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Abstract—In this paper, a differential space-frequency mod-
ulation (DSFM) scheme is proposed for MIMO-OFDM systems
with assumptions that the channel keeps constant only within
each OFDM block, and it may change independently from one
OFDM block to another. The transmitted/received signals are
differentially en/decoded in the frequency dimension within
each OFDM block. The performance of the proposed scheme
depends on the channel power delay profile. Moreover, if the
statistics of the power delay profile is known at the transmitter,
we further propose to permute the channel frequency responses
over subcarriers by using the Dijkstra’s algorithm to increase
the performance of the DSFM scheme. Simulation results show
that the DSFM scheme with permutations performs very well
for various channel profiles.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) communication
systems have shown great potential for the next genera-
tion wireless communications due to the capacity they pro-
vide. Among abundant space-time (ST) coding and modu-
lation schemes, differential space-time modulation (DSTM)
schemes [1]–[3] have been proposed for MIMO frequency-
non-selective (flat) fading channels where both the transmit-
ter and the receiver do not need to know the channel state
information (CSI). With such schemes, there is only a 3 dB
performance degradation compared with the case of coher-
ent detection in which perfect CSI should be known at the
receiver. The avoiding of channel estimations and the com-
parable performances make the DSTM schemes attractive.
Many DSTM signal constellations have been designed since
then, for example see [4]–[8].

In broadband wireless communications, the channel ex-
hibits frequency selectivity due to the multiple delay paths
that may introduce inter-symbol interference (ISI) at the re-
ceiver. In [9], two differential coding schemes were pro-
posed for MIMO frequency-selective fading channels: one
for single-carrier scenario with blind channel identification,
and one for multi-carrier scenario with orthogonal frequency
division multiplexing (OFDM). However, both schemes ex-
ploited only the spatial diversity, not the frequency diversity
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which is available in the frequency-selective fading chan-
nels. In [10], a differential encoding scheme was proposed,
in which the frequency diversity was exploited, however, it is
only for single-antenna OFDM systems. Later in [11], [12],
[13], some differential schemes were proposed to achieve
the maximum spatial and frequency diversities for MIMO-
OFDM systems. Note that the differential schemes in [9],
[13] followed the DSTM approach in [1] by taking advan-
tage of the orthogonal ST block codes. They assumed that
the fading channel stays constant over a transmission period
of Mt, the number of transmit antennas considered in the sys-
tems, OFDM blocks. The differential schemes in [10], [11],
[12], on the other hand, followed the DSTM schemes in [2],
[3] by using the recursive differential en/decoding equations.
The differential en/decoding was performed in the temporal
dimension, i.e., the transmitted/received signals within a pe-
riod of Mt OFDM blocks depend on those in the previous Mt

OFDM blocks. These schemes also assumed that the fading
channel keeps constant over Mt OFDM blocks, and further-
more assumed that the channel changes slowly from a period
of Mt OFDM blocks to another. A differential scheme in
the frequency dimension was also proposed in [11], in which
the differential en/decoding process was performed over ad-
jacent subcarriers. However, this scheme also depends on
the assumption that the fading channel is constant over Mt

OFDM blocks. In case of large number of transmit antennas,
this assumption is not valid even for a typical slow fading
scenario.

In this paper, we consider a problem of designing dif-
ferential coding schemes for MIMO-OFDM systems with
assumptions that the channel keeps constant only within
each single OFDM block, and it may change independently
from one OFDM block to another. First, we propose a dif-
ferential space-frequency modulation (DSFM) scheme for
MIMO-OFDM systems, in which the transmitted/received
signals are differentially en/decoded in the frequency dimen-
sion within each single OFDM block. The performance of
this scheme depends on the channel power delay profile. Sec-
ond, if the statistics of the power delay profile is known at the
transmitter, we are able to permute the channel frequency re-
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sponses over different subcarriers to create a “smooth” log-
ical channel by using the the Dijkstra’s algorithm. The pro-
posed DSFM scheme with permutations performs very well
even for a fading channel with severe variations in the spec-
trum of the channel impulse responses.

The rest of the paper is organized as follows. In Section II,
we introduce the MIMO-OFDM system model and introduce
the DSFM scheme. We use the Dijkstra’s algorithm to create
a “smooth” logical channel in Section III. The simulation re-
sults are presented in Section IV, and some conclusions are
drawn in Section V.

II. CHANNEL MODEL AND DSFM SCHEME

In this section, we specify the MIMO-OFDM channel
model at first, and then propose the DSFM scheme within
each single OFDM block.

A. Channel Model

We consider a MIMO-OFDM system with Mt transmit an-
tennas, Mr receive antennas and N subcarriers. Both the
transmitter and the receiver do not know the channel state
information. The MIMO channel is assumed to be constant
within each OFDM block period, and it may change indepen-
dently from one OFDM block to another. Suppose that the
frequency selective fading channels between different trans-
mit and receive antenna pairs have L paths and the same
power delay profile.

In the frequency domain, the received signal at the n-th
(0 ≤ n ≤ N − 1) subcarrier at receive antenna j can be
written as

yj(n) =
√

ρ

Mt∑
i=1

xi(n)Hi,j(n) + zj(n), (1)

where xi(n) is the channel symbol transmitted over the n-
th subcarrier by transmit antenna i, Hi,j(n) is the channel
frequency response at the n-th subcarrier between transmit
antenna i and receive antenna j, and zj(n) denotes the addi-
tive complex Gaussian noise with zero mean and unit vari-
ance at the n-th subcarrier at receive antenna j. The channel
frequency response Hi,j(n) can be further specified as

Hi,j(n) =
L−1∑
l=0

αi,j(l)e−j2πn∆fτl , (2)

where αi,j(l) is the complex amplitude of the l-th path, τl

is the delay of the l-th path, ∆f = 1/T is the subcar-
rier separation in the frequency domain in which T is the
OFDM symbol period, and j =

√−1 is the imaginary unit.
The αi,j(l)’s are modeled as zero-mean, complex Gaussian
random variables with variances E|αi,j(l)|2 = δ2

l , where
E stands for the expectation. The powers of the L paths

are normalized such that
∑L−1

l=0 δ2
l = 1. The transmit-

ted signal xi(n) is assumed to satisfy the energy constraint

E
N−1∑
n=0

Mt∑
i=1

|xi(n)|2 = N. Thus, ρ in (1) is the average trans-

mitted power at the transmitter.

B. DSFM Scheme

We follow a full-diversity signal transmission method pro-
posed in [14], [15], in which a class of space-frequency sig-
nals were designed to achieve a diversity order of ΓMtMr

for any fixed integer Γ (1 ≤ Γ ≤ L) when a coherent
detection is applied at the receiver. Specifically, denote
P = �N/(ΓMt)�, which is the largest integer not greater
than N/(ΓMt), and denote Bp = (p − 1)ΓMt for any
p = 1, 2, · · · , P . We specify the transmitted signal xi(n)
in (1) as follows: i) xi(n) �= 0 for any

n = Bp + (i − 1)Γ + γ − 1, (3)

in which 1 ≤ p ≤ P, 1 ≤ i ≤ Mt and 1 ≤ γ ≤ Γ; and
ii) xi(n) = 0 for other n. It means that at each subcarrier,
there is only one transmit antenna that sends non-zero sym-
bol. Therefore, the received signal in (1) can be written as

yj(n) =
√

ρ xi(n)Hi,j(n) + zj(n), (4)

for any n = Bp +(i− 1)Γ+ γ − 1 with 1 ≤ p ≤ P, 1 ≤ i ≤
Mt and 1 ≤ γ ≤ Γ.

We format the received signals in (4) in a compact matrix
form as follows:

Yp =
√

ρXpHp + Zp, p = 1, 2, · · · , P, (5)

where Xp is is a ΓMt × ΓMt diagonal matrix as

Xp = diag

(
xi(Bp + (i − 1)Γ + γ − 1) :

1 ≤ i ≤ Mt, 1 ≤ γ ≤ Γ
)

. (6)

In (5), the received signal matrix Yp is of size ΓMt by Mr

whose (k, j)-th (1 ≤ k ≤ ΓMt, 1 ≤ j ≤ Mr) entry is
yj(Bp + k − 1), the channel matrix Hp also has size ΓMt

by Mr whose ((i − 1)Γ + γ, j)-th (1 ≤ i ≤ Mt, 1 ≤ γ ≤
Γ, 1 ≤ j ≤ Mt) entry is Hi,j(Bp + (i − 1)Γ + γ − 1), and
the noise matrix Zp has the same format as Yp.

With the transceiver model in (5), we encode the transmit-
ted signals differentially in the frequency dimension within
each OFDM block as follows:

Xp = VlpXp−1, p = 2, 3, · · · , P, (7)

where X1 = IΓMt×ΓMt
, and Vlp carries the transmitted in-

formation and is a unitary diagonal matrix chosen from a
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cyclic signal constellation designed in [3]. Specifically,

Vlp ∈
{

Vl = diag(eju1θl , eju2θl , · · · , ejuΓMt θl) :

l = 0, 1, · · · , L0 − 1
}

, (8)

where θl = 2πl/L0, 0 ≤ l ≤ L0 − 1, and u1,
u2, · · · , uΓMt

∈ {0, 1, · · · , L0 − 1}. The spectral efficiency
of this differential scheme is log(L0)(P − 1)/N bits/s/Hz,
ignoring the cyclic prefix. We consider differential decod-
ing over two received matrices Yp and Yp−1 for any p =
2, 3, · · · , P as follows. Since

Yp =
√

ρXpHp + Zp (9)

=
√

ρ VlpXp−1Hp + Zp, (10)

Yp−1 =
√

ρXp−1Hp−1 + Zp−1, (11)

so, we have

Yp = VlpYp−1 +
√

ρXp∆p + Z′
p, (12)

where ∆p = Hp − Hp−1 is the channel difference ma-
trix between Hp and Hp−1, and Z′

p = Zp − VlpZp−1 is a
noise matrix whose each entry is an independent complex
Gaussian random variable with mean zero and variance

√
2

since Vlp is unitary. If Hp ≈ Hp−1, or the Frobenius norm
of the channel difference ||∆p||F is small enough such that√

ρ||∆p||F is much less than ||Z′
p||F , then the maximum-

likelihood (ML) decoding can be performed as

l̂p = arg min
0≤lp≤L0−1

||Yp − VlpYp−1||F . (13)

If the delay spread of the multiple paths is small with respect
to the OFDM block period, the assumption of Hp ≈ Hp−1

is valid and the differential decoding in (13) would be suc-
cessful. However, if the delay spread of the multiple paths is
not small, the performance of the differential decoding will
degrade and it depends on the channel mismatch ∆p.

In case that the delay spread of the multiple paths is large
with respect to the OFDM block period, there will be se-
vere variations in the spectrum of the channel impulse re-
sponses. It is hard to assume that the changing of the channel
frequency responses is slow over two adjacent subcarriers.
However, if the statistics of the power delay profile is known
at the transmitter, we are able to permute the transmitted sig-
nals over different subcarriers to create a “smooth” logical
channel. Denote the permuted channel as H̃p, and accord-
ingly denote the received signal matrix and the noise matrix
as Ỹp and Z̃′

p respectively. Similar to (12), we have

Ỹp = VlpỸp−1 +
√

ρXp∆̃p + Z̃′
p, (14)

where ∆̃p = H̃p − H̃p−1 and Z̃′
p = Z̃p − VlpZ̃p−1. The

differential ML decoding is

l̂p = arg min
0≤lp≤L0−1

||Ỹp − VlpỸp−1||F . (15)

The permutation will be designed in the next section such
that the norm of the difference between two logic adjacent
subcarriers ||∆̃p||F is as small as possible to ensure the suc-
cessful differential decoding.

III. OBTAINING A “SMOOTH” LOGICAL CHANNEL BY

PERMUTATIONS

Assume in this section that the statistics of the channel
power delay profile is known at the transmitter. We want
to obtain a “smooth” logical channel by permutations such
that the differential decoding in the DSFM scheme can per-
form well even if the channel frequency responses may vary
severely over two adjacent subcarriers. Intuitively, we try to
sort the channel in such a way that any two adjacent sorted
subchannels are approximately the same.

A. Average Signal to Noise Ratio

From the system performance point of view, one should
optimize the permutations by maximizing the bit-error-rate
(BER) performance of the ML decoding in (15). However,
this approach is intractable, if not impossible. We consider
an approach of maximizing the average signal-to-noise ratio
(SNR) which is defined as

SNRaverage =

∑P
p=2

(
E||VlpỸp−1||2F

)
∑P

p=2

(
E||√ρXp∆̃p + Z̃′

p||2F
) . (16)

Note that both Vlp and Xp are unitary matrices. Assume
that the transmitted signals, the channel realizations and the
noise are independent to each other, then we have

E||VlpỸp−1||2F = (ρ + 1)ΓMtMr,

and

E||√ρXp∆̃p + Z̃′
p||2F = ρE||∆̃p||2F + 2 ΓMtMr.

Therefore, the average SNR in (16) is

SNRaverage =
ρ + 1

ρΦ + 2
, (17)

in which Φ is specified as

Φ =
1

(P − 1)ΓMtMr

P∑
p=2

E||∆̃p||2F . (18)

We can see that Φ is an average channel mismatch. It
depends on the power delay profile and the permutation.
If adjacent two channels are approximately the same, i.e.,
Hp ≈ Hp−1 for any p = 2, 3, · · · , P , then the average chan-
nel mismatch Φ is zero, which means that the average SNR is
(ρ + 1)/2. It goes to ρ/2 for large transmitted power ρ. This
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implies that there is a 3 dB performance loss of the DSFM
scheme compared with the coherent detection.

In order to maximize the average SNR, we try to min-
imize the average channel mismatch Φ in (18). For sim-
plicity, denote np,k = Bp + k for any 2 ≤ p ≤ P and
0 ≤ k ≤ ΓMt − 1. We assume that with permutation,
the np,k-th subcarrier of the original channel is permuted
to the σ(np,k)-th subcarrier in the logic channel. Since the
frequency selective fading channels between different trans-
mit and receive antenna pairs are assumed to have the same
power delay profile, we can determine E||∆̃p||2F for any
2 ≤ p ≤ P as follows:

E||∆̃p||2F

= Mr

ΓMt−1∑
k=0

E |H1,1(σ(np,k) − H1,1(σ(np−1,k)|2

= Mr

ΓMt−1∑
k=0

L−1∑
l=0

E|α1,1(l)|2
∣∣∣e−j2πσ(np,k)τl/T

− e−j2πσ(np−1,k)τl/T
∣∣∣2

= Mr

ΓMt−1∑
k=0

L−1∑
l=0

4 sin2[π(σ(np,k) − σ(np−1,k))τl/T ]δ2
l .

Denote

d(i, j) =
L−1∑
l=0

4 sin2[π(i − j)τl/T ]δ2
l , (19)

for any pair of i and j (1 ≤ i, j ≤ PΓMt). Then, the average
channel mismatch Φ in (18) is

Φ =
1

(P − 1)ΓMt

P∑
p=2

ΓMt−1∑
k=0

d(σ(np,k), σ(np−1,k)). (20)

B. The Dijkstra’s Algorithm

We minimize the average channel mismatch Φ in (20) by
using the Dijkstra’s algorithm [16], [17]. Assume that we
have a graph with nodes {1, 2, · · · , PΓMt}, in which the
distance between node i and node j (1 ≤ i, j ≤ PΓMt)
is d(i, j) From (20), we can see that for any permutation, Φ
is the length of a path that goes over all nodes in the graph.
Thus, the problem of minimizing Φ is equivalent to the short-
est path problem [17], i.e., to find a shortest path that goes
over all nodes in the graph.

The shortest path problem is a classical network opti-
mization problem, which has been intensively studied since
1950’s (see [16], [17], and the references therein). There
is the so-called 1-to-all shortest path problem of finding the
shortest path from one specific node to all other nodes in
the network. A related problem is the all-to-all problem of

finding the shortest path that goes over all nodes in the net-
work. A well-known solution to the 1-to-all problem is the
Dijkstra’s algorithm [16], [17]. For the all-to-all problem,
one can simply apply the Dijkstra’s algorithm repeatedly by
choosing each node in the network as a starting node, and
then choose the minimum path according to the results from
several running of the Dijkstra’s algorithm. For a network
with N nodes, the complexity of the Dijkstra’s algorithm is
O(N 2), thus the searching complexity for an all-to-all prob-
lem is O(N 3).

The problem of minimizing the average channel mismatch
Φ in (20) is related to the all-to-all shortest path problem.
First, we apply the Dijkstra’s algorithm by choosing node 1
as the starting node as follows:

• Let V0 = {1, 2, · · · , PΓMt}. Starts from node 1 by
setting e1 = 1 and V1 = V0 − {1}.

• For i = 2 : PΓMt

i) Find a node j in Vi−1 which is nearest to node i−1,
i.e., to minimize d(i − 1, j);

ii) Denote ei = j and Vi = Vi−1 − {j};
end;

With the above algorithm, we obtain a shortest path that starts
at node 1 and goes over all other nodes in the graph. Then,
we repeat the Dijkstra’s algorithm by choosing another node
as a starting node. Finally with comparison, we are able to
get a shortest path, denoted as e1 → e2 → · · · → ePΓMt

.
Therefore, the permutation σ(i) = ei, i = 1, 2, · · · , PΓMt

is the desired permutation that minimizes Φ in (20).

IV. SIMULATION RESULTS

We simulated the proposed DSFM scheme for a system
with Mt = 2 transmit and Mr = 1 receive antennas. The
OFDM modulation had N = 128 subcarriers, and the to-
tal bandwidth was 1 MHz. Thus, the OFDM block duration
was T = 128µs without the cyclic prefix. We considered
a two-ray, power delay profile (L = 2), with a delay of τ
µs between the two rays. Each ray was modeled as a zero
mean complex Gaussian random variable with variance 0.5.
We simulated two cases: i) τ = 5µs and ii) τ = 20µs, and
set the length of the cyclic prefix to 20µs for both cases. We
present average bit error rate (BER) curves as functions of
the average energy per bit Eb/N0.

The performance of the proposed DSFM scheme is shown
in Figure 1 for the case of τ = 5µs. Since the 5µs separation
of the two paths is small compared with the 128µs duration
of the OFDM block, the channel frequency responses change
smooth over different subcarriers. We can see that the DSFM
scheme performs successfully in this case, and the perfor-
mance of the scheme with permutation is a little better than
that of the scheme without permutation. With permutation,
the performance of the DSFM scheme is about 3 dB away
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Fig. 1. Performances of the DSFM scheme in case of τ = 5µs
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Fig. 2. Performances of the DSFM scheme in case of τ = 20µs

from that of the coherent detection. Note that with or with-
out permutation, the performance of the coherent detection
is almost the same.

Figure 2 depicts the performance for the case of τ = 20µs.
In this case, there are severe variations in the spectrum of the
channel impulse responses, resulting the failure of the DSFM
scheme without channel permutation. However, if we per-
mute the channel over different subcarriers properly, we are
able to obtain a “smooth” logical channel that can guaran-
tee the successful differential decoding as shown in the solid
curve with circles. With permutation, the performance of the
DSFM scheme is about 3 dB away from that of the coher-
ent detection, which is not observed in case without channel
permutation.

V. CONCLUSION

In this paper, a differential modulation scheme was pro-
posed for MIMO-OFDM systems. The transmitted/received
signals were differentially en/decoded in the frequency di-
mension within each OFDM block. Thus, the proposed
DSFM scheme can be applied to the scenarios that the fad-
ing channel may changes from one OFDM block to another
independently. The performance of the proposed scheme de-
pends on the power delay profile. Moreover, if the statistics
of the channel power delay profile is known at the transmit-
ter, we further proposed to permute the channel frequency
responses over subcarriers to create a “smooth” logical chan-
nel by using the the Dijkstra’s algorithm. Simulation results
showed that the performance of the DSFM scheme with per-
mutations is almost 3 dB away from that of the coherent de-
tection, which validates the theoretical analysis.
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