decomposition for
hierarchical visual explanation. Our experience has suggested
that an incorrect model selection will affect the performance
of data-classification based decision making. For the sake of
simplicity, we discuss this conclusion in the following 2-D
example. Let us form a simulated featured database with two
major features that well characterize the two targeted classes,
as it shown in Fig. 6 (Database B, see Table II). The ground
truth is that class 1 contains only one local cluster while class 2
contains two local clusters. With a model selection procedure

using the proposed criteria, the intrinsic data structure was
correctly identified. According to the principle of designing the
optimal structure of PMNN and visual explanation hierarchy,
the result of these criteria also determines the most appropriate
number of mixture components in the corresponding PMNN
and projected cluster decomposition. Two PMNN with different
architecture orders were designed and trained to determine
the classification boundaries between the two classes. The
classification results are shown in Fig. 6(a) and (b). The result
in Fig. 6(a) is with the right cluster number in Class 2, while
the result in Fig. 6(b) is with the wrong cluster number in
Class 2. From this simple experiment, we have shown that
the decision boundary with the right cluster number may be
much more accurate than that with heuristically determined
cluster number, since the decision boundary between class 1
and class 2 will be determined by four cross points in the first
case while in the second case the decision boundary will be
determined by only two cross points. It should be emphasized
that the error of data classification is theoretically controlled
by the accuracy in estimating the decision boundaries between
classes, and the quality of the boundary estimates is indeed
dependent upon the correct structure of the class likelihood
function.

As we have discussed before, although the knowledge
database contains both machine-localized and human-selected
cases, in clinical settings “unseen” and/or subtle cases con-
tribute the major false positives. We have also pilot tested the
PMNN method to the so-called “ classes” problem,
in which the disease pattern under testing could be either
from one of the classes, or from some other unknown
classes (the “unknown” class or the “intruder” class). Note that
the unknown class probability is often very hard to estimate
because of the lack of sufficient training samples (for example,
in the mass detection problem, the unknown classes include the
ROIsub over the normal tissues). In our experiment, PMNN
uses different decision rule from that of the “ classes”
problem: pattern belongs to class if both of the following
conditions are true: a) , and b)

. is a threshold obtained by decision-based
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(a) (b)

Fig. 6. The classification examples with a two-dimensional (2-D) simulated database (Dabase B, see Table II). (a) Class 2 contains two local clusters. (b) Class
2 contains one local cluster.

learning. Otherwise pattern belongs to the unknown class.
We observed consistent and significant improvement in classifi-
cation results compared with the pure Bayesian decision. Using
the ORL (Olivetti Research Laboratory, Cambridge, U.K.)
standard database (Database C, see Table II), our experience
has shown an increase of correct detection rate from 70% to
90% [14].

In the third experiment, we use the proposed classifier to dis-
tinguish true masses from false masses based on the features
extracted from the suspected regions. The objective is to reduce
the number of suspicious regions and identify the true masses.
150 mammograms, each of them contains at least one mass
case of varying size and location, were selected in our study.
The areas of suspicious masses were identified following the
proposed procedure with biopsy proven results. Fifty mammo-
grams with biopsy proven masses were selected from the 150
mammograms for training (Database D, see Table II). The mam-
mogram set used for testing contained 46 single-view mam-
mograms: 23 normal cases and 23 with biopsy proven masses
(Database E, see Table II) which were also selected from the 150
mammograms. All mammograms were digitized with an image
resolution of 100 m 100 m/pixel by the laser film digitizer
(Model: Lumiscan 150). The image sizes are 17922560
12 bpp. For this study, we shrunk the digital mammograms with
the resolution of 400 m by averaging 4 4 pixels into one
pixel. According to radiologists, the size of the small masses is
3–15 mm. The middle size of masses is 15–30 mm. The large
size of masses is 30–50 mm, which are rare in mammograms.
A 3-mm object in an original mammogram occupies 30 pixels
in a digitized image with a 100-m resolution. After reducing
the image size by four times, the object will occupy the range
of about seven to eight pixels. The object with the size of seven
pixels is expected to be detectable by any computer algorithm.

Therefore, the shrinking step is applicable for mass cases and
can save computation time.

After the segmentation, the area index feature was first used
to eliminate the nonmass regions. In our study, we set
7 7 pixels and 75 75 pixels as the thresholds.
corresponds to the smallest size of masses (3 mm), and an ob-
ject with a area of 75 75 pixels corresponds to 30 mm in the
original mammogram. This indicates that the scheme can de-
tect all masses with sizes up to 30 mm. Masses larger than 30
mm are rare cases in the clinical setting. When the segmented
region satisfied the condition , the region was
considered to be suspicious for mass. For the purpose of repre-
sentative demonstration, we have selected a 3-D feature space
consisting of compactness I, compactness II, and difference en-
tropy. According to our investigation, these three features have
the better separation (discrimination) between the true and false
mass classes. It should be noticed that the feature vector can
easily extend to higher dimensionality. A training feature vector
set was constructed from 50 true mass ROIsub and 50 false mass
ROIsub (Database D, see Table II). The training set was used to
train two modular probabilistic decision-based neural networks
separately. In addition to the decision boundaries recommended
by the computer algorithms, a visual explanation interface has
also been integrated with 3-D to 2-D hierarchical projections.
Fig. 7(a) shows the database map projection with compactness
definition I and difference entropy. Fig. 7(b) shows the data-
base map projection with compactness definition II and differ-
ence entropy. Our experience has suggested that the recogni-
tion rate with compactness I are more reliable than that with
compactness II. In order to have more accurate texture informa-
tion, the computation of the second-order joint probability ma-
trix is only based on the segmented region of the orig-
inal mammogram. For the shrunk mammograms, we found that
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(a) (b)

Fig. 7. The data mapping results (Database D, see Table II). -o- denotes true mass cases; -*- denotes false mass cases. (a) The mapping using compactness I. (b)
The mapping using compactness II.

Fig. 8. One example of the mass detection using the proposed approach (Database E, see Table II).

the difference entropy had better discrimination with 1. The
difference entropy used in this study was the average of values
at 0 , 45 , 90 , and 135.

We have conducted a preliminary study to evaluate the per-
formance of the algorithms in real case detection, in which 6–15
suspected masses/mammogram were detected and required fur-
ther clinical decision making. We found that the proposed clas-
sifier can reduce the number of suspicious masses with a sensi-
tivity of 84% at 1.6 false positive findings/mammogram based
on the testing data set containing 46 mammograms (23 of them

have biopsy proven masses) (Database E, see Table II). Fig. 8
shows a representative mass detection result on one mammo-
gram with a stellate mass. After the enhancement, ten regions
with brightest intensity were segmented. Using the area crite-
rion, too large and too small regions were eliminated first and
the rest regions were submitted to the PMNN for further eval-
uation. The results indicated that the stellate mass lesion was
correctly detected.

For further evaluation, receiver operating characteristic
(ROC) method may be employed. However, we do not feel
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ROC analysis will provide really a better evaluation but an
alternative method to this case. First, most ROC analysis
reported by others were based on different database thus are
not comparable since ROC results are highly data-dependent.
Second, ROC analysis only indicate an “overall” performance
with limitations at least in twofold: it is for multithreshold thus
the corresponding system may not be optimal to a particular
application where only one threshold is needed; and it cannot
provide a mathematically traceable feedback to improve the
performance of the system or the one component in the system.
Third, currently used FROC analysis package imposes several
assumptions on the distributions of the cases which are invalid
in most applications and particularly untrue in our situation. For
example, our assumptions about the data distributions is SFNM
that is clearly different from the restricted conditions imposed
by the application of existing FROC analysis algorithm. In our
approach, a quantitative mapping of the knowledge database
is performed with hierarchical SFMD modeling and should
be perfectly (at least in the theoretical sense) carried out by
the corresponding PMNN classifier. In other words, optimal
decision making should have already been achieved according
to the Bayesian rule. It is reasonable to acknowledge that
in order to compare the overall performance with the other
systems, an ROC study may be further conducted. We are
currently working on developing a new generation of FROC
analysis package with a caution to remove the forementioned
problems.

Another important consideration with the present approach
is the measure of quality in visual explanation [29]. This is not
a glamorous area, but progress in this area is eminently critical
to the future success of visual exploration [28]. What is the cor-
rect matrix for a direct projection of a particular multimodal data
set? How effective was a particular visualization tool? Did the
user come to the correct conclusion? It may be agreeable that
the benchmark criteria in visual exploration are very different
and difficult [28]. As shared by Bishop and Tipping [27], we
believe that in data visualization there is no objective measure
of quality, and so it is difficult to quantify the merit of a partic-
ular data visualization technique, and the effectiveness of such
a techniques is often highly data-dependent. The possible alter-
native is to perform a rigorous psychological evaluation using
simple and controlled environment, or to invite domain experts
to direct evaluate the efficacy of the algorithm for a specified
task. For example, we can compare the domain expert’s perfor-
mances with and without the system aid. In that case, the ROC
method may be used to evaluate the performance of our algo-
rithm when used by the radiologists. While the optimality of
these new techniques is often highly data-dependent, we would
expect the hierarchical visualization model to be a very effective
tool for the data visualization and exploration in many applica-
tions.

In summary, we employed a mathematical feature extraction
procedure to construct the featured knowledge database from
all the suspicious mass sites localized by the enhanced segmen-
tation. The optimal mapping of the data points was then ob-
tained by learning the generalized normal mixtures and decision
boundaries. A visual explanation of the decision making was
further invented as a decision support, based on an interactive

visualization hierarchy through the probabilistic principal com-
ponent projections of the knowledge database and the localized
optimal displays of the retrieved raw data. A prototype system
was developed and pilot tested to demonstrate the applicability
of this framework to mammographic mass detection.
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