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MIMO Multicarrier Communication Systems

Xiaowen Wang and K. J. Ray Liu, Fellow, IEEE

Abstract—The multicarrier modulation (MCM) using multiple
antennas is a promising technique for broadband communica-
tions over mobile wireless channels. In this work, we investigate
the channel estimation problem for the MCM system with mul-
tiple transmitter and receiver antennas. The difficulty of such a
problem is that the number of the channel parameters increases
proportionally with the number of transmitter antennas while the
observations at the receiver do not. A model-based channel esti-
mation framework is proposed to identify the multiple channels
simultaneously. Based on this framework, we further discuss the
identification condition and the training sequence design by taking
into account both the model error and residual noise. Finally,
we show the performance of the proposed model-based channel
estimation scheme using two types of models, Fourier-trans-
form-based model and polynomial model. We also show the
system performance of two space–time codes using the proposed
channel estimation algorithm.

Index Terms—Channel estimation, multicarrier, multiple-input
multiple-output (MIMO).

I. INTRODUCTION

TO SUPPORT the broadband applications in wireless
communications, a system has to combat the serious

impairment of the wireless channel, namely the multipath and
fading. Multicarrier modulation (MCM) is considered as an
effective technique for wireless broadband communications
[1] for its great resistance to the intersymbol interference
(ISI) caused by the multipath effect. The multiple-input mul-
tiple-output (MIMO) system that uses multiple antennas to
exploit the diversity in the channel is very effective to combat
the other serious impairment, the fading effect. It has been
proved that the channel capacity is proportional to the number
of the transmitter or receiver antennas [32]. Many spatial-tem-
poral signal processing techniques have been developed [28]
to exploit the diversity gain. For the case of multiple receiver
antennas, optimal combining is developed to make the best
use of the information received by different antennas [27].
For the case of multiple transmitter antennas, the space–time
coding and modulation schemes are designed to achieve higher
diversity gain [29]–[31]. Since the differential detection is hard
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to design for the systems with multiple transmitter antennas,
most MIMO MCM systems are designed with the assumption
that the channel information is known.

Various channel estimation schemes are proposed for the
single antenna MCM communication systems [6]–[11], [13],
[14], [16]–[18]. The channel estimation in MCM systems needs
to estimate the channel responses of all subchannels which are a
large number of parameters. However, those channel responses
are not independent but correlated with each other because the
physical channel cannot vary randomly. The channel estimation
can be greatly improved by exploiting such correlation. One
way to exploit the correlation is to model the channel responses
by some efficient channel models and estimate a much smaller
set of model coefficients instead of the large number of channel
responses. The most popular finite impulse response (FIR) filter
channel model is used in [7], [8], [10], [11], and [14], while the
authors in [15]–[18] use the the other type of model, namely
the polynomial model.

If there is no cochannel interference, the channel estimation
algorithm developed for the single antenna system can be ap-
plied to different receiver antennas for the system that only uses
multiple receiver antennas. The real challenge is the channel es-
timation for the system with multiple transmitter antennas. The
problem becomes more difficult in this case because we have
to estimate multiple sets of channels corresponding to different
transmitter antennas. It is impossible to directly estimate these
channel responses if the amount of training data does not in-
crease. So either we have to send duplicate training data to train
each channel separately as in [23], or we have to use an efficient
channel model to reduce the number of parameters required to
estimate, for example, the FIR channel model used in [19]–[22]
and [24]. Only if we express the channel efficiently enough,
i.e., using a small enough number of model coefficients, can
we identify the channel. Applying the modeling idea, we de-
velop a more general framework to estimate the channel for the
MCM system with transmitter diversity. This framework does
not assume any specific underline model and can be used on
any window of observations.

Although the efficient channel model is crucial to identify the
MIMO channels, it causes model error, which is not considered
in [19]–[22] and [24]. Therefore, a tradeoff has to be made in
choosing the model basis. Furthermore, we recognize that be-
sides using the appropriate model to capture the major features
of the channel, the training sequences sending from different
transmitter antennas have to be carefully designed in order to
identify the channel. The training sequence design problem is
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Fig. 1. (a) MCM systems with multiple antennas. (b) MCM transmitter and receiver.

discussed in [19], [21], [22], and [24]. The optimal training se-
quence design rule based on the FIR channel model is given
to minimize the residual estimation noise in [22]. However, be-
cause the channel estimation error consists of residual noise as
well as model error, we address the training sequence design
problem together with the model selection to minimize both
model error and residual noise.

In the rest of the paper, we first introduce the MIMO
MCM systems with multiple transmitter antennas. Then the
model-based channel estimation framework for such a system
is derived and analyzed. Based on the analysis, the training
sequence design and model selection are discussed. Finally, we
use two types of models, the Fourier-transform-based model
[6], [12] and the polynomial model in [15] and [17] as exam-
ples to demonstrate the performance of the channel estimation
schemes in computer simulations.

II. SYSTEM AND CHANNEL MODELS

A. MIMO MCM Systems

Fig. 1 shows a schematic diagram of an MIMO MCM system
with two transmitter antennas and two receiver antennas. The
number of transmitter antennas is dentoted as and the
number of receiver antennas as . As shown in Fig. 1, one

block of MCM signal goes through the space–time encoder
to form blocks of MCM signals. The transmitter of the
MCM system at the th transmitter antenna and the receiver
at the th receiver antenna are shown in Fig. 1(b). The whole
bandwidth is divided into subchannels. The th block
of signal generated by the space–time encoder consists of
subsymbols , . Then the modulation
is implemented by -point inverse discrete Fourier transform
(DFT), i.e., ,

. The modulated data pass through a P/S con-
verter to form the serial data . A cyclic prefix of length

is inserted before sending out . The cyclic prefix is
constructed by , .
Then this signal goes through a transmitter filter and
transmits to the channel.

The received signal first goes through the front end
filter . Then, the cyclic prefix is discarded
and the received signal is demodulated by the
DFT, ,

.
Suppose the compound filter of the transmitter and receiver

antenna has a flat spectrum in the band of interest
[13], then the effect of the transmitter filter and receiver filter
can be ignored. Furthermore, if the cyclic prefix is longer than
the channel time delay spread, then there is no ISI between two
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MCM symbols. Then the subchannels can be viewed as inde-
pendent of each other, i.e., the received signal of the th sub-
channel in the th block at the th receiver antenna is

for (1)

where is channel response from the th transmitter
antenna to the th receiver antenna, and is the noise
at the th receiver antenna. The noise is assumed to be white
Gaussian noise with zero mean and variance of and indepen-
dent of different , and , .

The detection and decoding are done over . The gen-
eral detection metrics is

(2)

where the and are summed over one space–time codeword.
The detected signal is the transmit sequence that minimize this
metric. The knowledge of the channel responses is
necessary for most of space–time coding schemes. It is also ob-
vious that at each receiver antenna, we need to estimate
sets of channel responses for , which
makes the channel estimation problem more challenging.

B. Wireless Channels

A fading multipath channel caused by both terrain and motion
is generally described by [33], [35]

(3)

where is the baseband impulse response, de-
note the different path delays, and are independent
complex Gaussian processes with variance . is as-
sumed to have the same normalized correlation function, i.e.,

. Then the channel frequency
response is .

Different statistical distributions are used to characterize
. Rayleigh is one of them that is often used to describe a

scenario where no line of sight path exists. The time domain cor-
relation function of the Rayleigh fading is ,
where is the zeroth-order Bessel function, and is the
Doppler shift describing the variation of the channel response
along .

The multipath effect is characterized by the delay profile
which consists of and . The maximal delay spread is
defined as

(4)

Fig. 2 shows two typical delay profiles, typical urban (TU) and
hilly terrain (HT).

The discrete expression in Section II-A is the sampling of the
continuous channel response with

(5)

Fig. 2. Delay profiles (a) TU (b) HT.

where is the block duration and
is the bandwidth of the subchannel.

We assume that all the channels from different transmitter
antennas to different receiver antennas have the same delay and
fading property, i.e., the same delay profile [4].

III. MODEL-BASED CHANNEL ESTIMATION

In this section, we begin to consider the channel estimation
problem at th receiver antenna. The estimation scheme devel-
oped here can be applied to all receiver antennas to obtain all
the channel estimations. Hence, we will omit the subscript .

We assume that training sequences are sent
simultaneously from all transmitter antennas. Then con-
sidering a window of received samples

, write (1) in
the matrix form we have

(6)
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where and
, with

and
, for

and .
If we only have one transmitter antenna, then and

degenerate to and . Because is
a square matrix, we can get a channel estimate directly by
matrix inversion as . However,
if , the number of channel responses required to
estimate becomes , which is times of that in the single
transmitter antenna case, but we still only have observations.
Our solution is to use an efficient model to reduce the number
of the parameters that need to be estimated.

A. Efficient Channel Modeling

The channel responses can be projected to some function
basis because they are correlated. Such a projection can be
done in both time and frequency domain just like in [17] and
[19]. In this paper, we will project the channel response in
frequency domain to exploit the frequency domain correlation
in order to keep the derivation simple. However, the framework
can be easily extended to exploit the time domain correlation if
we choose a time-frequency window instead of just frequency
window as discussed in the rest of the paper.

If the channel responses are correlated, which is
the case in practice, we can find a model basis

that , can all be expressed by ,
for

(7)

with small model error which is often measured by
.

In this case, we can express as

(8)

where and is a
matrix consisting of the model basis,

...
...

...

The problem now is to find the model bases that can express
the channel responses with less model coefficients and small
model error. In the ideal case, if the correlation of the channel
responses, i.e.,

(9)

is known. The model basis ideally should be the matrix con-
sists of the eigenvectors of the correlation matrix corresponding
to nonzero eigenvalue of [6]. However, the correlation of

the channel responses is usually not available. We need to look
for some model basis that can have a fairly small model error
for the channels that we are interested in.

For the wireless channel described in Section II-B, one nat-
ural choice to model the channel is to use Fourier basis. The
energy of the inverse Fourier transform of regarding
is actually limited in a finite delay . Hence, we can use all the
“low frequency” within “bandwidth ” in the transform do-
main of the inverse Fourier transform to express the channel as
in (3). In this case, the basis function is1

(10)

for and .
Such a model is used in the channel estimation methods of

[7], [8], [10], [14], [19], [21], and [22]. In [10], [19], [21], and
[22], and , while in [7] and [8], is the length
of the embedded pilot tones and are the indexes of the pilot
tones. is the number of used subcarriers and are indexes
of the used subcarriers in [14]. The problem with this model is
that the system bandwidth is limited. Then there may be a large
leakage when the inverse Fourier transform is performed, which
leads to a large model approximation error [18].

Now let us look at another model. We know that is
smoothly changing along . Based on the approximation theory
[3], [36], it was shown that such a smoothly time-varying
channel can be closely approximated over a short interval
by a series of polynomial bases, i.e.,

for (11)

where
and

, with
.

When , goes to zero for all
, if is large enough. For the practical MCM

system, this condition is usually satisfied for a small . In this
case, the model basis is

(12)

for and .
The channel estimation algorithms in [15]–[18] and [25] are

examples of using this model in the single antenna system.

B. Channel Estimation Algorithm

Suppose we find an efficient and accurate model and express
the channel as in (8). Substituting it in (6), we have

. . .
...

(13)

1In this paper, we use (B) to denote the element at mth row and nth
column of matrix B.
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If the model is efficient enough that , then we can
get the least squares (LS) estimate for the model coefficients as

... (14)

where denotes the pseudoinverse.
Substituting into (8), we get the estimation of the channel as

(15)

...
. . .

...

...
...

. . .
...

and with
being the correlation of the trans-

mitted signal and being the cross-
correlation between the transmitted and received signals.

In this estimation algorithm, and can be calculated
off-line once the model and training sequence are determined.
The general estimator structure is shown in Fig. 3(a). The com-
putation complexity is low if . The computation can be
further reduced if the transformation can be calculated by
some fast algorithm. For example, fast Fourier transform can
be used in the case using Fourier transform model [12].

The estimation error generally distributes unevenly among
the samples. To minimize the estimation error, we can choose
only one sample as the final estimate, for example the center
point of the window. Then slide the window to get all the esti-
mates. The estimation in this case becomes a filtering process
as illustrated in Fig. 3(b). The filter taps are the row of matrix

corresponding to the specific estimation point in the
window. The computations needed for the filtering process can
be reduced if the filter can be implemented by some iterative al-
gorithms [18].

C. Mean Squared Estimation Error (MSE)

Let us define the mean squared error matrix as

(16)

Then the th diagonal element of is the MSE of the
subcarrier at th transmitter antenna, i.e.,

.
Substituting (15) into (16), we have

(17)

where is the mean squared model error caused by inaccurate
modeling, which is

(18)

Fig. 3. Estimator structures.

and is the variance of the residual noise, which is

(19)

We assume that all the channel pairs have the same cor-
relation function and are independent of and . Since is
a hermitian matrix, it can be diagonalized by ,
where is a unitary matrix and is
composed by the eigenvalues of .

It is known that can be decomposed as

(20)

where satisfies and is an invertible
matrix. Then denote as the orthogonal bases of ,
i.e., . Then we can express as ,
where , , and .
Then, we have

(21)

where . . . , and . . . ,

, . . . and

. . . .

Using the above notations, the residual noise can be written
as

(22)



WANG AND LIU: MODEL-BASED CHANNEL ESTIMATION FRAMEWORK FOR MIMO 1055

where is a block diagonal matrix whose diagonal blocks are
.

IV. IDENTIFICATION CONDITION AND TRAINING

SEQUENCE DESIGN

A. Identification Condition

It can be seen that the estimates in (15) can only be obtained
when exists. This is called identification condition. We
can derive the necessary condition for the channel to be identi-
fiable in the following lemma.

Lemma 1: The necessary condition for to be invertible is
.

This necessary condition shows that the channel model has to
be sufficiently efficient. The channels are easier to identify if is
smaller. However, the efficient enough model may not be accu-
rate enough. On the contrary, should be as large as possible to
make the diagonal elements of small. As we will show later,
the model error can be minimized if we know the channel corre-
lation. However, we usually do not know the channel correlation
function and hope to use a fixed model to fit to a range of chan-
nels. In this case, the efficiency of the channel model depends
on the channel characteristics and the model error allowed. It
usually requires the model error to be much less than the noise.
If the channel is too dispersive to have a model approximation
within the allowed model error, then the channel cannot be iden-
tified with the simultaneously transmitted training sequences. In
such cases, the channels corresponding to different transmitter
antennas have to be identified one at a time, i.e., the training
sequences from different transmitter antennas have to be sent
alternatively, which increases the overhead of the system.

The structure of the model alone cannot guarantee the
identification condition. Proper training sequences need to be
carefully chosen to make full rank. For example, if the
training sequences sent from different antennas are the same,
obviously we cannot identify the channel. Any sequences that
satisfy lead the channel unidentifiable. However,
when considering the constraint posed by the signal constella-
tion, there is almost no such sequence except all the antennas
transmitting the same sequence. But there are still some se-
quences that can make the matrix ill conditioned and, hence,
produce a large estimation error.

Indeed, both the model basis and the training sequences de-
termine the identifiability of the channel and the performance
of the channel estimation algorithm. So we now take a further
look of training sequence design together with the model basis
selection.

B. Training Sequence Design

In this section, we will discuss the optimal training sequence
design for the two estimators shown in Fig. 3. Depending on the
estimation schemes, we use different quantities to measure the
estimation error. We will discuss two such quantities. First is the
average mean squared error, i.e.,

(23)

The average mean squared error is suitable for the scheme in
Fig. 3(a). However, if we use the scheme in Fig. 3(b), the more
appropriate measure would be to minimize the with
being the index of the estimation point inside the observation
window.

1) Training Sequence Minimizing the Average Mean Squared
Error: First, we will discuss the training sequence design cri-
teria to minimize the average mean squared error. We have the
following theorem about the lower bound on the average model
error.

Theorem 1: Denote as the eigenvalues
of in descending order, then the average model error

is bounded by the following lower bound:

(24)

where is the th diagonal element of
. The equality holds if

every column of is a linear combination of the eigenbases
corresponding to .

Moreover, if for or
, then

(25)

Based on this theorem, we have the following conclusions
regarding the model basis selection and the training sequence
design.

1) If we can choose the model bases as the eigenbases cor-
responding to all the nonzero eigenvalues of , then no
model error exists as long as the training sequences guar-
antee that exists.

2) If the number of the nonzero eigenvalues of the channel
correlation matrix is larger than , then is
not invertible and the channel cannot be identified without
model error. In such cases, we should select the
eigenvectors corresponding to the largest eigen-
values and also select the training sequences such that

to minimize .
3) Even without any knowledge of the channel correlations,

the training sequences are still prefered to satisfy

Then the model error becomes ac-
cording to (41) in Appendix I. In this case, the model error
only depends on the model basis and the channel correla-
tion. We can then choose a robust model basis according
to some resonable assumptions about the channel, for ex-
ample, the maximal delay spread, before designning the
training sequence.

For the average power of the residual noise, a lower bound
can also be derived.

Theorem 2: The average power of the residual noise for any
training sequences satisfies the following inequality:

(26)
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where is the average transmitting power of the training se-
quences, i.e., . The equality is valid if and only
if .

To achieve the minimal variance of the residual noise, we
require that

if
if .

(27)

This requirement had been derived in various works in [19],
[21], and [22] using the Fourier transform bases.

Notice that

(28)

is also required to minimize the model error. Depending on the
model basis, there may or may not be training sequences that
satisfy both conditions in (27) and (28). If there is no training se-
quence that satisfies these conditions, a tradeoff has to be made
between the model error and residual noise based on the specific
applications. For some special model bases with some special
structure as stated in the following corollary, training sequences
can be found that satisfy both conditions.

Corollary 1: Denote as a subset of index,
and and as matrices that consist the th rows
of and with , respectively. If there exist at
least nonoverlapped subsets such that and

. Then there exist such training sequences
that and .

Proof: Choose , for ,

then ,

Therefore,

Hence, we have and
.

An example of the model bases satisfies the condition in the
corollary is the Fourier transform model. As long as is an
interger multiple of , we can choose

. The training sequences chosen in
this way are exactly the phase shift training in [7], [21], and [22].
We proved here that such training sequences not only minize

the variance residual noise as shown in [21] and [22], but also
minize the model error. However, in [14], is the number of
used subcarriers, then the condition in the corrallary may not be
sastisfied and the phase shift training may not be optimal.

On the other hand, the model error also depends on the selec-
tion of the model bases and channel correlation. For example,
if any delay is not on the sampling paths, the Fourier trans-
form bases used in [19] and [20] are not the eigenbases of the
channel correlation matrix. Depending on the specific channel
delay profile that determines , the algorithm may end up with
different model error. We will show this effect in the simulaiton.

To avoid the model error, techniques such as in [13] can be
used to find the exact eigenbases of the channel correlation ma-
trix. However, these eigenbases no longer satisfy the condition
in Corollary 1, which means that we may not be able to find the
training sequences that satisfy both conditions for model error
and residual noise. With the constraints of the system, such as
constellation, a limited number of search is needed to find a sub-
optimal solution based on these conditions. We will demonstrate
such a scheme later.

2) Training Sequence Minimizing the Mean Squared Error at
the Estimation Point: Now let us take a look of minimizing the
mean squared error at the estimation point. In this section, we
will focus on the 2 2 case, i.e., . In this case,
we have

where

(29)

(30)

(31)

(32)

Then based on (21), the model error at the estimation point
can be further written as in (33), shown at the bottom of the
page, where

(34)

(35)

(36)

(37)

for

for
(33)
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Similar to the proof of Theorem 1 in Appendix I, if the model
bases are the linear combinations of the eigenbases that corre-
spond to all the nonzero eigenvalues, then the model error is
zero. If the other condition in Theorem 1 such as

for all , is satisfied, then and
. In this case, the model error no longer de-

pends on the training sequence, which makes it easy to choose
the model basis.

The residual noise at the estimation point satisfies
the following theorem.

Theorem 3: The variance of the residual noise at the estima-
tion point satisfies (38), shown at the bottom of the page, with
the equality when .

The theorem shows that the training sent from the two an-
tennas should be orthogonal regarding the model bases. If this
requirement is satisfied, then and

and become

To make the channels estimates corresponding to the two
transmitter antennas have the same estimation error, obviously
we need .

3) Model Basis Selection and Optimal Training Sequence
Design: From the previous discussion, we know that the
challenge in selecting a model basis and design corresponding
training sequences are first, that the two are dependent on each
other, second, that it is very difficult if not impossible to know
the channel correlation matrix. Our approach is to first decouple
the two problems. As we have shown, if for all

, , then the model error only depends on the model basis.
Then, we can select the model basis by deriving certain bound
based on some assumption about the channel, for example,
the upper bound of the model error is derived in [15] and [17]
for the polynomial model. Then we can focus on minimizing
the residual noise. Therefore, for a 2 2 system, the training
sequences should satisfy the following conditions:

1) for and should be as large as
possible;

2) .
The first condition is to probe all the frequency bins [26].

The second condition is to minimize the residual noise and also
together with the first one to separate the model basis selection
from the training design.

For the first condition, if a multilevel constellation is used,
then we should use the points with the largest energy, for ex-
ample, the corner points in the quadrature amplitude modulator
constellation. However, the phase of the training sequence
should be carefully arranged to reduce the peak to average
power ratio.

Now, let us take a closer look at the second con-
dition. Here we are actually trying to find out

. We can see that
this is the solution for the two sets of linear equations. One
set is obtained by rearranging to .
The other set is obtained by rearranging to

.
Generally, there may not be a solution to satisfy both sets

of equations especially when we consider the constellation
constraint of the MCM system. For some special cases as we
discussed in Section IV-B1, there exists a solution. In the more
general cases, if we cannot find the solution, we can look for
the least square solution through the following optimization
problem:

subject to for

and (39)

where is the condition number of defined by the ratio
between the largest eigenvalues and smallest eigenvalues of .
This constraint is to guarantee that the identification condition
is met. The other parameter is . This is a parameter chosen
to balance between the model error and the residual noise. For
low signal-to-noise ratio (SNR), should be small to minimize
the residual noise. It also depends on the channel; if the channel
is very dispersive, the model error tends to be larger, then we
should choose larger .

Based on the constraint, we have . Then the opti-
mization problem can be solved by

(40)

In the case of the polynomial model, are all real num-
bers. Then the solution to the above condition is
with as any integer. Without loss of the generality, we choose

or . Then we can conduct a search to find
the minimum. Considering the symmetry of the cost function,
the maximal number of search is , where denotes
the number of combinations to choose elements from a set of

elements. Then considering the condition number constraint,
the number of search can be reduced even further. Moreover, all
these searches are done offline.

Now let us look at an example: suppose and
for a polynomial model. Table I(a) lists four possible training
sequences. In Table I(b), we show different measures of these
training sequences. In this example, we choose . We also
use the MCM system in Section V-A and a two-ray delay pro-
file as an example to show the model error. The sequence D1
minimizes while the sequence D2 minimizes .
Sequence D3 is the one that minimizes the estimation error at
SNR of 10 dB by searching all the possible sequences to mini-
mize (16). It also shows that if we choose , D3 actually
gives the minimum of .

for
for

(38)
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TABLE I
MEAN SQUARED ERROR FOR DIFFERENT TRAINING SEQUENCES OF

POLYNOMIAL MODEL (L = 11, l = 3, SNR = 10 dB, TWO-RAY DELAY

PROFILE T = 5 �s)

In practice, the system design may have more constraints that
can further reduce the number of searches needed. For example,
if we use the estimator structure in Fig. 3(b), we would want the
same estimation error as we slide the window, which means that
the training sequences should be symmetric every other sam-
ples. Then there is only one possible solution, D4. It turns out
that this sequence performs fairly well, which once again shows
that (39) is only a suboptimal solution.

From the above design criteria, we also noticed that the op-
timal training sequence design is actually designing the relative
relationship between the training sequences transmitted from
different antennas. Once the relationship is decided, i.e, as we
found , we can choose any sequence as for one transmit
antenna and then the other sequence is .
Since we have the freedom to select , we should choose
it in such a way to meet other design constraints, such as the
peak-to-average power ratio.

For the case of more than two transmitter antennas, the design
criteria for the optimal training sequence become more difficult
to derive. However, it is still favorable that
should be as close to as possible, for . We can obtain a
sequence of multiples based on this criteria and then
choose the possible training sequences for different antennas.

V. SIMULATION RESULTS

In this section, we show some simulation results for the
model-based channel estimation method. First, we introduce
the system parameters used in the simulation.

A. System Parameters

The bandwidth of the system is kHz. The number
of the subchannels is . The length of the cyclic prefix

Fig. 4. MSE versus SNR (two-ray, T = 5 �s, L = 11, and l = 3).

is 32. The four subchannels at each end of one MCM block are
used as guarding band. The duration of the MCM block is

s and the bandwidth of the subchannel is kHz.
The system uses two transmitter antennas and two receiver

antennas. Training blocks are sent periodically from both trans-
mitter antennas. After that, the channel estimates are used for
decoding the data blocks arriving subsequently. We show the
results of different training densities that are defined as the per-
centage of training blocks of all transmitted MCM blocks. The
phase-shift keying (PSK) constellation is used for all the sub-
channels.

We did simulation for both space–time trellis codes and
space–time block codes. A 16-state space–time trellis code
using quadrature PSK proposed in [29] is used. One MCM
block forms a codeword by forcing the trellis to zero state
at the end of block. The Viterbi decoding is then used for
decoding. The space–time block code in [31] using 8PSK is
also simulated and the decoding scheme in [30] is adopted. In
this case, we adopt a Reed–Solomon (RS) code as the outer
code to encode each MCM block and then the space time block
code is applied across two MCM blocks.

A Rayleigh fading channel with Doppler shift of 40 Hz is used
in the simulation. The delay profiles used are TU and HT delay
profiles shown in Fig. 2 and two-ray delay profile with two paths
separated by .

B. Simulation Results

Fig. 4 shows the MSE of the two-ray delay profile of
s with different training sequences. The figure further veri-

fies that the design criteria we discussed in Section IV-B. The
sequences D1, D2, and D3 have similar performances. While
sequence D2 has worse overall performance though it has the
smallest model error. From now on, we will use D3 in all the
following simulations.

Fig. 5 shows the MSE. Fig. 5(a) shows the estimation error
for the TU delay profile and Fig. 5(b) shows the estimation error
for the HT delay profile. In Fig. 5(a), we also show the results
of the two-ray delay profile with the two paths separated by the
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Fig. 5. MSE versus SNR (2 Tx antenna and 2 Rx antenna). (a) TU (b) HT.

5 s which is the maximal delay of the TU profile. In Fig. 5(a),
and are used for the polynomial model while
and are used for the Fourier-transform-based

model. In Fig. 5(b), and are used for the poly-
nomial model while and are used for the
Fourier-transform-based model. We also use these parameters
for the following simulations shown in Figs. 6–8. The model
here is selected based the maximal delay spread of the channel
just as stated in Section IV-B. The window dimensions for the
polynomial model actually can be adapted as suggested in [18].
As shown in Figs. 6–8, the polynomial model has lower estima-
tion error than the Fourier-based model as the SNR goes higher
for TU and HT while the Fourier-transform-based model has
lower estimation error for two-ray with delay spread of 5 s.
This is because the polynomial model has less model error than
the Fourier-transform-based model when there are paths of the
channel that are not at the sampling grids of the system. How-
ever, for the special case of two-ray with delay spread of 5 s,
both paths are at the sampling grids of the MCM system, the
Fourier-transform-based model does not have model error and
the minimum mean squared error estimation is achieved.

Fig. 6. WER of space-time trellis code versus SNR (f = 40 Hz, 2 Tx
antenna, and 2 Rx antenna). (a) TU (b) HT.

Fig. 6 shows the word error rate (WER) using different
channel information for decoding the 16-state space–time
trellis code. The decoding results using the delayed ideal
channel information which is the case assuming that the
channel estimator can get perfect channel information at the
training block are also shown in the figure for comparison. First,
we see that for such a Doppler shift, we need a training density
more than 20% to avoid the error floor due to the inaccuracy
caused by the delay of the channel information. In Fig. 6(a), the
polynomial model results are quite close to the results using the
delayed ideal channel information which are the best we can
achieve. However, the Fourier-transform-based method has an
error floor no matter how frequently the channel estimates are
updated. In Fig. 6(b), because the HT delay profile has larger
dispersion, both estimation schemes have large gap even to the
delayed ideal channel information. When SNR exceeds 14 dB,
the polynomial model-based method has a better performance
than the Fourier transformed-based method, which is consis-
tent with the results of estimation error. There is about 3-dB
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Fig. 7. WER of space–time block code versus SNR (1/3 training
f = 40 Hz). (a) TU. (b) two-ray, T = 5 �s. (c) HT.

difference of using the channel estimation from using the ideal
channel information.

Fig. 8. WER of space–time block code versus RS code rate (SNR = 15 dB,
f = 40 Hz). (a) TU. (b) two-ray, T = 5 �s.

Fig. 7 shows the results of the space–time block code. In this
simulation, the information is first encoded by RS code so that
one MCM block is one RS codeword. The WERs with different
RS code rate for different channel estimation of TU, two-ray,
and HT delay profiles are shown in Fig. 7(a)–(c), respectively.
The training density in Fig. 7 is 1/3. The results are consistent
with Fig. 6. Only in the special case of two-ray delay profile,
the Fourier-transform-based model performs better. In the more
general cases of TU and HT delay profile, the polynomial model
performs better because it has less model error. The difference
between using ideal channel information and channel estimation
is about 1 dB for TU and two-ray delay profile while 2 dB for
HT delay profile.

Fig. 8(a) and (b) shows the WER of RS channel coding rates
at SNR of 15 dB with different training densities for both TU
delay profile and two-ray delay profile with delay spread of
5 s, respectively. It is shown that the polynomial model per-
forms better than the Fourier transform model in both WER
and throughput for TU delay profile while the Fourier transform
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model performs better for two-ray delay profile, which is con-
sistent with the results in Fig. 5. The throughput in one data
block with 1/3 training is 80% while the troughput of the one
with 1/9 training is 30% as the WER is . Therefore, the
overall throughput with higher training density and coding rate
is higher than that with lower training density and coding rate.

VI. CONCLUSION

We have proposed a model-based channel estimation frame-
work for the MIMO MCM systems in this paper. In this frame-
work, the training sequences transmitted simultaneously from
all the transmitter antennas, which greatly reduces the overhead
of the system. After presenting the challenge of the estimation
problem in such a system, we recognized that the model-based
approach is not only a method to improve the estimation but
also a necessary procedure to identify the channel. The frame-
work of the model-based channel estimation is then derived.
Based on this framework, different channel models can be used
to design the estimator. Although the knowledge of the statis-
tics of the channel can help us design the estimator, it is not
necessary to know the channel statistics. However, the perfor-
mance of the channel estimation does depend on the channel
statistics. Generally speaking, the less dispersive the channel,
the better the performance. Moreover, for the very dispersive
channel and large number of transmitter antennas, the channel
may become unidentifiable. We discussed the identification con-
dition based on the proposed framework. The identifiability de-
pends on both the model and the training sequences and so does
the performance of the scheme. We then studied the model se-
lection and training sequence design rules with respect to the es-
timator structures. The design criteria we proposed try to min-
imize both the model error and residual estimation noise. The
simulation shows that using the proposed scheme we have 0.5-
to 3-dB degradation due to the channel estimation error in a two
transmitter and two receiver antenna system.

APPENDIX I
PROOF OF THEOREM 1

Proof:

(41)

Because
has a form of , then , for

. Furthermore,
. Therefore, at most

columns in can be zero vector, which means that at most
equal zero.

If has the form of , then

. Therefore, , i.e.,
are the eigenbases corresponding to the first eigenvalues of

. It is obvious then that every column of is a linear com-
bination of these first eigenbases. In this case

...
. . .

...

where

...
. . .

... .

Substituting it to (41), we have

This lower bound can be further reduced to

if for or for
and . The first condition means

that is composed by linear combinations of all the eigenbases
corresponding to the nonzero eigenvalues. The second condition
requires .

APPENDIX II
PROOF OF THEOREM 2

Proof:

Denote the as the eigenvalues of , for .
Then according to Jensen’s inequality, we have

(42)

The equality holds if and only if equal to a constant. This
means that . Therefore, . Then
(42) becomes
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APPENDIX III
PROOF OF THEOREM 3

Proof: First we have

It is obvious that and are both of the form
. Therefore, the diagonal elements of these two matrices

are all greater than or equal to zero.
Then, we have

for

or

for

The equality holds if and only if .
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