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Channel Estimation for Multicarrier Modulation Systems Using a
Time-Frequency Polynomial Model
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Abstract—Channel estimation is a crucial aspect in the design
of multicarrier modulation systems. In this work, we propose a
channel estimation scheme based on polynomial approximation of
the channel responses in both time and frequency domains. The
proposed estimator is more robust to the variations of channel sta-
tistics. Our simulation shows that it has more than 5-dB improve-
ment over the existing methods under practical channel conditions.

Index Terms—Channel estimation, multicarrier modulation,
polynomial expansion.

I. INTRODUCTION

M ULTICARRIER modulation (MCM) is an effective tech-
nique for broadband wireless communications [1]. It par-

titions the entire bandwidth into parallel independent subchan-
nels to transmit parallel low-bit-rate data streams. Thus, MCM
has a relative longer symbol duration which provides great im-
munity to intersymbol interference (ISI) and impulse noise. The
independence among subchannels simplifies the design of the
equalizer and provides an easy method for transmitter optimiza-
tion. Since the channel information is required in both equaliza-
tion and transmitter optimization, channel estimation plays an
important role in MCM system design. Most channel estimation
schemes try to exploit the correlation of the channel responses
of subchannels to reduce the noise and improve the estimates,
though the subchannels are considered to be independent in prin-
ciple when performing signal detection. Minimum mean squared
error (MMSE) estimation can be obtained if the channel corre-
lation function of is known by using the singular value decom-
position of the correlation matrix [2]. However, in practice, the
correlation function is usually not known and the channel statis-
tics may vary by time. Our goal is to design an estimation scheme
under the condition that the channel statistics are not known or
not completely known. One such scheme proposed in [2]–[4] as-
sumes that the channel correlation matrix can be diagonalized by
a Fourier transform. The assumption is true when we consider in-
finite samples of the channel responses. In practice, we can only
have finite observations, which may cause severe leakage using
this type of approach.

In this work, instead of finding the eigenbasis of the channel
correlation matrix, we approximate the channel responses by
a certain model basis and minimize the estimation error by
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controlling the model error and residual noise. The polynomial
model can be used as such a model to approximate the fading
multipath channel if it is viewed as a smoothly varying function
[9]. The polynomial approximation is done in the time domain
in [6], [7] and in the frequency domain in [5]. In this paper,
we use the polynomial approximation in both the time and fre-
quency domains. Therefore, the noise can be further suppressed
because fewer coefficients need to be estimated. Comparing
to the Fourier transform used in [2]–[4], the error caused by
polynomial model approximation is bounded and hence is more
robust to the channel statistics and system parameters.

II. TIME–FREQUENCY POLYNOMIAL CHANNEL MODEL

FOR MCM SYSTEMS

The MCM system divides the whole bandwidth into
subchannels and modulates a block of data onto a set of sub-
carriers of corresponding subchannels. In most MCM systems,
the subchannels are divided evenly, and the bandwidth of the
subchannels is . Input data are first buffered to
blocks and then divided into bit streams. These bit streams
are mapped to some complex constellation points

at the th block. The modulation is implemented by
an -point inverse discrete Fourier transform (IDFT). Then the
modulated data are passed through a P/S converter to form serial
data . A cyclic prefix which is the copy of the lastsamples
of ’s is inserted before sending ’s to the channel. Now it
follows that the symbol duration is ; however, the actual
block duration is with a sampling rate .
For a system with kHz, , and , the
block duration is s. Such a system will be used in
the rest of this paper.

At the receiver, the prefix part is discarded. The demodula-
tion is performed by the discrete Fourier transform (DFT) oper-
ation. The demodulated data are the ’s. If the cyclic prefix
is sufficiently long, the interference between two MCM blocks
is eliminated and the subchannels can be viewed as independent
of each other, i.e.

(1)

where is the channel frequency response at of the
th block and is the corresponding channel noise. is

assumed to be a white Gaussian process with zero mean and
variance .

Because of this simple relationship, only a one-tap equal-
izer is needed for each subchannel at the receiver, i.e.,

where the equalizer coefficient is some function
of . For example, the zero-forcing equalizer is constructed
as . Then the decision is made upon . The
problem for us is to estimate .
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In wireless broadband communications, the channel impulse
response can be modeled as [8]

(2)

where ’s are independent narrow-band Gaussian processes
with zero mean and variance. All ’s have the same band-
width which is defined as Doppler frequency. defines
the delay profile describing the channel dispersion which is also

often characterized by the maximum delay . Three
types of delay profiles are used in this paper: TU, HT, and 2-ray.
The TU and HT delay profiles both have six paths [8], while the
2-ray delay profile has two equal power paths. We also assume
that the channel is normalized in our simulation, i.e., .

The channel responses ’s are the samples of
, that is, . It is ob-

vious that the Fourier transform of is band-limited by
and . Therefore, by discarding the high-frequency com-

ponents out of the band, we can reduce the noise and improve
the estimation. This is the idea used in [2]–[4]. However, the
problem is that we only have finite samples of in a practical
MCM system. The Fourier transform over these finite samples
may suffer severe leakage, which degrades the performance dra-
matically.

On the other hand, the band-limited nature of the channel re-
sponse suggests that the channel variation in the physical world
is smooth in both the time and frequency domains. We know
from the approximation theory [9] that such a smoothly varying
function can be approximated by projecting to a finite set of
basis functions. Moreover, since the MCM channel responses
are located in a time–frequency plane, it is natural to project the
responses over a time–frequency window

to a small set of polynomial basis functions around a center
point , i.e.,

for (3)

where and are the model orders for frequency and
time domains, respectively,

and

and
with and

.
The mean squared model error is then bounded by

(4)

Fig. 1. Bound on the mean squared model error.

where and are the power spectra of the channel
time- and frequency-domain correlation, respectively.

Without loss of generality, assuming and and
using the multipath Rayleigh fading model, this bound can be
derived as

(5)

The first term in (5) is determined by , while the second
term is determined by . The third term is actually deter-
mined by and is much smaller than the first two terms if
they are both smaller than one. To make the model error small,
we can choose a larger model order if and

. However, the goal for modeling is to express
the channel responses by a small number of model coefficients,
which means that we want to be small. The other way to re-
duce the above bound is to adjust the window dimensionsand
. For fixed , when is large, the first term is dominating,

then we should choose a smaller value ofto make the model
error small. On the other hand, whenis small and the second
term is dominating, then we should choose a smaller value of
. By carefully choosing the window dimensions, the time–fre-

quency model error can be limited to a certain level once the
Doppler frequency , maximum delay , and bandwidth
are fixed. It should be pointed out that, unlike using only a
time- or frequency-domain model [5]–[7], the model error of
the time–frequency model does not depend on the number of
subchannels .

Fig. 1 shows the upper bound of a mean squared model error
with and window size

according to model order . In this figure, we also show
the residual noise for SNRs of 10 and 20 dB. It shows that the
noise can be greatly reduced with a small penalty on model error.
Moreover, such a model approximation does not need to know
the actual channel correlation function.
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III. CHANNEL ESTIMATION WITH A POLYNOMIAL MODEL

Suppose we have chosen the appropriate model orders and
window dimensions such that

(6)

where and are defined at the bottom of
the page, with , for

and .
Then construct

with
as the temporary

estimation. ’s can be obtained either from training or from
the detected signal. Then

(7)

where is defined at the bottom of the page.
Using least square methods, we can get the estimation of the

coefficients of the polynomial basis from the temporary estima-
tion

(8)

where is the pseudoinverse of .
The channel estimation then can be constructed as

(9)

where

. Usually we fix the value of
and , i.e., fix the point of estimation inside the window and
slide the window to get all the estimations. Such an estimator
can be viewed as a two-dimensional filtering process. Moreover,
the polynomial basis has a symmetric property and a recursive
algorithm can be derived to implement the filtering which re-
duces the computation complexity.

With an estimation point chosen to be at the center of the
frequency domain window and an end point at the time domain

window, assuming , the estimation error from
(9) becomes

(10)

where

is the model error and

is the residual noise.
The model error , if

is a diagonal matrix.
This can be realized using the eigenbasis of the channel
correlation function. However, the statistics of the channel
must be known which is difficult in practice and also difficult
to implement. Then, for a model basis like the polynomial
model, the model error increases while the residual noise
decreases when the model order becomes smaller or
the window dimension becomes larger. The tradeoff can
be reached by adjusting the window dimensions and model
orders to the channel statistics.

IV. SIMULATION RESULTS

The MCM system used in the simulations is the system in-
troduced in Section II. Fig. 2 shows the comparison of mean-
squared estimation errors of the channel estimates based on ex-
pansions in both the time and frequency domains with those
based on expansion in either the time or frequency domain.
We can see that the estimation error with both time- and fre-
quency-domain expansions is about 3 dB less at an SNR of 10
dB compared to the frequency-domain expansion [5] and more
than 7 dB less compared to the time-domain expansion [6].

Fig. 3 shows the estimation error under different delay pro-
files with a Doppler frequency of 40 Hz. Fig. 3(a) shows the es-
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Fig. 2. Estimation error versus SNR (2-ray,f = 30Hz andT = 25�s; I�
K = 6 � 6 andM � N = 3 � 3).

(a)

(b)

Fig. 3. Estimation error versus SNR(M�N = 3�3). (a)I�K = 40�4
andT = 5 �s (b)I �K = 11� 5 andT = 17:2 �s.

timation error with a TU delay profile and a 2-ray delay profile
with the same maximal delay as TU and (b) shows the estima-
tion error with an HT delay profile and a 2-ray delay profile with
the same maximal delay as HT. The results using the Fourier
transform-based method of [4] are also shown for comparison.
With a finite number of subchannels, all the delay paths of the
channel have to be at the sampling instances of the system to
avoid leakage, otherwise severe performance loss occurs. For a
2-ray channel with s that is the maximal delay of TU,
the method in [4] exhibits a better performance since the two
delay paths at and s are both at the sampling
instance of the system, and hence there is no leakage caused
by Fourier transform. However, the leakage becomes large for
TU or HT delay profiles because not all their delay paths are
at the sampling instances and the performance of the Fourier
transform-based method is greatly degraded. If we consider the
Fourier transform as the approximation model basis, in those
cases with leakage, the proposed polynomial model method has
much less model error and therefore it has more than 5 dB gain
over the Fourier transform-based method than the SNR larger
than 10 dB and more robust to the channel statistics variation.
There is only a small difference between the TU or HT profiles
and its corresponding 2-ray channel with same, respectively.

V. CONCLUSION

In this paper, we studied the channel estimation problem for
the MCM system when the statistics of the multipath fading
channel are not known or are partially known. A channel esti-
mation approach based on a time–frequency polynomial model
of the channel response is proposed. The method exploits the
channel correlation in both the time and frequency domains.
It is shown in simulation that the method is robust to different
channel statistics.
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