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Anti-collusion Fingerprinting for Multimedia
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Abstract—Digital fingerprinting is a technique for identifying  on these networks, mechanisms must be in place to ensure that
users who use multimedia content for unintended purposes, such content is used for its intended purpose and by legitimate users
as redistribution. These fingerprints are typically embedded into who have purchased appropriate distribution rights.

the content using watermarking techniques that are designed to . .

be robust to a variety of attacks. A cost-effective attack against AIthoggh access.co.ntrol IS an es_sgntlal glgment to e.n.sure that
such digital fingerprints is collusion, where several differently Contentis used by its intended recipients, it is not sufficient for
marked copies of the same content are combined to disrupt the protecting the value of the content. The protection provided by
underlying fingerprints. In this paper, we investigate the problem  encryption disappears when the content is no longer in the pro-
of designing fingerprints that can withstand collusion and allow tected domain. Regardless of whether the content is stored in
for the identification of colluders. We begin by introducing the . . .
collusion problem for additive embedding. We then study the a.n unencrypted format or decrypted prior to rgnderlng, itis fea-
effect that averaging collusion has on orthogonal moduiation. Sible for users to access clear-text representations of the content.
We introduce a tree-structured detection algorithm for identi- Users can then redistribute unencrypted representations, which
fying the fingerprints associated with K colluders that requires  affects the digital rights of the original media distributors.

O(K log(n/K)) correlations for a group of n users. We next | grder to control the redistribution of content, digital fin-

develop a fingerprinting scheme based on code modulation that inting i dtot th h thei
does not require as many basis signals as orthogonal modulation. gerprinting IS used to trace the consumers who use their con-

We propose a new class of codes, called anti-collusion codedent for unintended purposes [1]-[4]. These fingerprints can be
(ACCs), which have the property that the composition of any embedded in multimedia content through a variety of water-
subset of K or fewer codevectors is unique. Using this property, marking techniques [2], [5]-[10]. Conventional watermarking
we can therefore identify groups of K' or fewer colluders. We = tochpiques are concerned with robustness against a variety of
present a construction of binary-valued ACC under the logical L

AND operation that uses the theory of combinatorial designs attacks such as filtering but_(_jo not always a_lddress robustness to
and is suitable for both the on-off keymg and antipoda| form of attaCkS mounted by a Coalltlon Of users W|th the same content
binary code modulation. In order to accommodaten users, our that contains different marks. These attacks, which are known
code construction requires onlyO(+/n) orthogonal signals for a  as collusion attacks, can provide a cost-effective approach to
given number of colluders. We introduce three different detection removing an identifying watermark. One of the simplest ap-

strategies that can be used with our ACC for identifying a suspect . ) . .
set of colluders. We demonstrate the performance of our ACC proaches to performing a collusion attack on multimedia is to

for fingerprinting multimedia and identifying colluders through ~ @verage multiple copies of the content together [11]. Other col-
experiments using Gaussian signals and real images. lusion attacks might involve forming a new content by selecting
Index Terms—Collusion, collusion resistance, data embedding, different pixels or blocks from the different colluders’ content.
multimedia fingerprinting. By gathering a large enough coalition of colluders, it is pos-
sible to sufficiently attenuate each of the colluders’ identifying
fingerprints and produce a new version of the content with no
detectable fingerprints. It is therefore important to design fin-
HE ADVANCEMENT of multimedia technologies, cou-gerprints that are not only able to resist collusion but are also
T pled with the development of an infrastructure of ubiquiable to identify the colluders and thereby provide a means to
tous broadband communication networks, promises to facilitatiscourage attempts at collusion by the users.
the development of a digital marketplace where a broad range
of multimedia content, such as image, video, audio, and spee8h,Prior Art

will be available. However, such an advantage also poses theyne of the first works on designing fingerprints that are re-

challenging task of insuring that content is appropriately usegstant to collusion was presented by Boneh and Shaw [4]. This
Before viable businesses can be established to market coniggjii considered the problem of fingerprinting generic data that

satisfied an underlying principle referred to as tharking as-
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codeswhich are fingerprint codes that are capable of tracing ports the claim of [15], where the watermarks are assumed to be
least one colluder out of a coalition of at mestolluders. In- uncorrelated Gaussian random vectors that are added to the host
stead, they use randomization techniques to construct codes Heator to produce fingerprinted documents.
are able to capture at least one colluder out of a coalition of atFurther work on the resistance of digital watermarks to
mostc colluders with arbitrarily high probability. collusion attacks was done in [16]. They consider a more
A similar work was presented in [3]. This work is concernedeneral linear attack than [14], where the colluders employ
with the distribution of large amounts of content, such asultiple-input-single-output linear shift-invariant (LSI) fil-
through television broadcasts, where each user has a decadrng plus additive Gaussian noise to thwart the orthogonal
that contains a set of keys needed to decrypt the broaddasgerprints. Under the assumption that the fingerprints are
content. Users might collude to create a pirate decoder thadlependent and have identical statistical characteristics, they
consists of keys from some of the colluders’ decoders. Wherslaow that the optimal LSI attack involves each user weighting
pirate decoder is captured, the goal is then to be able to trakeir marked document equally prior to the addition of additive
and identify at least one of the colluders involved in creatingoise. Additionally, they investigated an alternative finger-
the illicit device. Thus, the goal is not to trace the leakage @finting strategy by embeddingsecure codes, such as those
the content but, rather, to trace the decryption keys neededitsscribed in [4] and [18], and studied the amount of samples
access the content. In this case, the challenge lies in reduairgded in order for the marking assumption to hold while
the size of the ciphertext from being linear in the amount @haintaining a prescribed probability of falsely identifying a
users. colluder. Their fingerprinting capacity study suggested that
In both of these cases, the ability to trace or identify mdependent fingerprints require shorter sequence length than
colluder relied on the fact that the identifying informatiorfingerprints constructed from+secure codes.
cannot be blindly altered by the coalition. In particular, the Finally, a different perspective on collusion for multimedia
construction of the fingerprinting schemes for generic data, was presented in [19]. A watermark conveying access and usage
presented in [4], relies on the validity of the marking assumpolicy is embedded in the multimedia content. Different users’
tion. One key difference between generic data and multimedigedia players use different variations of the watermark to cor-
data is that multimedia data is perceptually insensitive to minmlate with marked content in detection. Each detection key is
perturbations in the data values. This perceptual robustnéiss sum of the watermark and a strong, independent Gaussian
makes it feasible to invisibly embed digital fingerprints imandom vector that serves as a digital fingerprint. When an at-
the multimedia. Rather than attaching fingerprints in headetacker breaks one device, obtains the detection key inside, and
embedding will tie the fingerprint with the host multimediasubtracts the key from the watermarked content, the watermark
signal and make the fingerprint resilient to format conversiomill not be completely removed from the attacked copy, and
compression, and other moderate distortions. Watermarkiadingerprint signal will remain in the attacked copy that indi-
techniques that embed information in multimedia invisiblycates the attacker’s identity. The paper quantitatively analyzed
such as those in [5] and [6], can be used to embed digitak collusion resistance issues and discussed related problems
fingerprints. While generic data may allow long fingerprinbf segmentation and key compression.
marks to be attached to them, the number of marks that can be
embedded in multimedia data and accurately extracted aféer
distortion by hostile parties is limited [12], [13]. Thus, the long "
fingerprint codes proposed for generic data may not even beThe work of [16] suggested that independent, or orthogonal,
embeddable in multimedia data. The process of fingerprintifiggerprints are advantageous to fingerprints built using collu-
multimedia should, therefore, jointly consider the design afion-secure codes. However, several disadvantages for orthog-
appropriate fingerprints and the efficient and effective detecti@mal fingerprints remain, such as the high computational com-
of these fingerprints. Furthermore, unlike Boneh and Shawxexity required in detection and the large storage requirements
assumption for generic data, where adversaries can easieded to maintain a library of fingerprints. In this paper, we
manipulate the detectable marks to any value, different bits address these disadvantages by proposing a tree-structured de-
fingerprint codes that are additively embedded in multimedtaction scheme for orthogonal fingerprints and introducing a
may not be easily identifiable and arbitrarily manipulated byew class of codes for constructing fingerprints that require
colluders. Linear collusion attacks, such as averaging sevdmker storage resources. Our results are suitable for both av-
fingerprinted signals, are often more feasible for multimedieraging-based collusion attacks and for collusion attacks that
[11]. interleave values or pixels from differently marked versions of
The resistance of digital watermarks to linear collusion athe same content. For the convenience of discussion, we will use
tacks has been studied [11], [14]-[17]. In [14], the original dodmages as an example, whereas the extension to audio or video
ument is perturbed by the marking process to produce fingés-quite straightforward.
printed documents with a bounded distortion from the orig- We begin, in Section Il, by describing multimedia finger-
inal document. They propose a collusion attack that consistsprinting and introduce the problem of user collusion for a class
adding a small amount of noise to the averagk dingerprinted of additive watermark schemes. We then review orthogonal
documents. In their analysis, they show tliat,/ N/log N) modulation in Section Ill and examine the effect that collusion
adversaries are sufficient to defeat the underlying watermarkss on orthogonal fingerprinting. In order to overcome the
whereN is the dimensionality of the fingerprint. This result suplinear complexity associated with traditional detection schemes
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for orthogonal modulation, we develop a tree-based detectimhereb;; € {0, 1} orb;; € {£1} [20]. We will present de-
scheme that is able to efficiently identify colluders with an tailed discussions on different ways to construct watermarks for
amount of correlations that is logarithmic in the number dingerprinting purposes in Sections Il and V.

basis vectors. However, storage demands remain high, and i©ne important application of fingerprinting is identifying a

is desirable that we use fewer basis signals to accommodaigsar who is redistributing marked content by detecting the
given amount of users. Therefore, in Section IV, we proposetermark associated with the user to whgmwas sold. By

the use of a class of codes, which we call anti-collusion codigentifying a user, the content owner may be able to more closely
(ACCs), which are used in code-modulated embedding. Theonitor future actions of that user or gather evidence supporting
resulting fingerprints are appropriate for different multimedithat user’sillicit usage of the content. There are two different de-
scenarios. The purpose of ACCs is not only to resist collusidéection strategies that might arise in fingerprinting applications.
but also to trace who the colluders are. The proposed ACTkey are differentiated by the presence or lack of the original
have the property that the composition of any subsef{of content in the detection process. We will refemtmnblindde-

or fewer codevectors is unique, which allows us to identifiection as the process of detecting the embedded watermarks
groups of K or fewer colluders. We present a constructiowith the assistance of the original contentind refer tablind

of binary-valued ACC under the logicalND operation that detection as the process of detecting the embedded watermarks
uses the theory of combinatorial designs. For a given numbeithout the knowledge of the original context Nonblind fin-

of colluders, our code construction is able to accommodagerprint detection requires that the entity performing detection
n users while requiring only)(/n) basis vectors. We study first identify the original version corresponding to the testimage
the detector and present three different strategies that nfegm a database of unmarked original images. This database can
be employed for identifying a suspect set of colluders. Waften be very large and requires considerable storage resources.
evaluate the performance of these detection strategies udimghe nonblind fingerprint detection, the distortion can be mod-
simulations involving an abstract model consisting of Gaussiafed asd = z. Blind detection, on the other hand, offers more
signals. We also examine the behavior of our fingerprints usifigxibility in detection, such as distributed detection scenarios.
actual images. Finally, we present conclusions in Section V ahidioes not require vast storage resources and does not have the

provide a proof in the Appendix. computational burden associated with image registration from a
large database. This is particularly attractive for enabling finger-
Il. FINGERPRINTING AND COLLUSION print detection by distributed verification engines. However, un-

: . . : . . like the nonblind detection scenario, in the blind detection sce-
In this section, we will review additive embedding, where a_". : :

. . : nario, the host signal is unknown to the detector and often serves
watermark signal is added to a host signal. Suppose that the hos

. . : as a noise source that hinders the ability to detect the water-
signal is a vector denoted asand that we have a family of wa-
termarks{w ; } that are fingerprints associated with the different’
users who purchase the rights to acces®8efore the water-
marks are added to the host signal, every component ofeach

ark? In this case, the distortion can be modeledas x + z.

The detection of additive watermarks can be formulated as

a hypothesis testing problem, where the embedded data is con-

is scaled by an appropriate factor, isl) — a(l)w; (1), where sidered as the signal that is to be detected in the presence of
P IV noise. For the popular spread spectrum embedding [5], [6], the

we refer to théth component of a vector; by w; (). One pos- : . . . L
sibility for () is to use thgust-noticeable-differencéIND) Qetecnqn performan(.:e can be studied via the following simpli-
f|ﬁd antipodal model:

from human visual system models [6]. Corresponding to eac
user is a marked version of the contgnt= x + s;. The con- Ho:y(l)=—s(l) +d(l) (I=1,...,N), ifb=-1

tent may experience additional distortion before it is tested for{ Hi:y(l) =+s(l)+d(l) (I=1,...,N), ifb=+1

the presence of the watermask This additional noise could 3

be due to the effects of compression or from attacks mountatiere{s(l)} is a deterministic spreading sequence (often called
by adversaries in an attempt to hinder the detection of the whewatermarl, b is the bit to be embedded and is used to antipo-
termark. We represent this additional distortionZbyrhere are dally modulates(l), d(1) is the total noise, and/ is the number
therefore two possible sources of interference hindering the @$-samples/coefficients used to carry the hidden information.
tection of the watermark: the underlying host sigradnd the If d(I) is modeled as i.i.d. Gaussia(0, o2), the optimal de-
distortionz. For simplicity of notation, we gather both of theseector is a (normalized) correlator [22] with a detection statistic
possible distortions into a single term denoteddbyAs we will Ty given by

discuss later, in some detection scenarios, it is possibié for

only consist ofz. A test contenty that originates from user T 2 2
Ty = . 4
can thus be modeled by N=y's [\/oq-lsl (4)

y=s;+d. 1)

! wherey = [y(1), ..., y(N)]", s = [s(1), ..., s(N)]", and
The watermarks{w;} are often chosen to be orthogonals|| is the Euclidean norm of. Under the i.i.d. Gaussian as-
noise-like signals [5] or are represented using a basi® of
orthogonal noiselike signalau; } via

INote that there are other types of watermarking schemes that do not suffer
B from interference from unknown host signals [12], [21]. Their appropriateness
W, = Z bijui (2) for fingerprinting and anti-collusion capabilities are to be investigated and will
im1 be addressed in our future work.
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sumption ford(l), T is Gaussian distributed with unit variancedetectors considering more realistic noise such as those in [25]

and a mean value and [26] to improve the performance in the watermark detection
layer and, in turn, enhance the overall performance.
E(Tx) =b-+/|s||?/o2. 5 ' , SHIANES ;

) . (Tn) h ”f” /74 o .( ) Another model, which is used often for conveying owner-

If b is equally likely to be =1" and “+1," the optimal ghip information [5], [6], leads to a similar hypothesis testing

(Bayesian) detection rule is to compafg with a threshold ropjem described by
of zero to decideH, againstH,, in which case, the proba-

bility of error is Q(E(Tx)), where Q(z) is the probability Ho: y(l) = d(1), ( Fviéterr;wé\\rflz s absent
P(X faG i d iable ~ 0, 1).
(X > z) of a Gaussian random varia N(0, 1) Hyy() = s() +d(l), (I=1,.... N) (8)

The error probability can be reduced by raising the water-
mark-to-noise-ratio (WNR)||s||”/(No2), or increasing the
length N of the spreading sequence per bit. The maximuithis is often referred a®n-Off Keying(OOK). The detection
watermark power is generally determined by perceptual modéfgtistic is the same as shown in (4) for additive white Gaussian
so that the changes introduced by the watermark are below fiase (AWGN) or (6) for independent Gaussian noise with non-
JND [6]. Assuming that botkis(1)} and{d(l)} are zero mean, identical variance. The threshold for distinguishing the two hy-
o2 is estimated from the power @f/) ands(l), for example, potheses is a classic detection problem for which we can use a
viag2 = (|lyl|* - |Is[|*)/N. Bayesian rule or a Neyman-Pearson rule [22]. The probability
The i.i.d. Gaussian noise assumption is critical for the op®f detection errors can be obtained accordingly.
mality of a correlator-type detector, but it may not reflect the sta- In the following sections, we will examine collusion for fin-
tistical characteristics of the actual noise and interference. Fagrprints constructed using orthogonal modulation as well as
example, the noise and interference in different frequency baring binary code modulation. When two parties with the same
can differ. In such a scenario, we should first normalize the otrage (but fingerprinted differently) come together, they can
servationgy(1)} by the corresponding noise standard deviatiotpmpare the difference between the two fingerprinted images.
to make the noise distribution i.i.d. before taking the correlatiobhe collusion attack generates a new image from the two fin-
[23]. That is gerprinted images so that the traces of either fingerprint in the
new image is removed or attenuated. For fingerprinting through
(6) additive embedding, this can be done by averaging the two fin-
gerprinted images y1 + A2ys2, whered; + Ay = 1, so that
the energy of each of the fingerprints is reduced by a factor of
;2. The requirement that; + A\, = 1 is necessary in order to
maintain the average intensity of the original image. As a result
of this weighted average, the detection statistic with respect to

thesth fingerprint is scaled by a factor af. In a K -colluder av-

This can be understood as a weighted correlator with mo faging collusion, the watermarked content siggalare com-

weight given to less noisy components. Similarly, colore ed according t°X_, A,y;. Alternatively, the new image
Gaussian noise needs to be whitened before correlation [2]. 1= . .

. . . n be formed by taking part of the pixels or transform coeffi-
In reality, the interference from the host signal, as well as the

noise introduced by many attacks and distortions, are oftgr?nts from each of the two imagay, + (I - A)ys, wherel

. ) .~ I5theN x N identity matrix, andA = diag A1, Az, ..., An)
non-Gaussian and nonstationary. Under these scenarios, afn € {0, 1}. In terms of the effects on the energy reduc-
optimal _detector can be derived by using a non-Gaussian anot}érrw oftthe 0r7igin.al fingerprints and the effect it has on the de-
. . ection performance, this alternating type of collusion is sim-
[Zril’éii'g Zgrvfaxtae?n?{;i(%irl%rggrzseforrnt?]tghzdnzlrtaelser:ja\éeazgglgr to the averaging type of collusion. For this reason, we will
ghaanel model [25], [26]. Channel estimgtion has also beoﬁl?/ consider the averaging type collusion. Further, we will take

. . e B . i = 1/K for all j in the remainder of this paper and introduce
used in conjunction with the generalized matched filter agaiNditional distortion noise following the averaging. We illus-

]Egging and geometrical distortions with unknown paramete{rsate the model for this type of collusion in Fig. 1. Our model for

For concent proving burboses. in this paper. we consider t%%Ilusion is similar model to the collusion models used in [14]
Ptp g purp ' paper, d [16]. We note, however, that there may exist cases in which

simple noise model of independent Gaussian noise and use, [he

: . . . . ; é € underlying fingerprints will not necessarily have the same
correlator with normalized noise variance as described in (6). ; .
o . . ergy, or be independent of each other, and that other choices
This simplification allows us to focus on the unique issues ?P ; )
) . : . . or A; might be more appropriate. These cases are beyond the
fingerprint encoding and colluder detection for the anti-collu-
L2 L . . scope of the current paper.
sion fingerprinting problem. From a layered viewpoint on data
hiding systems [20], the modules of fingerprint encoding and
colluder detection are built on top of the modules of one-bit
watermark embedding and detection. The design and optimizain this section, we will focus on the methods of orthogonal
tion of the former and latter modules have some degree of imodulation [27] for embedding unique fingerprints in multiple
dependence in system development. We can replace the simgbpies of images. In orthogonal modulation, thereranethog-

fied model used here with more sophisticated single-watermarkal signalss; that are used to convely = log, v bits by in-

if watermark is present

and

E(T%) . (7)

I1l. ORTHOGONAL MODULATION AND ANTICOLLUSION
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adding fingerprints coltusion a @ function [27]. Smaller distances lead to higher probability
o % oy ymenene of detection error.
Oﬁ;’;l : : \\ y Suppose each wqtermark hasnergy. If we averag&” wa-
x : : $—>?— — termarks, then the distance from the colluded mark to any of the
_'_s:é_, o _'T Aok watermarks used in forming it i/€ (K — 1)/ K. The distance
. K z from the colluded mark to any of the other watermarks not used

dditive noi o :
addiive noise colluded mark from the origin is/€ /K . Thus, ask increases,
the identifying watermarks in the colluded mark will become
Fig. 1. Model for collusion by averaging. harder to detect.

‘ ?: In additional in the collusion is\/&(K + 1)/K. Further, the distance of the
Sn

serting one of the signals into the host signal. Thesebits A. Tree-Structured Detection Strategy for Orthogonally
can be used to identify the users by identifying a-bit ID Modulated Fingerprints

sequence with each user, and therefore, we have v. The The classical method for estimating which signal was em-
detector determines th8 information bits by performing the pedded in the host signal is done viacorrelators and deter-
correlation of the test signal with each of theignals and de- mines theB-bit message that identifies which user's watermark
cides the signal that has the largest correlation above a mjgs present. This has been considered a major drawback of the
imum threshold. Typicallyy correlations are used to determingnethod of orthogonal modulation [5], [28]. In this section, we
the embedded signal, and the computational complexity assqgiesent an algorithm that reduces the computation needed to de-
ated with performing correlations is considered to be one ofect which watermarks are present in a host signal.

the drawbacks of Orthogonal modulation. In Section I-A, we Suppose thak colluders are involved in forming a colluded
present an improved detection strategy that cuts the compWgmaly.. We desire to identify the basis vectors of thése
tional complexity fromO(v) to O(log v). colluders. For a sett = {w,};c; where.J is an indexing set,

An additional drawback for using orthogonal modulatioRye define the sum oft by SUM(A) = > ,es Wj- We start by
in data embedding is the large number of orthogonal signa@lgnsidering the case of detecting 1 watermark. Let us denote
needed to conveys bits. In many situations, it might not bepy 5 = {w ..., w,} the set of orthogonal watermark signals,
possible to find2? orthogonal signals in the content. In audigg suppose the test signalyisSuppose that we bregkinto
applications, it might be desirable to periodically repeat a Wayo complementary subsef andS; . If we correlate the test
termark embedding in the content in order to fingerprint clip§ignaly with SUM(S,), then the correlation will satisfy
from the audio. In this case, the number of orthogonal basis
signals available is limited by the sample rate. For example,
if we repeat a watermark every second in an audio signal <y’ Z Wj> - Z (¥, wi) ©)
with a 44.1-kHz sample rate, then we can provide unique,
orthogonal fingerprints to at most 44 100 users. Although othethere(y, w) denotes a correlation statistic, such as is described
media, such as images and video, might have more points pe(4). If the one watermark we desire to detect belongs to the
embedding period, many of these degrees of freedom will bet.Sy, then (y, SUM(Sy)) will experience a large contribu-
lost since embedding should only take place in perceptuatipn from that one basis vector, and all the other terms will
significant components [5]. In particular, some content, such have small values. If this watermark is not presensjnthen
smoothly textured images and binary images, are known to hdye SUM(.Sy)) will consist only of small contributions due to
a significantly lower embedding rate than what is suggestedise. Therefore, if we test two sefg and.S; such thatS; =
by the amount of points in the image. Further, the necessdtysS,, then we are likely to get a large value in at least one of the
bookkeeping and storage of the= 27 basis vectors, or a settwo correlations with the sum of the basis vectors. We can re-
of keys for generating them, is another drawback of orthogonagat this idea by further decomposifig and/orS; if they pass
modulation. In Section IV, we build watermarks using coda threshold test. This idea can be extended to detecting the pres-
modulation that are able to accommodate more users thence of K orthogonal signals. At each stage, we test two sets
orthogonal modulation for the same amount of orthogon&l, andS;, and if a set passes a threshold test, then we further
vectors. decompose it.

We can study the effect of collusion on orthogonal modu- We use this idea to develop a recursive detection algorithm for
lation by calculating the distance between the constellatidetecting the presence &f orthogonal signals in a test signal
points and averages of the constellation points. Additionally, In Algorithm 1, we begin by initially splitting the set into
since the goal of collusion is to create a new content whosg and.S;. There are many possible choices for dividifignto
watermarks have been sufficiently attenuated that they agandsS; in such an algorithm. In Algorithm 1, we have chosen
undetectable, we would like to calculate the distance betwegpnsuch thaiSy| = 2°&21511=1 which is the largest power of
the averages of the constellation points and the origin. In a@rless than.S|. Another possible choice would be to takg
additive white Gaussian noise model, the Euclidean distarsigch thatSy| = [|.S|/2]. The algorithm proceeds in a recursive
between the constellation points, as well as the distanc@nner, subdividing eithet, or S; if a threshold test is passed.
between the constellation points and the origin, are direcths we will discuss, the choice of the thresholgsand r; is
related to the probability of detection through the argument dépendent on the signal-to-noise ratio (SNR), the cardinality of

N7 €So W €Sy
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ALGORITHM 1
TREE-STRUCTURED DETECTIONALGORITHM T'reeDet(y, S)

Algorithm: TreeDet(y,S)
Divide S into two sets So and Sy, where |Sp| = 2M°821S11-1 "and §; = 8§\ S ;

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 4, APRIL 2003

We breakS into Sg = {si,s2,...,8,/2} and S =
{Sn/241, Snj242, -+, Sn}. For simplicity of derivation, we
use an unnormalized correlator for the detection statigtics
andp;. Thatis

Calculate eg = SUM (So) and e; = SUM(S1) ; N
Calculate pg = (y,eg) and p1 = (y,e1) ; ) _ E)s(k). 12
T0 = Deter;]nineThrneshold(ﬂS'o[) ; <y’ S> Z y( )S( ) ( )
71 = DetermineT hreshold(]S1]) ; k=1
if po > 7o then . . .
& tSo(i Z 1 then Under hypothesiéi,, the calculation fop is
| output Sy ; nf2
else
| TreeDet(y,So) ; po = <Sl+d7 S1+sa+-- '+sn/2> = ||51||2+Z <d7 Sj>- (13)
end i=1
end ) . -
if p1 > 71 then Under hypothesigi,, the calculation fop, is
if |S1| =1 then
' output Sy ; n/2
else =(d — d. s:). 14
] TreeDet(y,51) ; po < 81+ s2+ +Sn/2> 2( 7SJ> (14)
end =
end

Then,E(po; H()) =0, E(po; Hl) =¢, andVar(po; Ho) =
Var(po; H) = (n/2)o%€. Thus,pg ~ N(0, no3€/2) under
Hy, andpy ~ N(€, no3&/2) underH;. Similar results can be
The probability of detection is

return ;

eitherSy or Sy, and the desired probability of detection for tha%mnved forps.
level.

We now make some observations about the performance of
this algorithm. First, the algorithm can be described via a binary
tree, where each internal node corresponds to two correlationge probability of false alarm is
Let us assume that each correlation truthfully reveals whether
there is a colluder present or not. We denotetty:, K) the
number of correlations needed in Algorithm 1 to identiy
signals from a sef of n orthogonal signals. We can derive a
bound forC(n, K) in the ideal case where each correlation is As we iterate down the tree, the SNR will become better.
truthful, namely For example, at the second level of the algorithm’s tree, the

setSy hasn/4 elements, angy ~ N(0, no2€/4) underHy,
C(n, K) <2 (—1 T K (1og2 (zﬂogz "1/1() + 1)) . (10) ¢

andpo ~ N(&, no3€/4) underH;. At each level of the algo-
This bound can be shown using standard techniques fgpm, the decision threshold may be determined using either
tree-based algorithms [29]—[32]. In particular, the bound o

chosen value for the probability of detection or probability
the amount of truthful correlations needed to identify

of false alarm for the one colluder case, i.e., from (15) or (16).
colluders isO(K log(n/K)). Further, we observe that if we

If we chooser at each level of the tree to kedf) fixed at a
were trying to detect a single signal, then we need to perfoﬁﬁﬁ'c'emly high value, then the probability of a false alarm will
at most2([log, |S|]—1) correlations as opposed {6| in a

change at each level of the tree. This means that initially, we will
traditional implementation. In addition, € becomes larger, let through some false alarms until we proceed further down the
the improvement in the amount of correlations perform

t&ee, where there are higher effective SNRs.

© be shown that a bound for the expected amount of cor-
decreases since it becomes necessary to perform correlatior%Can P
for multiple branches of the tree.

relationsFE[C(n, 1)] needed to identify a single colluder using
Realistically, however, the correlations performed at ea

é{gorithm 1 whenn = 2" is
node of the algorithm are not guaranteed to be truthful. In fact,
although we have achieved an improvement in computationdl[C'(n, 1)] < 24+2(Inn—1)Pp+2 Z P 277k —1) (27)
efficiency, this comes at a tradeoff in detector variance. When k=1

we calculate the cor_relation \_Nith_the sums of basis_ vectors, WRere, is the binary string consisting éf— 1 zeros followed
g_et many small, noisy contrlbguons from _correlatmg the teﬁk/ a single 1. Here, we have chosen to label the one colluder as
signal with signals not present in the test signal, asin (9). | ser 1 and have denoted the probability of false alarm for a node
We now prOV|de.anaIyS|s for this phenomenqn w_hgn there Sby P,
only one colluder, i.ey (k) = s1(k) + d(k). For simplicity, let ¢ h51nq depends on the choicefdf and theP, values.
d = N(o, 031.)' Thes; are known and have powgs; ||* = €. In Fig. 2, we present the bound for the expected amount of cor-
The two possible hypotheses are relations needed when there is one colluder= 128 users,
{HO: y=d and Pp = 0.99 for each level. As a baseline, we have plotted

Pp =Pr(po > 1 H) = Q (%5/2) . (15)
d

Prpa=Pr(py > 1; Ho) = Q <+&,/2) . (16)

g mn

r—1

Hi:y=d+s. (11) the bound forE[C(128, 1)] againstn = 128, which is the
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Fig. 2. Bound for the expected amount of correlations needed when ther¢ Tl Us e 23.97 Ta| Us _s= 001

. N 1~47 &2, N 5~8§ .
one colludem = 128 users and®p, = 0.99 for each level. As a baseline, we =
plot the bound fol2[C'(128, 1)] against the amount, which is the amount of
computations needed in performing simple detection. T | Upaz 21.88 Ty | Usa=10.00 - .
"\ 7\ R e

amount of computations needed in performing simple detectlc'll; = 0 Bl Bl
Examining this figure, one observes that at low WNR, whic_ _ = '
could correspond to a blind detection scenario, the bound on| U U Us Us Us Us Us Us
amount of correlations needed in Algorithm 1 is above the bas<
line amount of correlations needed for simply correlating with (b)

each of the fingerprint waveforms. This poor performance of th®). 3. Detection trees for identifying colluders using Algorithm 1. The
bound is due to the tradeoff betweEp andPr 4. Specifically, images for different users are fingerprinted via orthogonal modulation. The

; _ s ; by fingerprints of colluders are indicated by shadowed bdXes The notation
givenPp = 0.99, itis not possible to make tHéFA Sma!l atlow “T'x|U." denotes the detection statistics from correlating the test image with
WNR. Thus, at low WNR, the tree-structured detection scher@ sum of the fingerprints’, . (a) One colluder. (b) Three colluders
may not be advantageous over a simple detection scheme. How-
ever, at higher WNR, which corresponds to nonblind detecti@me generated via a psedudo-random number generator and used

scenarios, the separation between the detection hypothesesi$man approximate orthogonal basis in orthogonal modulation.
creases, and it does become possible to nfgke small. In Fig. 3(a) shows the process of detecting colluders from
these cases, the bound guarantees that we will need fewer g@r-image with user 1's fingerprint embedded. The notation
relations than simply correlating with each waveform to identifny|U?" denotes the detection statistics when correlating
a single colluder. the test image with the sum of the fingerpririfs. Detection
statistics close to zero indicate the unlikely contributions
from the corresponding fingerprints, and the branches of the
detection tree below them, which are indicated by dotted lines,
are not explored further. The number of correlations performed
We wanted to study the performance of the tree-structured d@6. Fig. 3(b) shows the process of detecting colluders from an
tection algorithm and the effect that collusion had on the detdfage colluded from user 1, user 2, and user 4’s fingerprinted
tion statistics. In our experiments, we used an additive spregges. The number of correlations performed is 8.
spectrum watermarking scheme similar to that in [6], where We see from Fig. 3(a) that the detection statistics when corre-
a perceptually weighted watermark was added to DCT coeffating with a sum of a larger number of basis vectors are smaller
cients with a block size of & 8. The detection of the watermarkthan that with a smaller amount of basis vectors. This reflects
is performed without the knowledge of the host image via thihe noisy contributions from the basis vectors that are present
detection statistics, as shown in (6). The 54312 Lenna was in the sum of basis vectors but are not present in the test image.
used as the host image for fingerprinting, and the fingerprint¥de discussed this phenomena earlier in Section IlI-A. Since the
images had no visible artifacts with an average PSNR of 41d2tection statistics we use have their variance normalized to 1,
dB. Fig. 3 illustrates the process of identifying colluders out dhe noisy contributions lower the detection statistics values. We
eight users using the tree-structured detection algorithm (Algaiso observe, in Fig. 3(b), a decrease in the detection statistics
rithm 1). The detection statistics are averaged over ten differémtimages colluded by more users.
sets of watermarks, and each set has eight mutually uncorrelatebh addition, we conducted a nonblind detection test with one
spread spectrum watermarks for eight users. These watermartdduder amongst:. = 128 users on the Lenna image. Our

B. Experiments on Tree-Based Detection of
Orthogonal Fingerprints
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test confirmed the findings of Fig. 2. Only 14 correlations werill remain /£ /v, whereas others will experience diminishing
needed, which is a significant reduction over the 128 correl@lthough not necessarily complete cancellation).

tions needed in a simple detection approach.
A. Anti-collusion Codes

IV. CODE-MODULATION EMBEDDING In this gection, we design qfami!y of codevectfes} v_vhose
AND ANTICOLLUSION CODES ove_rlgp Wlth each other can |_dent|fy groups of_ col!udlng users.
A similar idea was proposed in [33], where projective geometry
In the previous section, we mentioned that a drawback of tigs used to construct such code sequences. As we will explain
usage of orthogonal signaling is the large amount of basis v@gthis section, our proposed code construction makes more effi-
tors needed to convey user information. In this section, we wilent usage of the basis vectors than the codes described in [33].
present another form of modulation, known as code modulation,For this section, we describe codes using the binary sym-
that may be used to convey more fingerprint code bits for a giveals {0, 1}. These codevectors are mappeddrived code-
amount of basis vectors than orthogonal modulation. Therefoigctors by a suitable mapping, depending on whether the OOK
we are able to accommodate more users than orthogonal mogiuantipodal form of binary code modulation is used for water-
lation with the same amount of orthogonal signals. We will us@arking. For example, when used in the antipodal form, the bi-
this modulation technique, in conjunction with appropriately deyary symbolg0, 1} are mapped té—1, 1} via f(z) = 2z —1.
signed codewords, known as anti-collusion codes, to construct ve assume, when a sequence of watermarks is averaged and
family of watermarks that have the ability to identify membergetection is performed, that the detected binary sequence is the
of the colluding set of users. logical AND of the codevectore; used in constructing the wa-
In code modulation, there are orthogonal basis signalstermarks. For example, when the watermarks corresponding to
{u;}, and information is encoded into a watermark signal the codevector$1110) and (1101) are averaged, we assume

via the output of the detector {g100). When we perform two or
v more averages, this assumption might not necessarily hold since
w; = Z biju; (18) the average of many 1's and a few 0’s may produce a decision
Py statistic large enough to pass through the detector as a 1. We

discuss the behavior of the detector in these situations further in

whereb;; € {0, 1} orb;; € {£1}. The first of the two pos- Section IV-B and detail approaches to improve the validity of
sibilities for choosing the values @f; corresponds to OOK, the AND assumption.
whereas the second choice{af1} corresponds to an antipodal We want to design codes such that whi€nor fewer users
form [27]. If b;; = 0, this is equivalent to having no contribu-collude, we can identify the colluders. We prefer shorter codes
tion in theu; direction. At the detector side, the determinatiosince for embedded fingerprints longer codes would distribute
of eachb;; is typically done by correlating with the; and com-  the fingerprint energy over more basis vectors, which would
paring against a decision threshold. lead to a higher error rate in the detection process. In order to

We assign a different bit sequenfte; } for each usey. We identify colluders, we require that there are no repetitions in
may view the assignment of the bitg for different watermarks the different combinations ok or fewer codevectors. We will
in a matrixB = (b;;), which we call thederivedcode matrix, call codes that satisfy this property ACCs. In the definition that
where each column @ contains alerivedcodevector for a dif- follows, we provide a definition appropriate for this paper in-
ferent user. This viewpoint allows us to capture the orthogonadlving binary values but note that the definition can be easily
and code modulation cases for watermarking. For example, tiidended to more general séts
identity matrix describes the orthogonal signaling case since theDefinition 1: Let G = {0, 1}. A codeC = {cy, ..., ¢, }
jth user is only associated with one signal vectprin the fol-  of vectors belonging t6/* is called ak -resilientAND anti-col-
lowing section, we will design a code matixwhose elements lusion code (AND-ACC) when any subset &f or fewer code-
are either 0 or 1. By applying a suitable mapping that depengsctors combined element-wise undei is distinct from the
on whether the OOK or antipodal form of code modulation islement-wiseaND of any other subset ok or fewer codevec-
used, the code matri is used to derive the matriB8 that is tors.
used in forming the watermark signals. We first present a-resilient AND-ACC. LetC consist of all

In binary code modulation, if we average two watermawks n-bit binary vectors that have only a single 0 bit. For example,
andw, corresponding to bit sequencigs andb;,, then when whenn = 4,C = {1110, 1101, 1011, 0111}. It is easy to see
bi1 # b;2, the contributions attenuate or cancel, depending timat any element-wise logicakD of K < n of these vectors is
whether the OOK or antipodal form is used. However, whamique. This code has cardinalityand, hence, can produce at
b;1 = b;2, the contributions do not attenuate. For example, mostn differently watermarked media. We refer to this code as
antipodal code modulation is used WW for each compo- thetrivial AND-ACC for n users.
nent, then the result of averaging two watermark signals is thatlit is desirable to shorten the codelength to squeeze more users
many of the components will still hawg/€ /v amplitude, which into fewer bits since this would require the use and maintenance
is identical to the amplitude prior to collusion, whereas othef fewer orthogonal basis vectors. To do this, we need to give up
components will have 0 amplitude. When we averAgeater- some resiliency. We now present a construction Af-gesilient
marks, those components in the bit sequences that are all AND-ACC that requiresO(K \/n) basis vectors forn users.
same will not experience any cancellation, and their amplituddis construction uses balanced incomplete block designs [34]:
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Definition 2: A (v, k, A) balanced incomplete block desigrthat can be accommodated per basis vector. AND-ACCs with
(BIBD) is a pair(X, A), whereA is a collection ofk-element a higherj are better. For code®, k, \)-BIBD AND-ACC,
subsets (blocks) of a-element sett, such that each pair of their efficiency is3 = A(v — 1)/(k? — k). Therefore, the
elements ofY’ occur together in exactly blocks. efficiency of an AND-ACC built from BIBDs improves as

The theory of block designs is a field of mathematics that hétse codelengthy becomes larger. By Fisher’s inequality [34],
found application in the construction of error correcting codege also know thatn > v for a (v, k, A)-BIBD, and thus,
and the design of statistical experimentqwA k, A)-BIBD has [ > 1 using the BIBD construction. In contrast, theresilient
atotal ofn = A(v? — v)/(k® — k) blocks. Corresponding to a construction in [33] has efficiency much less than 1 and thus
block design is the x n incidence matridM = (m;;) defined requires more spreading sequences (or marking locations)

by to accommodate the same number of users as our scheme.
It is possible to use the collusion-secure code constructions

— { 1, if theith element belongs to thih block, of [4] in conjunction with code modulation for embedding.

“ 0, otherwise. However, the construction described in [4] is limited to a

collusion resistance adf < logn and is designed to trace one
If we define the codematri€ as the bit-complement &I and  colluder amongk colluders. Their construction has codelength
assign the codevectorg as the columns o€, then we have O (log* nlog?(1/¢)), wheree < 1/n is the decision error
a (k — 1)-resilient AND-ACC. Our codevectors are thereforgropability. This codelength is considerably large for small
v-dimensional, and we are able to accommodate A\(v> —  error probabilities and practical values. For example, when
v)/(k* — k) users with these basis vectors. Assuming that a, = 210, the codelength of [4] is on the order of‘l@vhereas
BIBD exists forn users, we therefore need= O(y/n) basis the codelength for our proposed AND-ACC is on the order
vectors. of 10. Additionally, for the same amount of users, the use of
Theorem 1:Let(X, A) bea(v, k, 1)-BIBD andM the cor-  code-modulation watermarking with an AND-ACC constructed
responding incidence matrix. If the codevectors are assignedggg a(v, k, 1)-BIBD requires fewer spreading sequences
the bit complement of the columns ®f, then the resulting than orthogonal modulation. A code-modulation scheme would
scheme is &k — 1)-resilient AND-ACC. needv orthogonal sequences for= (v — v)/(k> — k) users,
The proof is provided in the Appendix. We now present aghereas orthogonal signaling would requireequences.
example. The following is the bit-complement of the incidence There are systematic methods for constructing infinite fami-
matrix for a(7, 3, 1)-BIBD: lies of BIBD’s. For example(v, 3, 1) systems (also known as
Steiner triple systems) are known to exist if and only i 1 or

0001 1T 11 3 (mod 6); the Bose construction builds Steiner triple systems

0110011 whenv = 3 (mod 6), and the Skolem construction builds

1ro10101 Steiner triple systems when= 1 (mod 6) [35]. Another ap-
C=(0111100 (19) proach to constructing BIBDs is to ugedimensional projective

1100110 and affine geometry oveff,,, wherep is of prime power. Projec-

i (1) (1) i 8 (1) (1) tive and affine geometries yieldp?™' —1)/(p—1), p+1, 1)

and (p?, p, 1) BIBDs [34], [36]. Techniques for constructing
This code requires 7 bits for seven users and provides 2_tgt_ase and other BIBDS can be f_ound in [37]. Finally, we men-
siliency since any two column vectors share a unique peglfr)n tha.lt o_ther combmatongl objects, such as packmg deggns
of 1 bits. Each column vectoe of C is mapped to{=1} and pairwise balanced designs, have very similar properties to
by f(z) : 92 — 1. The code modulated watermark is therI?IBD and may be used to construct AND-ACC, where the code-

v N vectors do not all have the same weight. The construction and
W = 3 =1 f(c(i))ui. When two watermarks are averaged, the . " \in AcC built from other combinatorial objects is be-
locations where the corresponding AND-ACC agree and have

a value of 1 identify the colluding users. For example, let yond the scope of this paper.
B. Detection Strategies

Wi =—u; —Us+uz—uy+us;+ug+u 20 . i . .
! ! 2 ? * ¢ ! (20) In this section, we discuss the problem of detecting the col-

Wy =—Uj + Uz — U3 + Uy + U5 — Ug + Uy (21) luders when our AND-ACCs are used with code modulation. We
present several detection algorithms that can be used to identify
be the watermarks for the first two columns of the aboveossible colluders. This section serves as a basis for demon-
(7,3, 1) code; then,(w; + ws)/2 has coefficient vector strating the performance of our ACC. Our goal here is to find
(-1,0,0,0,1,0,1). The fact that a 1 occurs in the fifth efficient detection structures by taking advantages of the spe-
and seventh location uniquely identifies users 1 and 2 as ttial characteristics of our ACC.
colluders. We assume that the total distortiehis an N-dimensional
The (7, 3, 1) example that we presented had no improverector following an i.i.d. Gaussian distribution with zero-mean
ment in bit efficiency over the trivial AND-ACC for sevenand variancer3. Under the colluder-absent hypothesis, the
users, and it had less collusion resilience. A useful metric fobserved conternt is the distortion signad = x+z. Under the
evaluating the efficiency of an AND-ACC for a given collusiorcolluder-present hypothests, , K colluders come together and
resistance i3 = n/v, which describes the amount of userperform an averaging attack that produces a colluded version of
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the conteny. Presented in a hypotheses-testing framework, we ALGORITHM 2
have ALGORITHM HardDetAlg (T'), WHICH DETERMINES THEVECTOR® THAT
DESCRIBES THESUSPECTSET
H(): Yy = d
Algorithm: HardDetAlg(T)
1 1 ®=1;
Hl: y= ? Z yi +z= F Z Sj +d (22) Define J to be the set of indices where I'; = 1 ;
jES. jES. fort =1 to |J| do
J=J@); 4
whereK is the number of colluders, arft]. indicates a subset gei“;?je?f’ be the jth row of G;
with size K. The marked conteryt; for each usey is given as end :
return P ;

yj:x—I—sj:x—l—aZbijui (23)
=1
the weight of each codevectords= v — k. OOK is advanta-

whereq i_s usedto cpntrol the strength of the fing.erprint.'Cle_arl)é(_}ous whett > (3/4)v, and antipodal modulation is preferable
the precise probability law undéf, depends on fingerprint sig- iherwise. Typically, in BIBDs with\ = 1, the block sizek: is

nals of the colluders, and since the collusion behavior repie;, - smaller tham [37], and therefore, the antipodal form of
sented byK" andsS. is unknown, the hypotheses to be tested ag&, 4o modulation is preferred.

composite. Due to the discrete nature of our model, the optimall) Hard Detection: We first introduce a simple detection

maximum likelihood (ML) approach usually involves the enus.home based upon hard thresholding. Upon applying hard

meration of all possible parameter values, and hence, the Cfffasholding to the detection statisti@y (i), we obtain a
putational cost can be prohibitively high. vectorT = (I'y, I, ..., I',), wherel; = 1if Ty (i) > 7 and

Due to the orthogonality of the basfis; }, for the purpose of . _ ( gtherwise. Given the vectdt, we must determine who
detecting colluders, it suffices to consider the correlator vectg(s colluders are.

Ty, with theith component expressed by Algorithm 2 starts with the entire group as the suspicious

set and uses the componentslbthat are equal to 1 to fur-
In(i) = yTlli/ o - [ul? (24)  ther narrow the suspicious set. We determine a vefftor
(@1, Py, ..., @,)T € {0, 1}" that describes the suspicious set
fori =1, ..., v. Itis straightforward to show that via the location of components @&f whose value are 1. Thus,
a1 if ®; = 1, then thejth user is suspected of colluding. In the
Tyn=5B&+n (25)  algorithm, we denote thgth row vector ofC by e; and use the

. fact that the element-wise multiplicatior’ ‘of the binary vec-
where the column vecto® € {0, 1}" indicates col- {orq corresponds to the logicakp operation. We start witll’

luders via the location of components whose value are Jnqg — 1, where1 is then-dimensional vector consisting of

a1 = ay [ul|?/o7 is assgmed kr;own, \;vitlhuiH = [lul[forall " g ones. The algorithm then uses the indices wheie equal
i, andn = [, ~--:_“'v] d/v_Ud ] follows aN(Q: L) to1and update® by performing theanp of & with the rows
distribution. Here B is the derived code matrix, and is the ,f the code matrixC corresponding to indices whekis 1.
number of 1's in®. Thus, the model (22) can be equivalently 2) Adaptive Sorting ApproachOne drawback of the hard

presented as detection approach above is that the thresholi$ fixed at
Ho: f(Tn|®=0)=N(0, L) the beginning. This choice af is applied to every detectipn _
o (26) Scenario, re_ggrdles_s of the obs_ervatlons. To overcome this dis-
Hy: f(Tn|®)=N (? Bo, IL.) advantage, itis desirable to avoid the hard-thresholding process.
Consequently, in Algorithm 3, we present a soft-thresholding
with reference to (22) and (25). detection scheme wher@® is updated iteratively via the

Our goal in this section is to efficiently estimade. How- likelihood of T . We start with the highest detection statistic
ever, before we examine the candidate detectors, we discussiR€;) to narrow down the suspicious set. At each iteration,
choice of using either the OOK or antipodal form of code modve check whether the next largest statistig(j) increases
ulation. Suppose that a codevectgrhas weightv = wt(c;). the likelihood. If the likelihood increases, then we use this to
In the OOK case, the remaining- w positions would be zeros, further trim the suspicious set. The iteration stops when the
whereas in the antipodal case, the remaining w positions likelihood decreases.
would be mapped te-1. If we allocate€ energy to this code-  3) Sequential Algorithm:The approaches in both Section s
vector, then the OOK case would uS¢w energy to represent IV-B1 and B2 share the same idea that the colluders can be
each 1, whereas the antipodal case would &i5e energy to uniquely identified by utilizing the locations of 1's iR due
represent eactt1. The amplitude separation between the core the structural features of our AND-ACC. One key disadvan-
stellation points for the 0 and 1 in OOK {g & /w, whereas the tage of these schemes is that, in practice, the noise causes the
separation betweenl and 1 in antipodal i8/£ /v. Therefore, thresholding decision to have errors, which in turn results in in-
since it is desirable to have the separation between the constekrect indications of colluders. Therefore, it is desirable to es-
lation points as large as possible, we should choose OOK otilpate® directly from the pdf behavior df i, as suggested by
whenw < v/4. In the AND-ACCs presented in Section IV-A,model (26).
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ALGORITHM 3 all components and is used to control the WNR, where WNR
ALGORITHM AdSortAlg (T'), WHICH USES AN ADAPTIVE SORTING = 10log,, ||s||2/||d||2 dB. We use these simulations to verify
APPROACH TODETERMINE THE VECTOR® THAT DESCRIBES THESUSPECTSET some basic issues associated Wlth CO”USiOﬂ and code modula—
Algorithm: AdSortAlg(Tx) tion.
Sort elements of Ty in descending orde.r an.d record cgrresponding index vector as J; In the simulations that fO”OW, we USE(XBG, 47 1)-B|BD to
iitlg{)::ﬁ;s?t i =0 and calculate the likelihood LL(i) = f(T n|®) according to (26) ; construct our AND-ACC code. Tf(e} 47 1) codes exist if and
while Flag & i <v do onlyifv =1or4 (mod 12). By complementing the incidence
o ) =1 matrix, we get the code matrix in (27), shown at the bottom of
Define e; to be the j-th row of C; the page. With this code, we use 16 orthogonal basis vectors to
fﬁi):fj;(?fj;l%); handle 20 users an_d can uniquely identify uphfo= 3 col- _
if L;(?;Lé(i —1) then luders. The fingerprints for each user were assigned according
e|lse o to the antipodal form of code modulation using the columns of
| Flag = False ; C as the codevectors.
endeﬂd We first wanted to study the behavior of the detector and the
return ® : legitimacy of theanD logic for the detector under the collusion

scenario. We randomly selected three users as colluders and av-
eraged their marked content signals to producé&he colluded
Thus, we introduce Algorithm 4, which we refer to as the seontent signal was used in calculatifig, as described in (24).
quential algorithm, for estimating from the pdf of T . This  For three colluders using antipodal modulation, there
algorithmis similar to the adaptive sorting scheme in its sequedre four possible cases for the average of their bits, namely,
tial nature. The difference is that Algorithm 4 directly estimates 1 _1/3, 1/3, and 1. We refer to the cased, —1/3 and1/3
the colluder set, whereas the adaptive sorting algorithm first €8s the non-1 hypothesis since under sh® logic assumption
timates the code bits before deciding the colluder set. of our proposed AND-ACC they would be mapped to 0. We
Finally, we note that since a binary variable is assigned &amined the tradeoff between the probabilityt|1) of cor-
each user that indicates his/her presence or absence in the ceaditly detecting a 1 when a 1 was expected fromatke logic
tion, the collusion problem (25) is related to the estimation @id the probability ofy(1|non-1), where the detector decides
superimposed signals [38]. One may apply the alternating max4 when the correct hypothesis was a non-1. We calculated
imization (AM) method [39], [40] to the problem of identifying ;(1]1) andp(1|non-) as a function of WNR when using hard
the colluders. In our experience, we found that there was no sifitection with different thresholds. The thresholds used were
nificant performance difference between the AM approach apgd — 0.9E(Tn), 72 = 0.7TE(Ty), andrs = 0.5E(Ty). In
our sequential algorithm. order to calculate?s(Ty), we used (5) and assumed that the
i , , , i detector knows the WNR and hence the power of the distortion.
C. ACC Simulations With Gaussian Signals The plot of p(1|1) for different thresholds is presented in
In this section, we study the behavior of our AND-ACC wheiffrig. 4(a), and the plot of(1|non-1) is presented in Fig. 4(b).
used with code modulation in an abstract model. The distortid¥e observe that for the smaller threshold 5 E(Ty ), the
signald and the orthogonal basis signalsare assumed to be probability p(1|1) is higher but at an expense of a higher
independent, and each of them is&n= 10000 point vector probability of false classificatiom(1|non-1). Increasing the
of i.i.d. Gaussian samples. The facteris applied equally to threshold allows us to decrease the probability of falsely
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0111111111111 000O01T11
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ALGORITHM 4
ALGORITHM SeqAlg (T n), WHICH IS A SEQUENTIAL ALGORITHM TO DETERMINE THE VECTOR® THAT DESCRIBES THESUSPECTSET

Algorithm: SeqAlg(TN)

Set K =0;

Calculate the likelihood LL(0) = f(Txn|® = 0) according to (26) ;

Set J = 0 and Flag = True ;

while Flag do

Let K=K +1;

Estimate ik, assuming that (K — 1) users have indices i; = J(j), for j =1, ..., (K — 1) via

ig = a’l"gIIilI%X{f(TNU = {ilv' ) "iK})};
J={i1,...,ix} and ®,p(J) =1;

Calculate LL(K) = f(TN|®up) ;
if LL(K) > LL(K — 1) then

| P=20,;
else
| Flag = False ;
end

end

return P ;

Probabllity(1]1) Probabllity(1 | non—1)
T T

7, =09E(Ty
o a0TE@Y | 4

: : : -+ 1, =09E(T) : : : :
o7k e TR ST AR S o Ty =OTEMY | 4 07k B b UUURRPRUPPPPP: e 4
: - 7y = OSE(T,) : :

(@ (b)
Fig. 4. (a) Probability of detectiop(1|1) and (b) probability of false alarp(1|non-1) for different WNR and different thresholds using hard detection.

classifying a bit as a 1 but at the expense of also decreasing th® the probability that we falsely accuse at least one user.
probability of correctly classifying a bit as a 1. We calculated these six different performance measures for
We next examined the performance of the different detectieach of the detection strategies described in Section IV-B and
strategies for identifying the colluders. The following six meapresent the results in Fig. 5. For each WNR, we averaged over
sures present different yet related aspects of the performancedo00 experiments.
capturing colluders: We observe in Fig. 5(a) and (b) that for all WNRs, the use
a) the fraction of colluders that are successfully captured;of a higher threshold in the hard detection scheme is able to
b) the fraction of innocent users that are falsely placed und=apture more of the colluders but also places more innocent
suspicion; users falsely under suspicion. As WNR increases, the hard de-
c¢) the probability of missing a specific user when that userisctor has lowep(1|non-1) and therefore does not incorrectly
guilty; eliminate colluders from suspicion. Similarly, at higher WNR,
d) the probability of falsely accusing a specific user whetie hard detector has a highefl|1), thereby correctly iden-
that user is innocent; tifying more 1's, which allows for us to eliminate more inno-
e) the probability of not capturing any colluders; cents from suspicion. Therefore, at higher WNR, we can cap-
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Fig. 5. (@) Fraction of colluders that are successfully captured or placed under suspicion. (b) Fraction of the total group that are innocéyipdexckihiseder
suspicion for different WNR and different thresholds. (c) Probability of missing user 1 when he is guilty. (d) Probability of falsely accusinghesehé is
innocent. (e) Probability of not capturing any colluder. (f) Probability of putting at least one innocent under suspicion. In each plot, thereevaaifutters.

ture more colluders as well as place fewer innocent users unéeg. 4(a) and (b). We observe that at low WNR, tiig|non-1) is
suspicion. We note, however, that in Fig. 5(b), at low WNR béygher than slightly higher WNR, particularly for the threshold
tween—25 and—15 dB, the fraction of innocents under suspi+ = 0.9E(Tx ). However, for this threshold, th€1|1) at these
cion using threshold = 0.9E(T) is lower than at slightly WNR is relatively flat. These two observations combined indi-
higher WNR. This behavior can be explained by examiningate that at lower WNR we falsely decide 1 more often than at
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Fig. 6. (Top) Original images. (Middle) Fingerprinted images. (Bottom) Difference images for Lenna and Baboon. In the difference images, diga@igier
zero difference between the original and the fingerprinted version, and brighter and darker indicates larger difference.

slightly higher WNR, whereas we do not experience much dif- Compared with the hard detection scheme with
ference in the amount of correctly identified 1's. As more 1's = 0.9F(Ty), the adaptive sorting scheme captures a
pass through the detector, we remove more users from susaiger fraction of the colluders at all WNR, whereas for a large
cion. Therefore, since the amount of correctly detected 1's irenge of WNRs betweer20 and—3 dB, the adaptive sorting
creases slowly for WNRs betweer25 and—15 dB, the addi- scheme places fewer innocents under suspicion. However,
tional 1's from false detections at lower WNR eliminates morexamining the curves for the sequential algorithm, we find that
innocent users (as well as colluders) from suspicion. we are able to capture more colluders than any other detection
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TABLE |
DERIVED CODEVECTORSFROM A (16, 4, 1) AND-ACC FORUSER 1, USER4, AND USER8. VECTORSFROM A TWO-COLLUDER SCENARIO AND A
THREE-COLLUDER SCENARIO. BOTTOM Row CORRESPONDS TO THEDESIRED OUTPUT OF THE DETECTORUSING THE AND LoOGIC
FOR THE THREE-COLLUDER CASE

User 1: -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1

User 4: -1 1 1 1 11 1 1 1 -1 -1 -1 1 1 1

User 8: 1 -1 1 1 11 -1 1 -1 1 1 1 1 1 -1 1

User(1,4) Average: -1 0 0 0 11 1 1 1 1 0O 0 0 1 1 1

User(14,8) Average: | -2 -1 &+ I 1 1 § 1 3 1 5 3 3 1 3 1

After thresholding: 0 0 0 0 1.1 0 1 0 1 O 0 0 1 0 1
Colluded ACC code [-1,0,0,0, 1,1,1,1, 1,1,0,0, 0,1,1,1]

|| Collude by Averaging

“ Collude by Averaging

Colluded ACC code [0,0,0,0, 1,1,0,1, 0,1,0,0, 0,1,0,1]

Fig. 7. lllustration of collusion by averaging two and three images fingerprinted with ACC codes, respectively.

schemes at all WNRs. Further, the amount of innocents placed'he three derived code vectors that were assigned to users 1,
under suspicion is less than the adaptive sorting algorithm. 4, and 8 via antipodal mapping as well as the colluded versions
Consistent behavior is observed for the different detecti@me presented in Table I. Two collusion examples are illustrated
schemes under the other performance measures, as depictea Fig. 7, and the detection statistics of the two examples are
Fig. 5(c)-(f). Overall, the sequential detection scheme providskown in Fig. 8. In one example, we averaged the Lenna im-
the most promising balance between capturing colluders aages fingerprinted with users 1 and 4’s codes, and the other is

placing innocents under suspicion. for averaging users 1, 4, and 8's. The colluded images are fur-
) i ther compressed using JPEG with quality factor (QF) 50%. The
D. ACC Experiments With Images thresholds determined from the estimated mean of the detec-

In order to demonstrate the performance of our AND-AC@on statisticsE(T) are also shown in Fig. 8. We then esti-
with code-modulation fingerprinting on real images for finmate the fingerprint codes by thresholding the detection statis-
gerprinting users and detecting colluders, we used an additiigs using a hard threshold of The estimated fingerprint codes
spread spectrum watermarking scheme similar to that in [@lre identical to the expected ones shown in Table I. We can see
where the perceptually weighted watermark was addedsto 8in Figs. 8 and 9 that nonblind detection increases the separation
8 block DCT coefficients. The detection of the watermark is between the values of the detection statistics that are mapped to
blind detection scenario performed without the knowledge éf1, 0, +1}.
the host image via the detection statistics as shown in (6). WeWe present histograms of they (i) statistics from several
used the same code matrix detailed in (27) for the AND-AC@Dllusion cases with different distortions applied to the colluded
as in the simulations for Gaussian signals. This code is ableltennaimages in Fig. 9. For each collusion and/or distortion sce-
accommodate 20 users and is designed to capture up to thrago, we used ten independent sets of basis vectors to generate
colluders. The 512x 512 Lenna and Baboon images weréhe fingerprints. Each set consists of 16 basis vectors to rep-
used as the host signals for the fingerprints. The fingerprintegsent 16 ACC code bits. Fig. 9 shows the histograms of the
images have no visible artifacts with an average PSNR blind and nonblind detection scenarios, as well as the single-
41.2 dB for Lenna and 33.2 dB for Baboon. Fig. 6 shows théser, two-colluder, and three-colluder cases. We see that there
original images, the fingerprinted images, and the differeni®a clear distinction between the three decision regions corre-
with respect to the originals. spondingtq —1, 0, +1}, which is desirable for identifying col-



1084 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 4, APRIL 2003
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R . e T,
Detection Statetics (o) and Thrasholds (x)

1 1 1 i 1 i i
o 2 4 0 0 10 12 14 18
Bhnd ACC code bit index ACC code bit index
Non-biind Detection Statistics on Coluded Lenna Image
T T T T T

Non-blind Detection Statistics on Colluded Lenna image
T T T T T

Detecton Statistics (0) and Thresholds (x)
°
Detection Statistics (0) and Thresholds (x)

Non-Blind ACC code bit index ACC code bit index

Fig. 8. Example detection statistics values for (left) two users’ and (right) three users’ collusion With, d, 1)-BIBD AND-ACC fingerprint.

(Top) Blind detection scenario and (bottom) nonblind detection scenario. (Left) Users 1 and 4 perform averaging, resulting in the output of
the detector as(—1,0,0,0,1,1,1,1.1,1,0,0,0,1,1,1). (Right) Users 1, 4, and 8 average, resulting in the output of the detector as
(0,0,0,0,1,1,0,1,0,1,0,0,0, 1,0, 1).

luders. This implies that the average magnitud&efwhen the algorithm that reduces the amount of correlations from linear to
bit values agree, is much larger than the average magnitudel@aarithmic complexity and is able to identify colluders in a
where the bit values disagree, therefore facilitating the accuratamputationally efficient manner.
determination of the AND-ACC codes from colluded images. A further drawback of orthogonal modulation for embedding
The statisticdy can be used with hard detection to determinis that it requires as many orthogonal signals as users. We de-
the colluders, as depicted in Fig. 8. Similarly, we can lise veloped a fingerprinting scheme based on code modulation that
with other detectors, whose performance was presented in Séaes not require as many basis signals as orthogonal modula-
tion IV-C. We have also studied the effect of averaging colldion in order to accommodate users. We proposed anti-collu-
sion in the presence of no distortion, JPEG compression, aidn codes (ACC) that are used in conjunction with modulation
lowpass filtering. We found that the one and nonone decisitmfingerprint multimedia sources. Our ACCs have the property
regions were well separated, which can lead to reliable identifitat the composition of any subsetigfor fewer codevectors is
cation of colluders. unique, which allows for the identification of subgroupsrof
or fewer colluders. We constructed binary-valued ACC under
the logicalanD operation using combinatorial designs. Our con-
struction is suitable for both the on-off keying (OOK) and an-
In this paper, we investigated the problem of fingerprintintipodal form of binary code modulation. Further, our codes are
multimedia content that can resist collusion attacks and traefficient in that for a given amount of colluders, they require
colluders. We studied linear collusion attacks for additive enanly O(/n) orthogonal signals to accommodataisers. For
bedding of fingerprints. practical values of, this is an improvement over prior work on
We first studied the effect of collusion upon orthogonal enfingerprinting generic digital data.
bedding. The traditional detection schemes for orthogonal mod-We introduced three different detection strategies that can be
ulation in embedding applications require an amount of corrased with our ACC for identifying a suspect set of colluders.
lations that is linear in the amount of orthogonal basis signal/e performed experiments to evaluate the proposed ACC-based
To address this deficiency, we presented a tree-based detediiiogerprints. We first used a Gaussian signal model to examine

V. CONCLUSION
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Fig. 9. Histograms of detection statistifFy (i)} of embedded fingerprints. (Top row) Single fingerprint case. (Middle row) Two-user collusion case. (Bottom
row) Three-user collusion case. (Left column) Blind detection. (Right column) Nonblind detection.

the ability of the ACC to identify the colluders, as well as reebserved that the values of the detection statistics can be well
veal the amount of innocent users that would be falsely placeeparated. This behavior allows the detector to accurately deter-
under suspicion. We observed a close connection between ifiee the colluder set by estimating a fingerprint codevector that
ability to capture colluders and the side-effect of placing inn@orresponds to the colluder set.

cent users under suspicion. From our simulations, we observed
that the proposed sequential detection scheme provides the most
promising balance between capturing colluders and placing in-
nocents under suspicion out of the three detection strategies ex/e prove the theorem by working with the blocks of the
amined. We also evaluated our fingerprints on real images aBBD. The bitwise complementation of the column vectors cor-

APPENDIX
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responds to complementation of the sgts; }. We would like
for ﬂjGJAf to be distinct over all setg with cardinality less
than or equal t&: — 1. By De Morgan'’s law, this corresponds [20]
to uniqueness otJ;c;A; for all setsJ with cardinality less

than or equal td: — 1. Suppose we have a setlof- 1 blocks  [21]
Aq, Ao, ..., Ap_1; we must show that there does not exist an-py)
other set of blocks whose union produces the same set. There
are two cases to consider. First, assume there is another set(&fl
b|OCkS{AZ‘}i€] with Uje]Aj = U;er4; suchthat N J =0

(19]
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