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A new integrated framework for source and channel rate allocation is presented for video coding and transmission over wireless
channels without feedback channels available. For a fixed total channel bit rate and a finite number of channel coding rates, the
proposed scheme can obtain the near-optimal source and channel coding pair and corresponding robust video coding scheme
such that the expected end-to-end distortion of video signals can be minimized. With the assumption that the encoder has the
stochastic information such as average SNR and Doppler frequency of the wireless channel, the proposed scheme takes into ac-
count robust video coding, channel coding, packetization, and error concealment techniques altogether. An improved method is
proposed to recursively estimate the end-to-end distortion of video coding for transmission over error-prone channels. The pro-
posed estimation is about 1–3 dB more accurate compared to the existing integer-pel-based method. Rate-distortion-optimized
video coding is employed for the trade-off between coding efficiency and robustness to transmission errors.
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1. INTRODUCTION

Multimedia applications such as video phone and video
streaming will soon be available in the third generation (3G)
wireless systems and beyond. For these applications, delay
constraint makes the conventional automatic repeat request
(ARQ) and the deep interleaver not suitable. Feedback chan-
nels can be used to deal with the error effects incurred in im-
age and video transmission over error-prone channels [1],
but in applications such as broadcasting services, there is
no feedback channel available. In such cases, the optimal
trade-off between source and channel coding rate allocations
for video transmission over error-prone channels becomes
very important. According to Shannon’s separation theory,
these components can be designed independently without
loss in performance [2]. However, this is based on the as-
sumption that the system has an unlimited computational
complexity and infinite delay. These assumptions are not
satisfied in delay-sensitive real-time multimedia communi-
cations. Therefore, it is expected that joint considerations
of source and channel coding can provide performance im-
provement [3, 4].

Most of the joint source and channel coding (JSCC)
schemes have been focusing on images and sources with ideal
signal models [4, 5]. For video coding and transmission,
many works still keep the source coding and channel cod-
ing separate instead of optimizing their parameters jointly
from an overall end-to-end transmission point of view [6, 7].
Some excellent reviews about robust video coding and trans-
mission over wireless channels can be found in [8, 9]. In
[10], a JSCC approach is proposed for layered video cod-
ing and transport over error-prone packet networks. It pre-
sented a framework which trades video source coding effi-
ciency off for increased bitstream error resilience to optimize
the video coding mode selection with the consideration of
channel conditions as well as error recovery and concealment
capabilities of the channel codec and source decoder, respec-
tively. However, the optimal source and channel rate alloca-
tion and corresponding video macroblock (MB) mode selec-
tion have to be selected through simulations over packet-loss
channel models. In [11], a parameterized model is used for
the analysis of the overall mean square error (MSE) in hybrid
video coding for the error-prone transmission. Models for
the video encoder, a bursty transmission channel, and error

mailto:jiesong@agere.com
mailto:kjrliu@eng.umd.edu


An Integrated Rate Allocation Scheme for Robust Wireless Video Communications 305

propagation at the video decoder have been combined into
a complete model of the entire video transmission system.
However, the model for video encoder involves several pa-
rameters and the model is not theoretically optimal because
of the use of random MB intramode updating, which does
not consider the different motion activities within a video
frame to deal with error propagation. Furthermore, the mod-
els depend on the distortion-parameter functions obtained
through ad hoc numerical models and simulations over spe-
cific video sequences, which also involves a lot of simulation
efforts and approximation. The authors of [12] proposed
an operational rate-distortion (RD) model for DCT-based
video coding incorporating the MB intra–refreshing rate and
an analytic model for video error propagation which has rel-
atively low computational complexity and is suitable for real-
time wireless video applications. Both methods in [11, 12]
focus on the statistical model optimization for general video
sequence, which is not necessarily optimal for a specific video
sequence because of the nonstationary behavior across differ-
ent video sequences.

In this paper, we propose an integrated framework to
obtain, the near-optimal source and channel rate alloca-
tion, and the corresponding robust video coding scheme
for a given total channel bit rate with the knowledge of the
stochastic characteristics of the wireless fading channel. We
consider the video coding error (quantization and mode
selection of MB), error propagation, and concealment ef-
fects at the receiver due to transmission error, packetiza-
tion, and channel coding in an integrated manner. The con-
tributions of this paper are the following. First, we present
an integrated system design method for wireless video com-
munications in realistic scenarios. This proposed method
takes into account the interactions of fading channel, chan-
nel coding and packetization, and robust video coding in
an integrated, yet simple way, which is an important sys-
tem design issue for wireless video applications. Second, we
propose an improved video distortion estimation which is
about 1–3 dB peak signal-to-noise ratio (PSNR) more ac-
curate than the original integer-pel-based method (IP) in
[13] for half-pel-based video coding (HP), and the compu-
tational complexity in the proposed method is less than that
in [13].

The rest of the paper is organized as follows. Section 2
describes first the system to be studied, then the packetiza-
tion and channel coding schemes used. We also derive the
integrated relation between MB error probability and chan-
nel coding error probability given the general wireless fad-
ing channel information such as average signal-to-noise ra-
tio (SNR) and Doppler frequency. Section 3 presents the im-
proved end-to-end distortion estimation method for HP-
based video coding. Simulations are performed to com-
pare the proposed method to the IP-based method in [13].
Then we employ RD-optimized video coding scheme to op-
timize the end-to-end performance for each pair of source
and channel rate allocation. Simulation results are shown in
Section 4 to demonstrate the accuracy of the proposed end-
to-end distortion estimation algorithm under different chan-
nel characteristics. Conclusions are stated in Section 5.
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Figure 1: Joint source and channel video coding.

2. PROBLEM DEFINITION AND INTEGRATED
SYSTEM STRUCTURE

The problem to be studied is illustrated in Figure 1 which can
be specified by five parameters (r, rc, ρ, fd,F): r is the total
channel bit rate, rc is the channel coding rate, ρ is the aver-
age SNR at the receiver, fd is the Doppler frequency of the
fading channel targeted, and F is the video frame rate. H.263
[14] is used for video coding. A video sequence denoted as
f s
l , where s = (x, y), 1 ≤ x ≤ X , 1 ≤ y ≤ Y , is the pixel spa-

tial location and l = 1, . . . ,L is the frame index, is encoded
at the bit rate rs = r × rc b/s and the frame rate F f/s with
the MB error probability PMb = f (ρ, fd, rc) that will be de-
tailed next. The resulted H.263 bitstream is packetized and
protected by forward error correction (FEC) channel coding
with the coding rate rc. The resulted bitstream with rate r b/s
is transmitted through wireless channels characterized by ρ
and fd. The receiver receives the bitstream corrupted by the
channel impairment, then reconstructs the video sequence
f̃ s
l after channel decoding, H.263 video decoding, and pos-

sible error concealment if residual errors occur. The end-to-
end MSE between the input video sequence at the encoder
and the reconstructed video sequence at the decoder is de-
fined as

DE
(
rs, rc

) = 1
XYL

X∑
x=1

Y∑
y=1

L∑
l=1

E
{[

f
(x,y)
l − f̃

(x,y)
l

(
rs, rc

)]2
}
.

(1)

For the video system in Figure 1, there are two tasks to be per-
formed with the five given system parameters (r, rc, ρ, fd,F).
First, we need to decide how to allocate the total fixed bit rate
r to the source rate rs = r × rc to minimize the end-to-end
MSE of the video sequence. Furthermore, the video encoder
should be able to, for a source/channel rate allocation (rs, rc)
with residual channel decoding failure rate denoted as pw(rc),
select the coding mode and quantizer for each MB to mini-
mize the end-to-end MSE of the video sequence. The goal is
to obtain the source/channel rate pair (r∗s , r∗c ) and the corre-
sponding robust video coding scheme to minimize (1).

In practical applications, there are only finite number of
source/channel pairs available. We can find the robust video
encoding schemes for each rate pair (rs, rc) that minimizes
(1) and denote the minimal end-to-end MSE obtained as
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D∗E (rs, rc), then the optimal source/channel rate pair (r∗s , r∗c )
and the corresponding video coding scheme can be obtained
as

(
r∗s , r∗c

) = argmin
(rs,rc)

D∗E
(
rs, rc

)
. (2)

For each pair (rs, rc), we use RD-optimized video coding
scheme to trade off between the source coding efficiency
and robustness to error propagation. An improved recursive
method which takes into account the interframe prediction,
error propagation, and concealment effect is used to esti-
mate the end-to-end MSE frame by frame. In this paper, the
wireless fading channel is modeled as a finite-state Markov
chain (FSMC) model [15, 16, 17], and the Reed-Solomon
(RS) code is employed for forward error coding.

2.1. Modeling fading channels using finite-state
Markov chain

Gilbert and Elliott [15, 16] studied a two-state Markov chan-
nel model, where each state corresponds to a specific chan-
nel quality. This model provides a close approximation for
the error rate performance of block codes on some noisy
channels. On the other hand, when the channel quality
varies dramatically such as in a fast Doppler spread, the two-
state Gilbert-Elliott model becomes inadequate. Wang and
Moayeri extended the two-state model to an FSMC model
for characterizing the Rayleigh fading channels [17]. In [17],
the received SNR is partitioned into a finite number of in-
tervals. Denote by 0 = A0 < A1 < A2 < · · · < AK = ∞
the SNR thresholds of different intervals, then if the received
SNR is in the interval [Ak,Ak+1), k ∈ {0, 1, 2, . . . ,K − 1}, the
fading channel is said to be in state Sk. It turns out that if
the channel changes slowly and is properly partitioned, each
state can be considered as a steady state, and a state transition
can only happen between neighboring states. As a result, a
fading channel can be represented using a Markov model if
given the average SNR ρ and Doppler frequency fd.

2.2. Performance analysis of RS code over finite-state
Markov channel model

RS codes possess maximal minimum distance properties
which make them powerful in correcting errors with arbi-
trary distributions. For RS symbols composed of m bits, the
encoder for an RS(n, k) code groups the incoming bitstream
into blocks of k information symbols and appends n − k re-
dundancy symbols to each block. So the channel coding rate
is rc = k/n. For an RS(n, k) code, the maximal number of
symbol errors that can be corrected is t = �(n− k)/2�. When
the number of symbol errors is more than t, RS decoder re-
ports a flag to notify that the errors are uncorrectable. The
probability that a block cannot be corrected by RS(n, k), de-
noted as a decoding failure probability pw(n, k), can be cal-
culated as

pw(n, k) =
n∑

m=t+1

P(n,m), (3)

where P(n,m) denotes the probability of m symbol errors
within a block of n successive symbols. The computation of
P(n,m) for FSMC channel model has been studied before
(see [16, 18]).

2.3. Packetization and macroblock error
probability computation

We use baseline H.263 video coding standard for illustration.
H.263 GOB/slice structure is used where each GOB/slice is
encoded independently with a header to improve resynchro-
nization. Denoting by Ns the number of GOB/slice in each
frame, the RS(n, k) code block size n (bytes) is set to

n =
⌈

r

8 · F ·Ns

⌉
(4)

such that each GOB/slice is protected by an RS codeword in
average, where �x� is the smallest integer larger than x. No
further alignment is used. In case of decoding failure of an
RS codeword, the GOBs (group of blocks) covered by the RS
code will be simply discarded and followed by error conceal-
ment. If a GOB is corrupted, the decoder simply drop the
GOB and performs a simple error concealment as follows:
the motion vector (MV) of a corrupted MB is replaced by
the MV of the MB in the GOB above. If the GOB above is
also lost, the MV is set to zero, then the MB is replaced by
the corresponding MB at the same location in the previous
frame. To facilitate error concealment at the decoder when
errors occur, the GOBs which are indexed by even numbers
are concatenated together, followed by concatenated GOBs
indexed by odd numbers. By using this alternative GOB orga-
nization, the neighboring GOBs are normally not protected
within the same RS codeword. Thus, when a decoding fail-
ure occurs in one RS codeword, the neighboring GOBs will
not be corrupted simultaneously, which helps the decoder to
perform error concealment using the neighboring correctly
received GOB.

In order to estimate the end-to-end distortion, we need
to model the relation between video MB error probability
PMB(n, k) and RS(n, k) decoding failure probability pw(n, k),
that is,

PMB(n, k) ≈ α · pw(n, k). (5)

Since no special packetization or alignment is used, one RS
codeword may contain part of one GOB/slice or overlap
more than one GOB/slice. It is difficult to find the exact re-
lation between PMB(n, k) and pw(n, k) because the length of
GOB in each frame is varying. Intuitively, α should be be-
tween 1 and 2. Experiments are performed to find the suit-
able α. Figure 2 shows the experiment results of RS code-
word failure probability and GOB error probability over
Rayleigh fading channels. It turns out that α ≈ 1.5 is a good
approximation in average. For a source and channel code pair
(rs, rc) or RS(n, k), the channel code decoding failure proba-
bility pw(n, k) can be derived from ρ and fd as described in
Sections 2.1 and 2.2, then we have the corresponding video
MB error probability PMB(n, k) from (5). Based on the de-
rived MB error rate PMB(n, k), a recursive estimation method
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Figure 2: Simulated RS codeword failure rate (CFR), GOB loss rate, and the values of 1.5 + WER. (a) Rayleigh fading, SNR = 18 dB, QPSK,
and f d = 10 Hz. (b) Rayleigh fading, SNR = 18 dB, QPSK, f d = 100 Hz.

and an RD-optimized scheme are employed to estimate the
minimal end-to-end MSE of the video sequence and obtain
the corresponding optimized video coding scheme, which is
to be described in detail in the next section.

3. OPTIMAL DISTORTION ESTIMATION
AND MINIMIZATION

We first describe the proposed distortion estimation method
for both HP- and IP-based video coding over error-prone
channels. Simulations are performed to demonstrate the im-
proved performance of the proposed method. Then an RD
framework is used to select the coding mode and quantizer
for each MB to minimize the estimated distortion, given the
source rate rs, PMB which is derived as in Section 2, and the
frame rate F.

3.1. Optimal distortion estimation

Recently, modeling of error propagation effects have been
considered in order to optimally select the mode for each MB
to trade off the compression efficiency and error robustness
[11, 13, 19]. In particular, a recursive optimal per-pixel es-
timate (ROPE) of decoder distortion was proposed in [13]
which can model the error propagation and quantization dis-
tortion more accurately than other methods. But the method
in [13] is only optimal for the IP-based video coding. For
the HP case, the computation of spatial cross correlation be-
tween pixels in the same and different MBs is needed to ob-
tain the first and second moments of bilinear interpolated
HPs, the process is computationally prohibitive. Most of the
current video coding use the HP-based method to improve

the compression performance. We propose a modified recur-
sive estimate of end-to-end distortion that can take care of
both IP- and HP-based video coding.

The expected end-to-end distortion for the pixel f s
l at s =

(x, y) in frame l is

ds
l = E

{(
f s
l − f̃ s

l

)2
}

= E
{(

f s
l − f̂ s

l + f̂ s
l − f̃ s

l

)2
}

= ( f s
l − f̂ s

l

)2
+ 2
(
f s
l − f̂ s

l

)
E
(
f̂ s
l − f̃ s

l

)
+ E

{(
f̂ s
l − f̃ s

l

)2
}

,

(6)

where f̂ s
l is the quantized pixel value at s in frame l. Denote

es
l = f s

l − f̂ s
l as the quantization error, ês,v

l = f̂ s
l − f̂ s−v

l−1 as the
motion compensation error using MV v, and ẽs

l = f̂ s
l − f̃ s

l
as the transmission and error-propagation error. Assuming
that ẽs

l is an uncorrelated random variable with a zero mean,
which is a reasonable assumption when PMB is relatively low
as will be shown in the simulations later, we have

ds
l =

(
es
l

)2
+ E

{(
ẽs
l

)2
}
. (7)

We derive a recursive estimate of E{(ẽs
l )

2} for intra-MB and
inter-MB as follows.

Intramode MB

The following three cases are considered.

(1) With the probability 1− PMB, the intra-MB is received
correctly and then f̂ s

l = f̃ s
l . As a result, ẽs

l = 0.
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(2) With the probability (1−PMB)PMB, the intra-MB is lost
but the MB above is received correctly. Denoting by
vc = (xc, yc) the MV of the MB above, two cases of er-
ror concealment are considered depending on whether
vc is at the HP location or not.

(i) If vc is at the IP location, we have f̃ s
l = f̃ s−vc

l−1 .
Then after error concealment,

ẽs
l = f̂ s

l − f̃ s
l

= f̂ s
l − f̃ s−vc

l−1

= f̂ s
l − f̂ s−vc

l−1 + f̂ s−vc
l−1 − f̃ s−vc

l−1

= ês,vc
l + ẽs−vc

l−1 .

(8)

The clipping effect is ignored in the computa-
tion.

(ii) If vc is at the HP location, without loss of gen-
erality, assume that vc = (xc, yc) is at HP loca-
tion that is interpolated from four neighbour-
ing IP locations with MVs: v1

c = (�xc�, �yc�),
v2
c = (�xc�, �yc�), v3

c = (�xc�, �yc�), and v4
c =

(�xc�, �yc�), where �xc� and �xc� denote the
largest integer that is smaller than xc and the
smallest integer larger than xc, respectively. We

have f̃ s
l = ( f̃

s−v1
c

l−1 + f̃
s−v2

c

l−1 + f̃
s−v3

c

l−1 + f̃
s−v4

c

l−1 )/4 and

ẽs
l = f̂ s

l − f̃ s
l

= f̂ s
l − f̃

s−v1
c

l−1

4
+

f̂ s
l − f̃

s−v2
c

l−1

4

+
f̂ s
l − f̃

s−v3
c

l−1

4
+

f̂ s
l − f̃

s−v4
c

l−1

4

= ê
s,v1

c

l + ê
s,v2

c

l + ê
s,v3

c

l + ê
s,v4

c

l

4

+
ẽ

s−v1
c

l−1 + ẽ
s−v2

c

l−1 + ẽ
s−v3

c

l−1 + ẽ
s−v4

c

l−1

4
.

(9)

(3) With the probability P2
MB, both the current MB and the

MB above are lost. The MB in the previous video frame
at the same location is repeated, that is, vc = 0 = (0, 0):

ẽs
l = f̂ s

l − f̃ s
l

= f̂ s
l − f̃ s

l−1

= f̂ s
l − f̂ s

l−1 + f̂ s
l−1 − f̃ s

l−1

= ês,0
l + ẽs

l−1.

(10)

Combining all of the cases together, we have the following
results.

(1) If vc is at the IP location, then

EIntra

{(
ẽs
l

)2
}
= (1− PMB

)
PMB

{(
ês,vc
l

)2
+ E

[(
ẽs−vc
l−1

)2
]}

+ P2
MB

{(
ês,0
l

)2
+ E

[(
ẽs
l−1

)2
]}

.
(11)

(2) If vc is at the HP location in both x and y dimensions,
then

EIntra

{(
ẽs
l

)2
}

=(1− PMB
)
PMB

×



(
ê

s,v1
c

l + ê
s,v2

c

l + ê
s,v3

c

l + ê
s,v4

c

l

4

)2

+
E
[(
ẽ

s−v1
c

l−1

)2
]
+E
[(
ẽ

s−v2
c

l−1

)2
]
+E
[(
ẽ

s−v3
c

l−1

)2
]
+E
[(
ẽ

s−v4
c

l−1

)2
]

16




+ P2
MB

{(
ês,0
l

)2
+ E

[(
ẽs
l−1

)2
]}

.

(12)

The cases when vc has only xc or yc at the HP location can be
obtained similarly.

Intermode MB

When an intermode MB is correctly received with the proba-
bility 1−PMB, the motion compensation error ês

l = f̂ s
l − f̂ s−v

l−1
and the MV v are received correctly and are reconstructed
from the previous reconstructed frame at the decoder. We
again consider two cases depending on whether v = (x, y) is
at the IP or HP location.

(1) If v is at the IP location, then f̃ s
l = ês

l + f̃ s−v
l−1 and

ẽs
l = f̂ s

l − f̃ s
l = f̂ s

l −
(
ês
l + f̃ s−v

l−1

)
= f̂ s

l − f̂ s−v
l−1 − ês

l︸ ︷︷ ︸
0

+ f̂ s−v
l−1 − f̃ s−v

l−1

= ẽs,v
l−1.

(13)

(2) If v = (x, y) is at the HP location in both x and y
dimensions, the prediction is interpolated from four
pixels with MVs: v1 = (�x�, �y�), v2 = (�x�, �y�),
v3 = (�x�, �y�), and v4 = (�x�, �y�). Then f̃ s

l =
ês
l + ( f̃ s−v1

l−1 + f̃ s−v2

l−1 + f̃ s−v3

l−1 + f̃ s−v4

l−1 )/4. We have

ẽs
l = f̂ s

l − f̃ s
l

= f̂ s
l −

(
ês
l +

f̃ s−v1

l−1 + f̃ s−v2

l−1 + f̃ s−v3

l−1 + f̃ s−v4

l−1

4

)

=
(
f̂ s−v1

l−1 + f̂ s−v2

l−1 + f̂ s−v3

l−1 + f̂ s−v4

l−1

4
+ ês

l

)

−
(
ês
l +

f̃ s−v1

l−1 + f̃ s−v2

l−1 + f̃ s−v3

l−1 + f̃ s−v4

l−1

4

)

= ẽs,v1

l−1 + ẽs,v2

l−1 + ẽs,v3

l−1 + ẽs,v4

l−1

4
.

(14)

The results of the other MB loss cases are the same as that of
the intra-MB. We have the following two results.
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Figure 3: Comparison between HP- and IP-based distortion estimation in the HP video coding case (a) Foreman: r = 300 kbps, f = 30 f/s,
and PMB = 0.1. (b) Salesman: r = 300 kbps, f = 30 f/s, and PMB = 0.1.

(1) If both v and vc are at the IP location, then
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(15)

(2) If v and vc are at the HP location in both x and y di-
mensions, then
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ẽs−v1

l−1

)2
]

+ E
[(
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ẽs−v2

l−1

)3
]

+ E
[(
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The encoder can use the above procedures to recursively esti-
mate the expected distortion ds

l in (7), based on the accumu-

lated coding and error propagation effects from the previous
video frames and current MB coding modes and quantizers.
To implement the HP-based estimation, the encoder needs
to store an image for E{(ẽs

l )
2}; for the locations in which ei-

ther x or y is at HP, the value is obtained by scaling the sum
of the neighboring two values by 1/4, and for locations in
which both x and y are at HP precision, it is obtained by
scaling the sum of the neighboring four values by 1/16. It
should be noted that the scaling by 1/4 or 1/16 can be done
by simple bitshift. Both IP- and HP-based estimations need
the same memory size to store either two IP images, E{ fl}
and E{ f 2

l }, or one HP image, E{(ẽs
l )

2}, but E{(ẽs
l )

2} requires
smaller bitwidth/pel since it is an error signal instead of a
pixel value. The HP-based computational complexity is less
than the IP-based method since it only needs to compute
E{(ẽs

l )
2} instead of computing both E{ fl} and E{ f 2

l } in the
IP-based estimate.

We now compare the accuracy of the proposed HP-based
estimation to the original IP-based method (ROPE) in [13].
In the simulation, each GOB is carried by one packet. So
the packet loss rate is equivalent to the MB error probability
PMB. A memoryless packet loss generator is used to drop the
packet at a specified loss probability. QCIF sequences Fore-
man and Salesman are encoded by the Telenor H.263 en-
coder with the intra-MB fresh rate set to 4, that is, each MB
is forced to be intramode coded if it has not been intracoded
for consecutive four frames. The HP- and IP-based estimates
are compared to the actual decoder distortion averaged over
50 different channel realizations.

In Figure 3a, the sequence Foreman of 150 frames is
encoded with HP motion compensation at a bit rate of
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Figure 4: Average PSNR versus MB loss rate for HP- and IP-based
distortion estimation; Foreman: r = 300 kb/s and f = 30 f/s.

300 Kbps, frame rate of 30 f/s, and MB loss rate of 10%. In
Figure 3b, the sequence Salesman is encoded in the same way.
It can be noted that the HP-based estimation is more accu-
rate to estimate the actual distortion at the decoder compared
to the IP-based estimation. Figure 4 also shows the average
PSNR of the 150 coded frames with respect to MB loss rates
from 5% to 20%. When MB loss rate is as small as 5%, the
HP-based estimation is almost the same as the actual distor-
tion, while the IP-based method has about 3 dB difference.
The results is as expected since there is about 2–4 dB PSNR
difference between HP- and IP-based video coding efficiency
given the same bit rate. As the MB loss rate increases as large
as 20%, the HP-based estimation is about 1 dB better than
the actual distortion, while the IP-based estimation is about
2 dB worse. So the HP-based method is still 1 dB more ac-
curate than the IP-based method. The reason is that the er-
ror propagation effects play a more significant role when MB
loss rate gets larger, so the coding gain of the HP-based mo-
tion compensation is reduced. Also, the assumption in HP-
based method that the transmission and propagation errors
are not correlated and zero mean may become loose. For
practical scenarios, it is demonstrated that the HP-based esti-
mation outperforms the original IP-based method by about
1–3 dB.

3.2. Rate-distortion-optimized video coding

The quantizer step size and code mode for each MB in a
frame is optimized by an RD framework. Denote by bi, j,l
the MB at location (i, j) in frame l, where i ∈ {1, 2, . . . ,H}
and j ∈ {1, 2, . . . ,V}. Let qi, j,l ∈ Q, Q = {1, 2, . . . , 32}, be
the quantizer parameter for bi, j,l, and let mi, j,l ∈ M be the
encoding mode for bi, j,l, where M = {intra, inter, skip} is
the set of all admissible encoding modes. Denote by ci, j,l =

[qi, j,l,mi, j,l] ∈ C the encoding vector for bi, j,l, where C =
Q × M is the set of all admissible encoding vectors. For
each source/channel pair (rs, rc), we have the corresponding
PMB(n, k) from (5). The encoder needs to determine the cod-
ing mode and quantizer for each MB in total L frames to min-
imize the end-to-end MSE DE(rs,PMB) of the video sequence,
which is defined as

DE
(
rs,PMB

) = L∑
l=1

Dl
(
Rl,PMB

)
, (17)

where Rl is the number of bits used to encode frame l, its
maximal value is denoted as Rmax

l = rs/F + ∆l which is the
maximal number of bits available to encode frame l provided
by a frame level rate control algorithm with average rs/F and
buffer related variable ∆l. Moreover Dl(Rl,PMB) is the esti-
mated end-to-end MSE of frame l, l = 1, 2, . . . ,L, which can
be obtained as

Dl
(
Rl,PMB

) = H∑
i=1

V∑
j=1

D
(
ci, j,l,PMB

)
, (18)

where D(ci, j,l,PMB) is the end-to-end MSE of MB bi, j,l using
encoding vector ci, j,l and D(ci, j,l,PMB) can be computed from
ds
l as

D
(
ci, j,l,PMB

) = ∑
s∈bi, j,l

ds
l . (19)

Since there is dependency between neighboring interframes
because of the motion compensation, the optimal solution
of (17) has to be searched over CH×V×L, which is computa-
tionally prohibitive. We use greedy optimization algorithm,
which is also implicitly used in most JSCC video coding
methods such as [10, 11, 13], to find the coding modes and
quantizers for MBs in frame l that minimize Dl(Rl,PMB),
then find coding modes and quantizers for MBs in frame
l+1 that minimize Dl+1(Rl+1,PMB) based on the previous op-
timized frame l, and so on. The optimal pair (r∗s , r∗c ) and the
corresponding optimal video coding scheme can be found
such that

(
r∗s , r∗c

) = argmin
(rs,rc)

D∗E
(
rs,PMB

)
. (20)

The goal now is to optimally select the quantizers and encod-
ing modes on the MB level for a specific MB error rate PMB

and frame rate Rmax
l to trade off the source coding efficiency

and robustness to error. The notation of PMB and (rs, rc) is
dropped from now on unless needed.

The optimal coding problem for frame l can be stated as

min
CH×V

Dl =
H∑
i=1

V∑
j=1

D
(
cl,i, j

)
(21)

subject to
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Rl =
H∑
i=1

V∑
j=1

R
(
cl,i, j

) ≤ Rmax
l . (22)

Such RD-optimized video coding schemes have been
studied for noiseless and noisy channels recently [19, 20, 21,
22, 23, 24]. Using Lagrangian multiplier, we can solve the
problem by minimizing

Jl(λ) = Dl + λRl, (23)

where λ ≥ 0. For video coding over error-prone chan-
nels, GOB coding structure is used for H.263 video coding
over noisy channels with each GOB encoded independently.
Therefore, if the transmission errors occur in one GOB, the
errors will not propagate into other GOBs in the same video
frame.

For video coding over noiseless channels, the indepen-
dent GOB structure leads to the fact that the optimization
of (23) can be performed for each GOB separately. How-
ever, when considering RD-optimized video coding for noisy
channels, the MB distortion Di, j(ci, j ,PMB) depends not only
on the mode and quantizer of the current MB but also on the
mode of the MB above to take into account error conceal-
ment distortion. Therefore, there is a dependency between
neighboring GOBs for this optimization problem. We use
greedy optimization algorithm again to find the solution by
searching the optimal modes and quantizers from the first
GOB to the last GOB in each frame.

4. SIMULATION RESULTS

We first use a simple two-state Markov chain model for sim-
ulation to show the performance of the integrated source
and channel rate allocation and robust video coding scheme,
where the given channel stochastic knowledge is accurate.
Then simulations over Rayleigh fading channel is performed
to verify the effectiveness of the proposed scheme for practi-
cal wireless channels.

4.1. Two-state Markov chain channel

Simulations have been performed using base mode H.263
to verify the accuracy of the proposed integrated scheme.
In the simulations, the total channel signaling rate r equals
144 kbps, which is a typical rate provided in the 3G wireless
systems. Video frame rate is F = 10 f/s. The video sequence
used for simulation is Foreman in QCIF format. RS code over
GF(28) is used for FEC. The channel coding rate used are
{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. The source and channel cod-
ing rates rs, rc and the corresponding RS code (n, k) are listed
in Table 1. A two-state Markov channel model [16] is used,
where the state transition is at the RS symbol level. The two
states of the model are denoted by G (good) and B (bad). In
state G, the symbols are received correctly (eg = 0) whereas
in state B, the symbols are erroneous (eb = 1). The model is
fully described by the transition probabilities p from state G
to state B, and q from state B to state G. We use the probabil-

ity of state B:

PB = p

p + q
, (24)

and the average bursty length:

LB = 1
q

, (25)

which is the average number of consecutive symbol errors to
model the two-state Markov model [11, 16].

The simulations are performed through the following
steps.

(i) For each channel coding rate rc (or RS(n, k)) in each
column of Table 1, the RS code decoding failure rate
pw(n, k) is computed using (3) for a given two-state
Markov channel model. The results for different rc and
channel models are shown in Table 2.

(ii) The corresponding video MB error rate PMB(rc) is ob-
tained using (5), where α = 1.5.

(iii) For each source rate rs = r × rc and the correspond-
ing PMB(rc), the RD-optimized H.263 video coding
is employed while estimating the end-to-end MSE
D∗E (rs, rc).

(iv) The H.263 bitstream is packetized and protected us-
ing RS(n, k), and then transmitted over the two-state
Markov channel model.

(v) The receiver receives the bitstream, reconstructs the
video sequence after the FEC decoding, and performs
the H.263 decoding and possible error concealment if
errors occur. The distortion for each simulation run
between the original video sequence and the recon-
structed video sequence at the receiver is also com-
puted.

The average estimated PSNR, PSNRE, of video signals is
used to measure the performance:

PSNRE
(
rs, rc

) = 1
L

L∑
l=1

PSNRl
E

(
rs, rc

)
, (26)

where

PSNRl
E

(
rs, rc

) = 10 log10
2552

D∗E
(
rs, rc

) (27)

is the estimated average PSNR between the original frame l
and the corresponding reconstruction at the decoder using
the pair (rs, rc), and D∗E (rs, rc) is the minimal estimated end-
to-end MSE from (17) through RD-optimized video coding.
The average PSNR of N runs of simulation is defined as

PSNRS
(
rs, rc

) = 1
N

N∑
n=1

1
L

L∑
l=1

PSNR(n,l)
S

(
rs, rc

)
, (28)

where PSNR(n,l)
S (rs, rc) is the PSNR between the original
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Table 1: The source and channel rates used in simulation.

r (kbps) 144 144 144 144 144 144 144

RS(n, k) (200, 40) (200, 60) (200, 80) (200, 100) (200, 120) (200, 140) (200, 160)

rc = k/n 0.2 0.3 0.4 0.5 0.6 0.7 0.8

rs = r × rc (kbps) 28.8 43.2 57.6 72.0 86.4 100.8 115.2
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Figure 5: Average PSNR obtained by estimation versus simulation using two-state Markov model. (a) Symbol error rate = 0.01, where
PB = 0.01 and LB = 16. (b) Symbol error rate = 0.05, where PB = 0.05 and LB = 16.

frame l and the corresponding reconstruction at the de-
coder in the nth simulation using the source/channel rate
pair (rs, rc).

Figure 5a shows the average estimated PSNRE of the op-
timal rate allocation and robust video coding for different
channel code rates when the symbol error rate is PB = 0.01
and the bursty length LB = 16 symbols, and the correspond-
ing average simulated PSNRS is of 50 times video transmis-
sion. Figure 5b also shows the same comparison when the
symbol error rate is PB = 0.05. It can be noted that the esti-
mated PSNRE, which is obtained at the encoder during RD-
optimized video encoding, matches the simulated PSNRS

very well. The optimal source and channel rate pair can also
be found through Figures 5a and 5b for different channel
characteristics. The corresponding channel decoding failure
rate of the optimal channel coding rates in Figures 5a and 5b
are 0.018 and 0.034, respectively.

We also compare the performance when the knowledge
of channel model used at video encoder does not match the
real channel used in simulations. Figure 6 shows two cases of
channel mismatch. In Figure 6a, the video stream, which is
encoded based on PB = 0.01 and LB = 16 two-state Markov
channel, is simulated using two-state Markov channel with
PB = 0.01 and LB = 8. The simulated average PSNR is bet-

ter than the average PSNR estimated at the encoder during
encoding because the channel model used in estimation is
worse than the model used in simulation. On the other hand,
when the video stream, which is encoded based on PB = 0.01
and LB = 8 two-state Markov channel, is simulated using
two-state Markov channel with PB = 0.01 and LB = 16,
the simulated average PSNR is much worse than the aver-
age PSNR estimated at the encoder as shown in Figure 6b.
Furthermore, the optimal source and channel coder pair ob-
tained at the encoder is not optimal when the channel con-
dition used in simulation is worse than the channel infor-
mation used at the encoder. This simulation result suggests
that the optimal rate allocation and video coding should be
focused on the worse channel conditions for broadcasting
services.

4.2. Rayleigh fading channel

The simulation over the Rayleigh fading channel is also per-
formed to verify the effectiveness of the proposed scheme
over realistic wireless channels. In the simulation, QPSK with
coherent demodulation is used for the sake of simplicity. The
channel is a frequency-nonselective Rayleigh fading channel.
An FSMC with K = 6 states is used to model the Rayleigh
fading channel. The SNR thresholds for the K states are
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Table 2: The Reed-Solomon code decoding failure rate.

Rate PB = 0.01, LB = 16 PB = 0.05, LB = 16 PB = 0.01, LB = 8 PB = 0.05, LB = 8

0.1 0.00028 0.00266 0.00000 0.00006

0.2 0.00058 0.00521 0.00001 0.00023

0.3 0.00117 0.00998 0.00003 0.00079

0.4 0.00233 0.01871 0.00011 0.00259

0.5 0.00462 0.03435 0.00042 0.00803

0.6 0.00909 0.06170 0.00155 0.02342

0.7 0.01776 0.10840 0.00559 0.06384

0.8 0.03445 0.18603 0.01976 0.16098

0.9 0.06635 0.31135 0.06829 0.36890
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Figure 6: Average PSNR obtained in channel mismatch cases. (a) Error burst is shorter than that used in estimation. (b) Error burst is longer
than that used in estimation.

selected in such a way that the probability that the channel
gain is at state sk, k = 0, 1, . . . ,K − 1, is

p0 = 2
K(K + 1)

,

pk = kp0, k = 1, 2, . . . ,K − 1.
(29)

The FSMC state transition is described at the RS codeword
symbol level (8-bit RS symbol) with the assumption that
the four QPSK modulation symbols within an RS codeword
symbol stay in the same FSMC state. Given the average SNR ρ
and the Doppler frequency fd, we can obtain the parameters
such as steady state probability pk, RS symbol error probabil-
ity ek, and state transition rates [17]. Then following the pro-
cedures described in Section 2.1, we are able to analyze the
RS code performance over Rayleigh fading channels. Table 3

shows the estimated RS code decoding failure probability us-
ing FSMC model and the simulation values when the SNR
is 18 dB and the Doppler frequency is 10 Hz and 100 Hz, re-
spectively. The RS codeword error rate obtained by the FSMC
matches the simulation results very well when fd is 10 Hz.
When fd is 100 Hz, the FSMC-based estimate is not as accu-
rate as the results when fd is 10 Hz, but is still within accept-
able range compared to the simulated values.

Figure 7a shows the average estimated PSNRE and simu-
lated PSNRS of the video coding after optimal rate allocation
and robust video coding for different channel code rates
when the SNR is 18 dB and fd is 10 Hz. Figure 7b also shows
the comparison when the f d is 100 Hz. Even though it can
be noted that there are about 1 dB difference between the es-
timated PSNRE and the simulated PSNRS, the near-optimal
source and channel rate allocation (or the channel code rate



314 EURASIP Journal on Applied Signal Processing

31

30

29

28

A
ve

ra
ge

P
SN

R
(d

B
)

27

26

25
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Estimation
Simulation

Channel code rate

(a)

33

32

31

30

29

A
ve

ra
ge

P
SN

R
(d

B
)

28

27

26

25
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Estimation
Simulation

Channel code rate

(b)

Figure 7: Average end-to-end PSNR obtained by estimation versus simulation for Rayleigh fading channels: (a) SNR = 18 dB, fd = 10 Hz,
and (b) SNR = 18 dB, fd = 100 Hz.
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Figure 8: Average end-to-end PSNR over Rayleigh fading Channels: (a) SNR = 18 dB, fd used for estimation at the encoder is 10 Hz, and
(b) SNR = 18 dB, fd used for estimation at the encoder is 100 Hz.

rc) obtained from the estimation (0.8 and 0.5 as shown in
Figure 7) still has the maximal simulated end-to-end PSNR
over Rayleigh fading channels. The simulation results verify
the effectiveness of the proposed scheme to obtain the opti-
mal source and channel coding pair when given a fixed total
bit rate for wireless fading channels.

Experiments are also performed when the knowledge of
channel Doppler frequency used at the video encoder does
not match the actual Doppler frequency used in simulations.
Figure 8 shows two cases of channel mismatch. In Figure 8a,
the video bitstream which is encoded based on fd = 10 Hz
is simulated over fading channels with Doppler frequency
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Table 3: Analysis and simulation values of the RS code decoding
failure probability for the Rayleigh fading channel with SNR equals
18 dB and the Doppler frequency fd equals 10 and 100 Hz.

fd = 10 Hz fd = 100 Hz

Code rate FSMC model Simulation FSMC model Simulation

0.2 0.0430 0.0391 0.0098 0.0044

0.3 0.0482 0.0464 0.0170 0.0072

0.4 0.0536 0.0555 0.0282 0.0119

0.5 0.0593 0.0650 0.0450 0.0181

0.6 0.0653 0.0772 0.0692 0.0280

0.7 0.0717 0.0915 0.1032 0.0526

0.8 0.0815 0.1085 0.1499 0.1110

0.9 0.1240 0.1333 0.2131 0.2856

of 10 Hz and 100 Hz, separately. In Figure 8b, the video bit-
stream which is encoded based on fd = 100 Hz is simulated
over fading channels with Doppler frequency of 100 Hz and
10 Hz, separately. In both scenarios, the video quality would
be better if the actual condition in terms of MB loss rate is
smaller than the knowledge used at the encoder, and would
be worse otherwise. Furthermore, the optimal source and
channel coder pair obtained at the encoder is not optimal
when the channel condition used in simulation is worse than
the channel information used at the encoder. This simula-
tion result again suggests that the optimal rate allocation and
video coding should be focused on the worse channel condi-
tions for broadcasting services.

5. CONCLUSION

We have proposed an integrated framework to find the near-
optimal source and channel rate allocation and the cor-
responding robust video coding scheme for video coding
and transmission over wireless channels when there is no
feedback channel available. Assuming that the encoder has
the stochastic channel information when the wireless fading
channel is modeled as an FSMC model, the proposed scheme
takes into account the robust video coding, packetization,
channel coding, error concealment, and error propagation
effects altogether. This scheme can select the best source and
channel coding pair to encode and transmit the video sig-
nals. Simulation results demonstrated the optimality of the
rate allocation scheme and accuracy of end-to-end MSE esti-
mation obtained at the encoder during the process of robust
video encoding.
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