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As the digital signal processing technologies 
advance, the use of adaptive arrays to combat 
multipath fading and to reduce interference becomes 
increasingly valuable as a means of adding capacity to 
mobile communications. 

There are many optimum adaptive array combining 
algorithms. Among them, the high resolution direction 
finding based constrained adaptive beamforming 
[l-31 and the reference signal based optimum spatial 
diversity array combining [4, 51 are considered most 
applicable in time division multiple access (TDMA) 
wireless communications and have attracted the 
most attention. In this work, we only consider the 
constrained adaptive beamforming approach. The key 
to making this technique effective in multipath fading 
environment is accurate direction of arrival (DOA) 
estimation of coherent or highly correlated signals. 

The optimal weighted subspace fitting (WSF) 
DOA estimation [2] algorithm has been previously 
proposed to identify the coherent signals in a mobile 
communication environment. But the WSF and 
other optimal DOA estimation algorithms such 
as deterministic maximum likelihood (DML) [6] 
require optimization of a multidimensional nonlinear 
criterion function. Since this may be a difficult and 
time-consuming task, less expensive suboptimal 
approaches such as the multiple signal classification 
(MUSIC) algorithm [7] and estimation of signal 
parameters via rotational invariance techniques 
(ESPRIT) [8] are often employed. The MUSIC 
algorithm involves one-dimensional search, compared 
with multidimensional search inherent in the optimal 
approaches. However, computational efficient 
suboptimal DOA estimation techniques have the 
drawback of severe degradation of the estimation 
accuracy [ 121 in the presence of highly correlated or 
coherent signals. (Coherent signals also cause signal 
cancellation [ 131 in adaptive beamforming algorithms 
such as minimum-variance distortionless response 
(MVDR) and linearly constrained minimum-variance 
beamforming (LCMV) algorithms [9-111.) The 
multidimensional methods were still conceived to 
be more appropriate than the suboptimal approaches 
for coherent interference environment, despite their 
computational requirements. 

communication and the high computational 
requirements of the previously proposed optimal DOA 
estimation approaches motivate us to reevaluate a 
preprocessing scheme referred to as spatial smoothing 
( S S )  which was proposed by Evans, et al. [14] and 
further developed by Shan, et al. [12, 151. SS has 
been shown to be effective in decorrelating coherent 
signals. It thus makes suboptimal MUSIC algorithm 
and MVDR and LCMV beamforming algorithms 
effective in coherent interference environment. Such 

The potential of adaptive array in wireless 
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a scheme was only applied to uniformly spaced linear 
arrays. Later, Friedlander and Weiss [20] revealed 
that SS is not limited to uniform linear arrays. In 
[20] it stated that “the forward smoothing can be 
performed on any array which can be subdivided 
into subarrays which have the same configuration, 
but are shifted with respect to each other.” However, 
they concluded the requirement is quite restrictive 
and therefore limits the types of arrays to which 
the backward/forward smoothing can be applied. 
They did not discuss the potential application of this 
technique in wireless communications where array 
with symmetric configurations are more relevant 
than arbitrary configurations (which includes both 
symmetric and nonsymmetric configurations). 
They developed SS with interpolated array [20, 211 
technique to perform an approximate SS for an 
arbitrary array configuration. 

The objective of this work is to further pursue SS, 
to decorrelate coherent signals using SS to achieve 
robustness in direction finding and to apply to mobile 
communications. We demonstrate that SS can be used 
on some two-dimensional arrays. By working on 
a smoothed data matrix obtained from SS, we can 
use MUSIC and ESPRIT effectively in a coherent 
interference environment and meanwhile achieve 
robustness in performance. 

and sufficient conditions on an array geometry for 
applying SS. They are: 1) such an array must have 
an orientational invariance structure, 2) its center 
array has an ambiguity-free array manifold, and 
3) the number of subarrays is larger than or equal 
to the largest number of mutually coherent signals. 
We proved a sufficient condition for applying the 
forwardhackward SS [23] (FBSS), which can further 
increase efficiency and estimation resolution. Finally, 
we extend the application of our results to ESPRIT. 

complexity of either MUSIC, ESPRIT, or adaptive 
beamforming. Also, it can be used in conjunction 
with MUSIC or ESPRIT algorithm to provide an 
initialization for the WSF method to get a more 
accurate DOA estimation [19]. 

with arrays of nonlinear geometry, ambiguity-free 
array manifolds were assumed. In [7] Schmidt 
discovered and defined the rank-n ambiguity in an 
array manifold. In [26], Lo and Marple proved the 
conditions for a rank-2 ambiguity. In [24] ambiguities 
of linear arrays were studied. However, constructing a 
nonlinear array free of up to rank-k ambiguities using 
only (k + 1) sensors remains a challenging problem 
[25]. In this work, we report a more thorough study 
on this issue. We proved the necessary and sufficient 
conditions for a three-sensor array manifold to be 
ambiguity free. We then identified several situations, 
for higher order sensor array manifolds, in which 

Specifically, we defined and proved the necessary 

The use of SS does not increase the computational 

In many papers that dealt with DOA estimation 

ambiguity may arise. Thus we get corresponding 
necessary conditions to design ambiguity-free center 
arrays and subarrays. 

In Section 11, we introduce MUSIC and SS. In 
Section 111, we prove the necessary and sufficient 
conditions on two-dimensional array for applying 
SS, and consider the FBSS technique for applications 
in two-dimensional arrays. In Section IV, we study 
the cause of ambiguities in a multipath signal 
environment. In Section V, we present some practical 
considerations and simulation results. In Section 
VI, we expand our results to ESPRIT. Section VI1 
concludes our work. 

II. ARRAY MODEL 

In this section, we briefly describe the array model 
for DOA estimation and beamforming. 

The mathematical model is given as follows. 
Consider an array of p sensors. Let d narrowband 
plane waves s1 (t) ,  s,(t), . . . ,sd(t) impinge on the 
array at incident angles Q,, . . . , Qd. There is also an 
additive white Gaussian noise vector n(t), where 
n(t)  = [n,(t) ,..., n,(t)lT, and n,(t), i = 1 ,..., p have 
zero mean and variance c2. The noise received by any 
sensor is assumed to be uncorrelated with signals and 
with noise received by any other sensors. The received 
signals of the array can be expressed as 

r(t) = As(t) + n(t) (1) 

where r(t) = [r, ( t ) ,  . . . ,r,(t)lT, and ri(t) is the received 
signal at the ith sensor, and A is a p x d matrix, p > d, 

A = [a(e, 1, . . . , a(e,)i (2) 

where a(Qi) is the steering vector associated with the 
arrival angle Qi. 

The array output covariance matrix has the form: 

R = E(r ( t )p ( t ) )  = AR,vAH + a2Z (3) 
where R, = E(s( t ) sH( t ) ) .  Let {A, 2 A, 2 ... 2 A p }  
and {v,, v,, . . . ,up}  denote the eigenvalues and 
corresponding eigenvectors of R. When the d 
incoming signals are noncoherent, and the matrix A 
is of full column rank, the MUSIC algorithm can be 
used to estimate the angles of the incoming signals as 
the peaks of the MUSIC estimates 

(4) 

However, when the signals are coherent, R, is 
then singular. The MUSIC algorithm is no longer 
applicable. In the case of a uniformly spaced linear 
array, with a sensor spacing A, the SS [12] algorithm 
can be applied to achieve the nonsingularity of the 
modified covariance matrix of the signals. This 
technique begins by dividing a uniform linear array 
with L sensors into K overlapping subarrays of size 
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p ,  with sensors { 1,. . . , p }  forming the first subarray, 
sensors (2,. . . , p  + 1 } forming the second subarray, etc. 
The spatially smoothed covariance matrix is defined as 
the average of the subarray covariances: 

. K  

k = l  

where Rk is the covariance matrix associated with the 
kth subarray, x,F is 1 he modified covariance matrix 
of the signals, and has been proved [12] to be full 
rank when K 2 d ,  Al is a p x d matrix consisting of 
steering vectors associated with the first subarray, 
The signals are thu 3 progressively decorrelated [ 161. 
However, linear arrays have limitations in the domain 
of estimable DOAs. It has been shown in [27] that E,  
can be decomposed as follows: 

- 1  
R,  = -CCH 

K 
where C = PAT wi.th P = diag(p, ,p2, .  . . , P d ) ,  and 

other. But only sufficient conditions were provided. 
In this section, we prove necessary and sufficient 
conditions on array geometries for implementing the 
general SS. 

LEMMA 1 For steering matrices A and B, given by 
A = [a(Bl), . . . ,a(@,)] and B = [b(e,),. . . , b(O,)], there 
exists a mapping relation B = AC if and only if C is a 
diagonal matrix. 

LEMMA 2 For K steering matrices A, ,A,,. . . ,AK, each 
Ai can be mapped to a steering matrix B if and only 
if there exists a mapping relation Aj  = AiCij for any i 
and j. 

The proofs of both lemmas are given in the 
Appendix. 

Consider an array that is divided into K subarrays. 
Suppose Ai and Aj  are the steering matrices associated 
with the ith and the jth subarrays, and there are d 
signals with incoming angles el , .  . . ,e,. Ai 

First, we give the following lemmas. 

When incoming $pals are closely spaced, the 
columns of both A and A, become almost linearly 
dependent [27]. The dependency increases drastically 
when some of sin(Oi), i = 1,. . . , d approach 1 for 
DOAs near 90". As a result, the performance of a 
linear array deteriorates quickly when some DOAs 
approach 90". The lack of performance robustness of 
a linear array is eken more severe when SS technique 
is applied, because in the smoothed covariance 
matrix, not only the steering matrix A , ,  but also A 
is ill-conditioned in the situation described above. 
A general SS technique that is robust and can be 
applied to directionally independent arrays is thus 
more desirable. 

I I .  TWO-DIMEN!;IONAL SS 

A. Orientational Invariance Structure 

According to [20], in general, forward smoothing 
can be performed on an array which can be 
subdivided into subarrays which have the same 
configuration, but are shifted with respect to each 

can be written as 

where aT(8,) = [e-j#il(e~),e-j~i~(ek), . . . ,e-j#;p(&)], k = 

1,. . . , d ,  is the steering vector associated with the ith 
subarray, and ( b i l ( O k ) ,  1 E { 1,. . . , p } ,  is the phase delay 
of the kth signal at the lth sensor of the ith subarray 
from the first sensor of the first subarray. We refer to 
the sensor of an array associated with the lth row of 
a steering matrix of the array as the lth sensor of the 
array. 

Let Aijl, 1 5 1 5 p,  represent the distance between 
the lth sensor in the ith subarray and the lth sensor 
in the jth subarray. Let Pijl represent the angle of the 
line on which these two sensors are located. If the ith 
and the jth subarrays are identical and have the same 
orientation, i.e., all Aijl for 1 = 1,. . . , p  are equal and 
all Pijr ,  1 = 1,. . . , p  are equal, then the phase delay of 
a signal with an incoming angle @k from each sensor 
in the ith subarray to the corresponding sensor in the 
jth subarray is the same according to the far field 
assumption. We denote this phase delay by @ i , j ( e k ) .  
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For any 1 E {l, . . . , p } ,  we have 

A I J l  7r 
@ a , j ( Q k )  = $ , / ( ek>  - 6 , 1 ( e k >  = 27r-sin ( ~ L J ,  - Ok + -) 2 x 

(9) 
then AJ = AICIJ,  where C,, is a diagonal matrix 
with the mth diagonal element exp(-j@,,,(Q,)>. The 
identical and orientational invariance properties 
between two subarrays guarantee a mapping relation 
between their steering matrices. 

On the other hand, if AJ = A,C, by Lemma 1, C 
should be a diagonal matrix and can be represented by 
C = diag{c,,(O,),c,,(Q,),. .. ,cdd(Qd)}. It requires that 

exp(-jd,l (ek>>ckk 

= exp(-j$,,(Qk)) for 1 = 1, . . . , p  (10) 

which can be simplified to 

6 , / ( e k >  - # , / ( e k >  = @ i j ( e k >  + 27rn2, for = 1, * .  ? p  

(1 1) 
where n can be any integer. The relation in (1 1) 
holds for all 8, in [0,360) only if AIJl = A,,, = . . .  = 
AlJP and P I , ,  = PI , ,  = . . = i.e., the ith and the 
jth subarrays must be identical and have the same 
orientation. Thus, we have Lemma 3. 

LEMMA 3 
associated with the ith and the j th  subarrays. The 
sensors in each subarray are numbered in the same 
sequence. There exists a mapping relation AJ = A,C,, 
if and only if the ith and the j th  subarrays are identical 
and have the same orientation. 

From Lemmas 2 and 3 ,  we have the following 

Suppose an array can be divided into 

Suppose A, and A, are steering matrices 

theorem. 

THEOREM 1 
K subarrays, each having a p x d steering matrix A,, 
i = 1,2,. . . , K.  All A,,A,, . . . ,A,  can be mapped to 
a p x d steering matrix B by A, = BD, if and only if 
all these subarrays are identical and have the same 
orientation. 

We call the array structure held by an array 
satisfying condition in Theorem 1 the orientational 
invariance structure. A more rigorous definition is 
given as follows. 

'3 
Fig. 1. Orientational Invariance sensor array geometry. 

DEFINITION 1 (Orientational Invariance Structure). 
An array has an orientational invariance structure if 
it can be divided into subarrays that are identical and 
have the same orientation. 

For an array with orientational invariance structure, 
we can consider each subarray as one element located 
at its first sensor. Then all these elements form a 
center array. A more rigorous definition for center 
array is given as follows: 

DEFINITION 2 (Center Array). If an array with 
orientational invariance structure is divided into 
subarrays (which can have overlap), then the 
collection of all the first sensors of these subarrays 
form a center array. 

6. Necessary and Sufficient Conditions 

Suppose an array has an orientational invariance 
structure. Moreover, its center array has an 
ambiguity-free structure and the number of subarrays 
is larger than or equal to the largest number of 
mutually coherent signals. The p x d steering matrices 
A, ,A,, . . . ,A, are associated with the subarrays 
1,2,. . . , K ,  respectively, and dk is the distance between 
the first sensor in the first subarray and the first 
sensor in the kth subarray. The angle ,& represents the 
direction of the line on which the first sensor in the 
first subarray and the first sensor in the kth subarray 
are located (see Fig. 1). We have 

Ak =AID, ,  k = 2, ..., K (12) 

where 

/exp (- j sin (,Bk - 8, + - 

exp (-j? sin (Pk - O2 + ;)) 

exp ( - j y s i n  (a - 8, + E)) 1 
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The covariance malrix of the kth subarray is thus 
given by 

(14) Rk =’ AIDkRsDk H H  A, -k a21 

- I -  

D? 
. 

center array is assumed to have ambiguity free array 
manifold, when K 2 max{Z,, l,, . . . ,I,}, all the b 
vectors associated with all the signals within a group 
of coherent signals are thus linearly independent. 

* 

where R, is the covariance matrix of the source. The 
spatially smoothed covariance matrix is defined as the 
average of the subarray covariances 

where E, is the modified covariance matrix of the 
signal given by 

We show in the following that R.9 is nonsingular. First, 
R, can be written as 
- 

rank((;) = rank 

Let C denote the Hermitian square root of ( l / K ) R s ,  
i.e., 

It follows that 
i?.9 = G G ~  (19) 

where G is a d x K d  block matrix given by 

Clearly, the rank of z,? is equal to the rank of G. 
Suppose there are q groups of signals in d incoming 
signals, with li, i = 1,. . . , q, correlated signals in each 
group, R, must be a block diagonal matrix with block 
size li, i = 1,. . . ,q. We can thus get a corresponding 
block diagonal matrix C. If we exchange the columns 
of a matrix, the rank of the matrix does not change. 
By grouping columns of similar elements, we can 
verify that 

1 

Cd-/,+l,d-/,+l b d-/,+l ” ’  

. . .  

. . .  Cd,d-l,+l b d 

cij is the ijth element of matrix C, and bi (i = 1,. . . , d )  
is the 1 x K row vector given by 

1 ps 
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deficient. We assume that R,, is the correlation matrix 
associated with the ith group of coherent signals. 
Thus, R,i has rank 1 and can be expressed as X,h,hF 
where Xi and hi are the corresponding eigenvalue and 
eigenvector of RSi. We have 

and 

C. Further Improvement 

To get a smoothed nonsingular covariance 
matrix R, by using the SS technique, we need 
K 2 max{l,,l,, . . . ,/,}. We can further reduce the 
number of subarrays by getting another K backward 
subarrays similar to the case in a linear array [23]. 
Although, the FBSS [23] can always be applied in a 
uniformly spaced linear array. For two-dimensional 
array, there is some requirements on the geometry for 
successful implementation of the backward method. 
The necessary condition [20] is that each subarray 
must have center symmetry. The sufficient condition 
we found is that the whole array is center symmetry 
in addition to its configuration conditions for applying 
ss. 

If an array is central symmetric, we can get K 
additional backward subarrays by reversing the order 
of the subarrays and the order of the sensors within 

L 

where Dkr is a diagonal matrix consisting of 1, 
diagonal elements of Dk which are associated with all 
the DOAs from ith group of coherent signals. Since 

K 
rank x,(Dk,h,)(Dk8h,)H 5 min(K,l,) (25) 

( k = l  

and 

i K 

dim ):A,(Dk,h,)(Dk,h,)H = 1, x 1, (26) 
( k = l  

thus E ,  is rank deficient if K 5 max(1, , l,, . . . , 1,). 
If the center array is not ambiguity free, then all 

the b vectors associated with all the signals within a 
group of coherent signals can be linearly dependent, G 
cannot be ensured to be of full row rank, and neither 
can R,. 

From Theorem 1 and the proof above, we get the 
following theorem. 

THEOREM 2 SS can be applied to a two-dimensional 
array to obtain a f u l l  rank smoothed signal covariance 
matrix if and only if an array has an orientational 
invariance structure, its center array has an 
ambiguity-free structure, and the number of subarrays 
is larger than or equal to the size of the largest group 
of coherent signals. 

each subarray. Let r,b(t) denote the complex conjugate 
of the output of the kth backward subarray for k = 
1, ..., K .  We have 

$ ( l )  = A,Dk(D,S(t))* + s*(t )  (27) 

where h(t) is an additive white Gaussian noise vector, 
D, is a diagonal matrix with the ith diagonal element 
given by exp(-j2r(dKp/X) sin(@,, - 8, + (7r/2))) and 
d K p  is the distance between the first sensor in the 
first forward subarray and the first sensor in the first 
backward subaxray. The angle P K p  represents the 
direction of the line on which the two sensors are 
located. 

The covariance matrix of the kth backward 
subarray is given by 

R; = A,D,R~;D,HA~' + a21 

R$ = E(D;s*(t)s'(t)D;) = DiRfD;. 

(28) 

with 

(29) 
Define the spatially smoothed backward subarray 
covariance matrix IFb as the average of these subarray 
covariance matrices, i.e., 

. K  
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where 
. K  

k=  1 

and define the forwardbackward smoothed covariance 
matrix i as the average of in (15) and Rb, Le., 

It follows that 
- i?,+R: R, = - 

2 ’  (33) 

We can show, in a similar way as in the case 
of a linear array [23],  that the modified source 
covariance matrix k, is nonsingular as long as 2K 2 
max{ll,l,,. . . , lq} .  

IV. AMBIGUITY-FREE ARRAY STRUCTURE 

To perform SS. we need an ambiguity-free center 
array manifold. Also, to perform MUSIC, we further 
require ambiguity free subarray manifolds. Ambiguity 
arises when a steering vector can be expressed as a 
linear combination of other steering vectors in an 
array manifold [7]. For a uniformly spaced linear 
array, rank-1 ambiguity [7] cannot be avoided since 
the DOAs which are “mirror images” with respect 
to the array line, have the same steering vector. This 
limits the range of DOAs estimable by a uniformly 
spaced linear array to within 180”. Suppose an 
array has p elements, then rank-p [7] ambiguities 
cannot be avoided. In this paper, an ambiguity 
free array manifobd of an array of p sensors refers 
here to rank-(p - I) ambiguity free. Generally, to 
avoid ambiguity, an array used for high-resolution 
DOA estimation must have a proper structure. An 
ambiguity-free array manifold has been assumed in 
several papers [8, 17, 191. Our attempt is to identify 
all the situations i n  which ambiguity may arise. One 
of our guidelines Ln designing arrays is to avoid these 
identified ambiguities. 

THEOREM 3 In an azimuth-only system, the necessary 
and suficient condition for an ambiguity-free 
three-sensor array manifold is that all these three 
sensors are not on one line and that the distance 
between any two sensors is less than or equal to X/2. 

The proof is given in the Appendix (see Fig. 2). 
We can see in general that 1) rank-1 ambiguity 

occurs not only in uniformly spaced linear arrays 
but also in rectangular arrays with sensors having a 
uniform spacing of X / 2  along either x-axis or y-axis, 
2 )  rank-2 ambiguity occurs in an array that consists of 
two parallel lineal- arrays with an identical uniform 
sensor spacing that is larger than X/2, 3) rank-3 
ambiguity occurs in an array that consists of three 

.-  

I 

(b) 

Fig. 2. Three-sensor array structures that can cause ambiguities. 

parallel linear arrays with an identical uniform sensors 
spacing that is larger than X/2, and 4) higher order 
ambiguity occurs if more than rk/2] sensors are on 
one line in a k sensor array or if an array consists 
of m parallel linear arrays with an identical uniform 
sensor spacing that is larger than X/2Lm/2]. These 
situations are shown schematically in Fig. 3(a)-(d). 
In Fig. 3(b) and (c), the angles 6‘ and a satisfy the 
following constraint: 

d d 
x x 27r- sin(c-u) + 2k7r = 27r- sin(@, k E {1,2,. . .}. 

(34) 

In Fig. 3(d), the angles 0, p, and a satisfy the 
following constraint: 

d d d 
x x x 27r- sin(a) + 2k17r = 27r- sin@) + 2kz7r = 27r- sin(8) 

(35) 

where k ,  ,k, E { 1,2,. . .} and k,  # k,. 

necessary to avoid these identified situations. 
To get an ambiguity-free array manifold, it is 

V. IMPLEMENTATION A N D  SIMULATION RESULTS 

A. Some Practical Considerations 

To determine the source coherency structure, we 
can use smoothed rank profile (SRP) [28]. On the 
other hand, we can estimate the maximum number 
of incoming angles according to the multipath 
environment. In this work, limited by space, we 
assume the number of incoming signals is given. 

In practice, we can perform FBSS by setting up a 
special data matrix. Specifically, for the nth snapshot 
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(a) Rank-1 ambiguity. (b) Rank-2 ambiguity. (c) Rank-3 
ambiguity. (d) High-order ambiguity. 

Fig. 3. High-order array structures that can cause ambiguities. 

follows: 

As we know, more robust results can be obtained 
from data domain rather than from covariance domain 
[22]. We can proceed with MUSIC [22] algorithm or 
MVDR [lo, 221 beamforming algorithm based on A 
instead of k. 

an array should satisfy all conditions aforementioned. 
An omnidirectional circular array has been a 
conventional choice for mobile communications [ 1, 21, 
and there have been active research efforts to find a 
preprocessing scheme for the circular array to handle 
the coherent interference [29]. However, we can see 
clearly from our discussion that a single circular 
array is not orientational invariant. Therefore it does 
not satisfy the necessary condition for applying SS. 
This implies that the circular array cannot overcome 
the coherent interference by using the SS technique. 
For some circular arrays with central symmetric, we 
can apply FBSS to handle two coherent signals. To 
handle more than two coherent signals, several parallel 
circular arrays have to be used. 

An array needs to be chosen for applying SS. Such 

B. Simulation Results 

In this section, we present some simulation results 
on MUSIC algorithm to show the applications and 
effectiveness of our SS and FBSS. We choose a 
square array, which has an orientational invariance 
structure, central symmetric, and a sensor spacing less 
than X/2. 

EXAMPLE 1 
signals are inevitable. Fig. 4 shows a typical example 
of the distribution of scatters in a mobile radio 
environment [3 11. We can treat all the reflected signals 
from local scatterers as coming from a super position. 
Those reflected signals from far away scatterers such 
as high rise buildings or mountains are from another 
super position. Each group of local scatterers spans a 
small angle with respect to the base station. there are 
many reflected signals within each small angle spread. 
These angles cannot be resolved even with high 
resolution MUSIC algorithm. They will be treated 
as one signal that suffers from flat fading. Thus the 
necessary angles to be estimated is seven in Fig. 4. 
There are two groups of coherent fading signals with 
three and two coherent signals in each. The others are 
noncoherent fading signals. 

We use a dense square array of sixteen sensors 
as the base station antenna. The array contains 4 
subarrays each of 9 sensors. The spacing between 
two neighboring sensors is 0.45X. The wireless 
communication environment in Fig. 4 is simulated. 
The array receives signals from four mobile users. 
All of them move at 60 m a .  The carrier frequency 

In a fading wireless channel, coherent 
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0.45X 
exp ( -.i2.ir(.f0 + .fd) '7 . (3 . c o s ( ~ ~ j ) )  

exp ( - i 2 7 r ( . ~  + LA 7 0.45X (3 . sin(Qj,,))) 

is 900 MHz. The modulated data rate is 24.3 ksyds ,  
which is the same as in IS-136 standard (an Electronic 

Doppler frequency fd,,, = 80 Hz. There are 40 
reflected signals from each local scatterer or each 
distant scatterer. These signals uniformly span a 4" 
angle. The combined signals-to-noise ratio is 10 dB. 

is a 16 x 1 steering vector 

Industry Associati on Interim Standard). The maximum S ( t )  = [s,,,(t> ,. . . ,s,, , ,( t) ,S2,~(t), . . . ,  

S2,40(t),...,S?,l(t),. ..,s7,d,(t)IH (41) 

is a signal vector, s,,k(t) is the kth reflected signal 
from the nth group of scatterers 

The received array data is given as 

r(t) = A * s(t) + n(t) (39) S,,k(t) = &j exp(j2r(fdn,k ' + $n,k)). (42) 

where the steering matrix A = [A,,A,, . . . ,A7]; A, = 
[ql, q 2 '  * .  . , q 4 0 1  

The phase distortion +n,k is uniformly distributed 
in [0,27r]. The Doppler frequency f dn,k = fd,,, x 
~0~(27r(k - 1)/40). k = 1,. . . ,40 

= Cn1(t>,...J$&)lH (43) 
exp ( - 1 ~ 6  + f d )  e) 

is a noise vector. 
Reflected signal for user 1 is from 10" to 14", 20" 

to 24" and 100" to 104". Reflected signal for user 2 is 
from 120" to 124". Reflected signal for user 3 is from 
200" to 204" and 220" to 224". Reflected signal for 
user 4 is from 300" to 304". 

A total of 162 samples are used. We apply FBSS 

a,. = 
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Fig. 5. DOA estimation of four groups of coherent signals at 
(10",20", loo'), (120"), (200",220"), (300") based on 

sixteen-sensor square array. 

further perform constrained beamforming and thus can 
achieve spatial division multiple access (SDMA) [32] 
in a multipath environment. 

EXAMPLE 2 In the previous examples, we 
demonstrated the effectiveness of SS using square 
arrays. Square arrays are efficient in terms of sensor 
reuse rate. One can also use other kinds of planar 
arrays which satisfy the necessary and sufficient 
conditions stated in Section 111. 

An alternative way of using planar arrays to 
cover all the azimuth angles is to use two crossed 
uniformly spaced linear arrays. Spatial smoothing and 
DOAs estimation can be done on each linear array. 
Ambiguities related to linear arrays can be largely 
avoided by searching for common estimated DOAs 
from both arrays. However we show in the following 
that the use of two crossed linear arrays sometimes 
increases the complexity. 

We used two crossed linear arrays each of nine 
sensors. We divided each linear array into two 
subarrays each of eight sensors. The spacing between 
two neighboring sensors is 0.45X. We use these two 
crossed linear arrays to receive the same transmitted 
signals described in Example 1. Fig. 6(a) shows the 
DOA estimation using the horizontally positioned 
array. Two signals at 10" and 20" cannot be resolved. 
Fig. 6(b) shows the result of DOA estimation using 
the vertically positioned array. The final decisions on 
the DOAs are decided based upon the common peaks 
in these two figures. We need to search for peaks of 
DOAs twice. 

EXAMPLE 3 
a spacing of 0.45X between neighboring sensors to 
receive two coherent signals with DOAs at 75" and 
100". The signal-to-noise ratio (SNR) is 20 dB. A 
total of 500 samples are taken from the array each 
time. We apply SS and FBSS separately. Fig. 7 shows 
that the DOA estimation resolution achieved by a 
central symmetric array is significantly improved by 
using the FBSS method. The standard deviation is 
averaged over 200 estimated DOAs. 

We use a nine-sensor square array with 

EXAMPLE 4 We use a nine-sensor square array to 
receive two coherent signals, one is at an azimuth of 
40" and an elevation of 30", and the other is at an 
azimuth of 50" and an elevation of 60". The SNR is 
20 dB. There is a random phase delay from ( 0 , 2 ~ )  
between these two signals at each snapshot. The 
number of samples taken is 500. By using FBSS and 
MUSIC, we obtain the result in Fig. 8. It demonstrates 
that a planar array enables us to perform FBSS and 
DOAs estimation in a 3D domain while a linear array 
or two crossed linear arrays are not capable of doing 
that. 

FBSS 
60, 

0 

Fig. 6 .  DOA estimation of four groups of coherent signals at (10",20",100"), (120"), (200°,220"), (300") based on two acrossed linear 
arrays. (a) Horizontally positioned linear array. (b) Vertically positioned linear array. 
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Fig. 7. Standard dwiation of DOA estimation using SS and 
FBSS. 

:"3 
6 1 

Fig. 8. DOA estimation of two coherent signals at azimuth of 
40" and elevation of 30", and azimuth of 50" and elevation of 

60", respectively. 

VI. SS FOR ESPRIT 

Similar to MUSIC, the ESPRIT algorithm [8] is an 
approach to signal parameter estimation. It exploits an 
underlying data model at significant computational 
savings. The ESPRIT algorithm is also limited to 
estimating parameters in noncoherent incoming 
signals. The convmtional SS can be incorporated into 
ESPRIT [30], but it requires the center array to be a 
uniformly spaced linear array. In this section, we show 
that our scheme also works for the ESPRIT algorithm 
to estimate parameters in a coherent interference 
environment. 

In the ESPRIT algorithm, we consider d 
narrowband plant: waves with incident angles e l , .  . . Od, 
and wavelength A ,  impinge on a planar array of m 
sensors (m  is even), arranged in m/2  doublet pairs. 
The displacemenl vector is the same for each doublet 
pair, but the locaiion of each pair is arbitrary. The 
sensor output x(t:  is given by 

(44) 

where n(t) is a white Gaussian noise vector. A and 
A@ are the steering matrices corresponding to the 
first sensors and the second sensors in all pairs, 
respectively. The matrix Q, is a diagonal d x d matrix 
of phase delays between the doublet sensors for the 
d signals. The sensor output covariance matrix R, is 
thus measured by 

A full rank matrix R, is assumed when the 
ESPRIT algorithm is performed. If some of the 
incoming signals are coherent, R, will not be a 
full rank matrix and the ESPRIT will fail. The SS 
technique we introduced in the previous sections can 
then be applied here to get a modified full rank signal 
covariance matrix. 

We consider each doublet sensor pair in the array 
used by ESPRIT algorithm as one element. Then the 
array consists of m/2  elements. If this array has an 
orientational invariance structure with K subarrays and 
the corresponding center array has an ambiguity-free 
structure, the sensor output at the kth subarray is given 
by 
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Matrix Dk is a diagonal d x d matrix of the phase 
delays in the form given in (13). The corresponding 
covariance matrix Rxk is given by 

A smoothed output covariance matrix R, can thus be 
defined as 

H R x = , c R x k = (  l K  A 1 ) R . y (  " ')  + g 2 1  

i= l  A1 @ A1 @ 

where is the modified signal covariance matrix 
as defined in (1 6). As proved in Section 11, R.y is of 
full rank if K is larger than or equal to the size of 
the largest group of coherent signals. We can now 
successfully perform ESPRIT based on R',. We can 
also use FBSS to further reduce the number of sensors 
required and to improve the estimation resolution if 
the array of m/2  element is central symmetric. 

Although SS enables ESPRIT to estimate DOAs 
in a coherent interference environment, the estimation 
is still limited to identifying DOAs within 180" in an 
azimuth-only system. Hence, in terms of performance 
robustness to DOAs, our SS is more  effective for  
MUSIC than for ESPRIT. 

EXAMPLE 5 A twelve-sensor array shown in Fig. 9 
is used in this example to receive two coherent signals 
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Fig. 10. FBSS and ESPRIT for DOA estimation of two coherent 
signals at 70" and 80". 

in conjunction with MUSIC, all the subarrays must 
also be ambiguity free, and the number of sensors 
in each subarrays must be larger than the number of 
incoming signals. For ESPRIT, two identical arrays 

used each satisfying the conditions for applying SS 
and MUSIC. 
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When a nonlinear array is central symmetric, the - _ _  - *  
,-. -____. - _ _ _ - * . ' .  

at 70" and 80". This array consists of two overlapping 
nine-sensor square arrays. Each sensor in one square 
array and its counterpart in another form a doublet 
pair. These nine doublet pairs form an array which 
has orientational invariance structure and is central 
symmetric. The spacing between two neighboring 
sensors is 0.45X. The doublet spacing for ESPRIR 
is 0.45X. The SNR is 20 dB. A total of 2000 trials are 
run. A histogram of the results is given in Fig. 10. We 
apply FBSS first and then apply the ESPRIT. The two 
angles are clearly identified. 

VII. CONCLUSIONS 

To make constrained adaptive array beamforming 
and eigen-decomposition based DOA estimation 
algorithm effective in a coherent interference mobile 
channel environment, and to decorrelate coherent 
signals from arbitrary directions, we analyzed the 
SS on two-dimensional arrays. In order to apply 
SS to a two-dimensional array, this array must have 
an orientational invariance structure and its center 
array must be ambiguity free. Also the number of 
subarrays must be greater than or equal to the largest 

d d 

i= 1 i=l , i#l  

(49) 
This means that b(8,) is a function of variable 8,, 
which contradicts the definition that b(B,) is only 
a function of 8,. Thus the assumption that C is a 
nondiagonal matrix is false. C has to be a diagonal 
matrix with cii = b(Oi)/u(Oi). 

If part: 
Obviously, B can be any of {Al ,&.  . , ,AK}. 

Only if part: 
If each Ai can be mapped to a steering matrix B ,  

by definition there exist Ci, C, such that Ai = BC,, 
Aj  = BCj. By Lemma 1, Ci is a diagonal matrix. So 
C;' exists and is also a diagonal matrix. We have 
A j  = A,C;'Cl. Let Cij = C;'Cj, Cij is the product 
of two diagonal matrices. So Cij is also a diagonal 
matrix. A j  = A&,. 

If part: 
If sensors A, B ,  and C are not on one line and 

their mutual distance is less than X/2, without loss 
of generality, we let sensor A be the first sensor in 
the array, B the second, and C the third. The steering 

PROOF OF LEMMA 2 

PROOF OF THEOREM 3 
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where 4 denotes phase delay. If the distance between 
any two sensors is < X/2, the phase delay $,(ei) and 
$,(ei), i = 1,2,3, are real numbers from (-n,n). 

corresponding to three incoming signals at different 
angles is a special case of the general array in [26, 
Lemma 21. By Lemma 2 in [26], V is nonsingular 
with possible exception in one of the following three 
situations. 

1) When 4,(8,) = $,(e,), i.e., the two incoming 
signals are symmetric with respect to the line on 
which sensors A and B are located. Note that 

Note that the steering matrix of the array 

When $1(01>-$2(@1> =4i(e ,>-$ , (e ,> ,  det(V) = O  
if and only if exp(-j4,(BI)) = exp(-j4,(8,>> or 

Since the mutual distance between A, B ,  and C 
are less than X/2, 42(4>9 4,(e2>, 41 (0,) - $,(e2> 
and 4,(03) - @,(e,) are all real numbers in (-T,T).  

exp(-j4,(8,)) = e~p(-j$,(0~)) if and only if $,(e,) = 

exp(j61(02> - j 4 2 ( e 2 ) )  = exp(j41(e3> - j42(e3>>* 

42(02). exp(j4, - j 4 2 ( 0 2 > >  = exp(j41 ('93) - j$,(e3>> 
if and only if 41 (02) - 42(&> = 41 (63) - 42(03>. 

Since A, B ,  and C are not on one line, if O1 and O2 
are symmetric to the line connecting B and C,  they 
cannot be symmetric to the line connecting A and B or 

we have 4,(6,> # 4,(0,>. Since el, B,, and 0, are three 
different incoming angles, if 8, and 0, are symmetric 
to the line connecting B and C ,  8, and 83 cannot be 
symmetric to the line. That is, if $,(8,> - 4,(8,) = 

A and C. That is, if 4,(Q,> - 4,(Q1> = 4,(Q2> - 4,(0,>, 

41 - we have $1 - 42(O2)  # - 

When 4,(Bl) = 4,(B,), det(V) = 0 if and only if 
4,(0,) = 4,(B2) or 41(03) = #,(e,). Since these sensors 
are not on one line, if 41(01) = &(B,), we have 
q5,(O1) # $,(e2). Since 0 , ,  8, and Q3 are three different 
angles, when 
to the line, O3 and 0, can not be symmetric to the 
line, i.e., if $,(8,) = $,(8,), then we get 41(83) + 
$,(e,). Thus, when $,(S1> = $,(e,), the matrix V is 
nonsingular. 

2) Similarly, we can prove that when 4,(B,) = 
4,(B,), the matrix V is nonsingular. 

and 8, are symmetric with respect 

3) When 1 - 4,(Q2> = 4,(4> - 4,(0,>, i.e., 
4,(4> - 4,(4> = 4,(Q,> - 42(Q,>, 4 and 02 are 
symmetric with respect to the line connecting sensors 
B and C. Note that 

Thus, when 4,(e,> - 42(01) = 41(02> - 42(02>7 
the matrix V is nonsingular. 

which cause the singularity of the matrix in 
[26, Lemma 21 will not cause the singularity of 
three-sensor steering matrix if three sensors are not 
on one line and their mutual distance is less than X/2. 
Therefore the matrix V is full rank. 

If the spacing between any two of the three sensors 
is not larger than X/2, and there is at least one pair 
in these three sensors with a spacing of X/2, then the 
only situation that the phase delay q!1,(0,) and 4,(Bi), 
i = 1,2,3, are not all in (--n,~) is when one of the 
incoming signals is from the direction parallel to a 
line on which the two sensors with spacing X/2 are 

Therefore, we conclude that all the three situations 
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located. The other two signals can be either from the 
opposite direction or from other directions. If one of 
the other two signals is from the opposite direction, it 
can be easily proved that the corresponding steering 
matrix is full rank. If the other two signals are from 
the two other different directions, then one of 4,(8,), 
n = 1,2, i = 1,2,3 is equal to n and the rest are real 
numbers from (-n,n). Similarly, we can prove that 
the matrix V is of full rank. 
Only if part: 

If the conditions in Theorem 1 are not satisfied, 
rank-1 or rank-2 ambiguity occurs for some incoming 
signals. These situations are shown schematically in 
Fig. 2(a) and (b). In Fig. 2(a), the relation between Q 
and cy is 

d d 
x x 27r- sin(8 - 0) + k27r = 2n- sin(8 + a )  

kE{1,2, ...}. (55)  

In Fig. 2(b), the relation between 8 and a is 

d d n  
x x 2n- sin(cr) + k27r = 271- sin ( - 8) , 

k g  {1,2, ...}. (56) 
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