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ABSTRACT

In a rich-scattering environment, radio frequency (RF) de-
vices communicate through multipath channels and the chan-
nel state information (CSI) is uniquely determined by the lo-
cation of the transmitter or receiver devices along with sur-
rounding environments. Whenever one of the devices moves,
the CSI changes accordingly. In other words, there is a one-
to-one mapping between the CSI and the location of RF de-
vices. Inspired by the relationship, we propose a real-time
indoor tracking system that utilizes time-reversal (TR) tech-
nique to capture differences in the CSI and then accurately
locate the moving RF device along its trajectory. Moreover,
a real-time speed estimation algorithm is designed based on
the spatial distribution of the TR resonance. A prototype is
built to validate the accuracy and robustness of the proposed
system through a train tracking experiment. It illustrates the
TR technique as a promising solution to high-precision indoor
tracking applications.

Index Terms— Smart radio; time-reversal (TR); indoor
tracking; speed estimation.

1. INTRODUCTION
Nowadays, outdoor tracking has been well developed and can
achieve a high accuracy with the help of the Global Position-
ing System (GPS). However, due to the failure of GPS in in-
doors, the indoor tracking problem which requires high accu-
racy and low latency is still open for investigation.

The indoor tracking system (ITS) can be viewed as a
derivation of the indoor position system (IPS) because in
tracking a sequence of locations that form a moving trajec-
tory are to be identified. Most of existing ITSs and IPSs,
which depends on triangulation of time-of-flight (ToF) or
angle-of-arrival (AoA), requires multiple access points (APs)
as anchor points to locate the terminal device (TD) [1–7].
However, there are many scatterers and blockages in a typical
indoor environment and introduces multipath channels be-
tween AP and TD. Due to the nature of multipath that impairs
precise measurement for triangulation, the performance of
those systems degrades a lot when there is no line-of-sight
(LOS) path for wireless transmission. Other wireless indoor
tracking systems rely on isolating target reflected path from

other multipaths by using the ultra-wideband transmission or
a specially designed frequency sweeping signal [8, 9].

In this paper, we propose a novel indoor tracking sys-
tem (ITS) that utilizes time-reversal (TR) technique to sup-
port high accuracy fixed-path tracking with only one single-
antenna AP. TR technique has been proposed as a novel and
promising paradigm for Internet of Things (IoT) [10]. In TR,
each physical location of the moving TD is linked to a unique
multipath profile that can be viewed as a logical location in
the TR space. The position of a moving TD is determined by
finding a match between the current logical location and a pre-
mapped training database, and the similarity between two log-
ical locations can be measured by the TR spatial-temporal res-
onance strength (TRRS). It has been shown that the TRRS has
a peak in the center of the resonance effect, i.e., when the two
logical locations belong to the same physical location, and
decays rapidly when the two physical locations are different,
e.g., even 1-2 centimeter apart. By choosing a proper thresh-
old according to the TRRS decay at a given carrier frequency,
the proposed TR based indoor tracking system (TRITS) can
achieve centimeter-level accuracy. As there exists a large
number of multipaths in indoors, constituting a large num-
ber of degree of freedom, and normal human activities can
only affect a portion of the multipaths, TRITS is also robust
to environment dynamics.

Moreover, by leveraging the spatial distribution of the
TRRS, the moving speed of the TD can be estimated without
pre-mapping. With the proposed speed estimation algorithm,
the tracking system only needs to search within a small
portion of the training database that is close to the current
estimate position. On the other hand, with the knowledge of
the moving speed, a proper sampling rate of the system can
be selected to avoid unnecessarily high sampling overhead.
Taking advantage of the high-resolution TR spatial-temporal
resonance, we show through experiments that each position
on the moving trajectory can be located with a centimeter-
level accuracy, with low computational complexity and small
latency. The proposed TRITS is a promising solution to future
high-accuracy indoor tracking applications, especially those
with a fixed moving path in manufacture sites, warehouses,
and so on.

This paper is organized as follows. In Section 2, the theo-
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Fig. 1: Theoretical foundations of TRITS. (a) TR space: from physical locations to logical locations. (b) Geographic distribution
of TRRS: coarse scale (with 5 cm spacing). (c) Geographic distribution of TRRS: fine scale (with 5 mm spacing) [11].

retical foundation behind the proposed system is introduced.
The detailed design of the proposed system is discussed in
Section 3 and experimental results are in Section 4. Conclu-
sions are drawn in Section 5.

2. PRELIMINARY
In this section, we introduce the theoretical foundation of the
proposed indoor tracking system.

2.1. Time-Reversal Technique

TR technique takes advantage of multipath propagation by
treating each path in a multipath channel as a distributed vir-
tual antenna, and provides a high-resolution spatial-temporal
resonance [11]. When the propagation path changes due to
the change of either the TD location or the environment, the
resulted spatial-temporal resonance changes correspondingly.
The TRRS can quantitatively evaluate the difference between
multipath environments represented by the CSI, whose defi-
nition is as follows.

Definition: The TRRS between two CSI, a.k.a., chan-
nel impulse responses (CIRs), h1 and h2 is defined as

T R(h1,h2) =
max
i

∣∣∣(h1 ∗ g2)[i]
∣∣∣2(∑Ntap−1

l=0 |h1[l]|2
)(∑Ntap−1

l=0 |h2[l]|2
) , and

g2[l] = h∗2[Ntap − l − 1], l = 0, 1, · · · , Ntap − 1, where
Ntap denotes the CIR length, “∗” is the convolution operator,
and g2 represents the TR signature of CSI h2.

Recently, thanks to its capability of fully exploiting mul-
tipaths, TR has been advocated as a promising paradigm for
green IoT in [10] with many cutting-edge IoT applications
being proposed and implemented [12–17].

2.2. Indoor Positioning with Centimeter-Level Accuracy

Most of the existing IPS can only achieve a positioning accu-
racy in the order of meter, and the performance degrades a lot
when only a single AP is available and/or under a non-line-of-
sight (NLOS) condition [12]. The reason is that they rely on a
precise geographical calculation over the measured character-
istics of wave propagation, e.g., the time of arrival (TOA) [2],

the angle of arrival (AOA) [6], or the received signal strength
(RSS) [4] of the probing signal. Due to the rich-scattering na-
ture of an indoor environment, it is difficult to obtain accurate
measurements of the aforementioned characteristics of wave
propagation, especially under a NLOS case.

To overcome the bottleneck of existing IPS, a TR based
indoor positioning system (TRIPS) was firstly proposed
in [12], and a prototype was implemented under a trans-
mission bandwidth of 125 MHz at carrier frequency of 5.4
GHz. Through TR technique, each physical location of the
TD (x, y, z) is mapped to a unique logical location in the
TR space, represented by the multipath channel h(x,y,z)

or the corresponding TR signature g(x,y,z). The subscript
(·)(x,y,z) denotes the location in a coordinate space where the
multipath channel h(x,y,z) is measured. A demonstration is
shown in Fig.1a, where each point in the physical (coordi-
nate) space is one-to-one mapped to a point in the TR space.
The geographic distribution of TRRS of CIRs measured at
different locations is plotted in Fig.1b and Fig.1c with dif-
ferent scales. Through experiments, it has been verified that
the TRRS drops dramatically when two physical locations
are more than 1 cm away given the carrier frequency of 5.4
GHz. Hence, the current location of a TD can be determined
by matching its associated logical location with the ones
stored in the database. As there usually exists a large number
of multipaths in a rich-scattering indoor environment, and
indoor activities can only affect a limited number of the mul-
tipaths, TRIPS also can leverage the large degree of freedom
gain brought by the multipaths and is thus robust to normal
environment dynamics.

3. CENTIMETER ACCURACY TRACKING
Inspired by the principle of TR and TRIPS, TRITS is pro-
posed and implemented in this work.

3.1. From Physical Trajectory to Logical Trajectory

The essential concept in TRITS is converting the trajectory of
a moving TD in the physical space to a logical trajectory in
the TR space. Through that, each point on the physical tra-
jectory as represented by a coordinate is mapped into a point
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Fig. 2: TRRS decay curves [16]. (a) TRRS decay of 55 measurements. (b) Sample variance. (c) The mean of TRRS distribution
along a line.

in the TR space which is represented by a unique multipath
profile. The indoor tracking problem is then transformed to
a logical tracking problem where a sequence of logical loca-
tions, a.k.a., multipath channel profiles, is to be recognized.

On the other hand, TR technique is an ideal solution to in-
door tracking because it quickly and quantitatively measures
the difference between logical locations through TRRS, with
a low computational complexity and a high spatial resolution
of 1 to 2 cm. As the logical tracking problem is solved by
adopting TR technique, so does the physical indoor tracking
problem given a fixed path.

The proposed TRITS consists of two phases.
1. The offline mapping phase: the multipath profile, a.k.a.

CIR h(x,y,z) of each location (x, y, z) on the trajectory
P is estimated and stored in the database as a logical
location. Thus, the physical trajectory of a moving TD
is converted to the logical trajectory in TR space.

2. The online tracking phase: the current location of a
moving TD is determined by matching the real-time
measured multipath profile htest with logical locations
in the database collected during offline phase. As long
as the TRRS is higher than a predefined threshold Γ,
the current location of TD can be determined, i.e.,

(x, y, z)∗ =


arg max

(x,y,z)∈P
T R(htest,h(x,y,z)),

if max
(x,y,z)∈P

T R(htest,h(x,y,z)) ≥ Γ

unknown, otherwise
(1)

In Fig.2, the spatial decay of T R(htest,h(x0,y0,z0)) is
studied with a resolution of 0.5 cm by collecting CIRs around
55 randomly selected focal spots (x0, y0, z0). The results im-
ply that the TRRS decreases rapidly as the distance between
the TD and the focal spot increases, and when the distance ex-
ceeds 1 to 2 cm, the TRRS drops below 0.7 with almost prob-
ability 1 and a variance smaller than 3 × 10−3. Hence, the Γ
is chosen as 0.7 to guarantee a centimeter-accurate tracking.

3.2. Speed Estimation

To reduce the computation complexity in the online testing
phase, we also propose a mapping-free speed estimation algo-
rithm, through which the current speed of the moving TD can

be obtained and the searching range of the training database
for the incoming CSI measurement can be reduced to the
proximity of the current estimated position. Moreover, it is
better for TRITS to sample the fixed trajectory at a proper
rate such that the distance between two consecutive sampled
positions being 1 to 2 cm. With the knowledge of the moving
speed, we can determine a proper CSI sampling rate to ensure
the sampling resolution while avoiding the unnecessarily high
overhead.

As plotted in Fig.2c, the mean TRRS distribution w.r.t. the
distance between the sampled positions, i.e., φ(d), can be ob-
tained by taking a sample average of all the measured TRRS
decay curves in Fig.2a. Based on φ(d), a speed estimation
algorithm is described in Algorithm1 [16].

Algorithm 1 TR-based speed estimator

Input: N consecutive CSI measurements: [ht−N+1, ...,ht]
Output: Speed estimation at t: v̂(t)

1: Initialization: Σ← 0, Ts (channel probing interval)
2: for i ∈ {t−N + 1, ..., t− 1} do
3: Σ← Σ + T R(hi,hi+1)
4: end for
5: v̂(t) = φ−1(Σ/(N−1))

Ts

3.3. Robustness to Dynamics

Moreover, the proposed TR based indoor tracking technique
can survive during normal environmental changes. Thanks
to the large number of multipaths in a rich-scattering indoor
environment, a large degree of freedom is provided in the CSI.
Because normal perturbations of EM waves and surrounding
dynamics in the environment only involve a small portion of
multipaths, the perturbed CSI can still be used to represent
and determine the locations given large degrees of freedom.
In other words, multipaths provide not only the accuracy but
also robustness in the proposed system.

By exploiting the multipath propagation with TR tech-
nique, TRITS is a promising solution to high-accuracy indoor
tracking applications, especially those with fixed paths, in-
cluding manufacture sites, warehouses, and so on.
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Fig. 3: Experimental setting for train tracking. (a) Prototype. (b) Train track. (c) Floorplan.

4. EXPERIMENTAL RESULTS
To demonstrate and validate the concept of TRITS, a proto-
type of train tracking is built as an example of indoor fixed-
path tracking. Equipped with a single omni-direction antenna,
the AP and the TD, in Fig.3a, communicates wirelessly in
ISM band of 125 MHz bandwidth and 5.4 GHz carrier fre-
quency. The TD is attached to a model train running along
a closed track as shown in Fig.3b. The experimental setup
is depicted in Fig.3c, and the distance between the AP and
the train track is about 20 meters and there is no LOS path.
The length of tracks is 8.0 m, and the total time for the train
running through one loop is 10.3 seconds. Given the average
speed of train being 77.7 cm/s, the channel probing interval
between the AP and the TD is set to 100 Hz.

Accuracy Validation: To validate the accuracy of TRITS,
we conduct the experiment by arbitrarily selecting an anchor
point on the track as the start and the end point, and measuring
the running time of the train. Following the steps in Section
3 with a proper threshold Γ, TRITS achieves centimeter-level
accuracy as long as it can track the train. When TRITS fails
to find a match for the current position and loses track of the
running train, a new match can be found and the tracking will
resume after the train finishes the current loop and gets back
to that position.

Let TTRITS denote the accumulated running time (with
centimeter-accuracy tracking) measured through TRITS,
which remains unchanged when TRITS loses track. The
accuracy measurement is defined as Accu. = TTRITS

T0
× 100%,

where T0 is the ground-truth running time of the train.
Through experiments, when the environment is static, an
accuracy of 100% is achieved by TRITS.

Robustness Validation: In reality, there always exist en-
vironmental dynamics due to human activities. Therefore, an
experiment is designed to evaluate the robustness of the pro-
posed system. Propagation perturbations are artificially intro-
duced by one person walking in a certain area, and the experi-
ment in the previous part is repeated to study the performance
degradation. The results are listed in Table 1 which shows
that TRITS can still work well under normal environment dy-
namics.

Speed Estimation: In this part, an anchor point on the
train track is selected and the TRRSs between all the CIR of

Table 1: Accuracy under different surrounding dynamics.

Area along the
track

inside the
track

around the
AP

in the
open space

Accu. 98.93 98.64 97.95 100
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Fig. 4: Experimental results for speed estimation. (a) Speed
estimation. (b) Track length estimation.

the anchor and others CIRs measured during the train run-
ning are computed and shown in Fig.4a. The peaks in the red
line indicate the train passing the anchor three times with a
similar speed depicted by the blue curve. Generally, the train
slows down when it makes turns and then speeds up along the
straight track. This trend is reflected in the speed estimation.
Moreover, the length of the track is estimated by integrating
the speed estimates over time for each lap and the results are
shown in Fig.4b. The resulted average distance error is 2.1%.

5. CONCLUSION
By leveraging TR technique to exploit the CSI of a multi-
path channel, we propose TRITS that tracks the moving TD
with centimeter accuracy in real time. Based on the concept
of logical locations and the spatial distribution of TRRS, each
location on a moving trajectory can be identified and the mov-
ing speed can be estimated. Because of its high accuracy, low
complexity and small latency, TRITS is a prominent solution
to future indoor tracking applications with fixed paths.
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