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Abstract— In this paper, we propose a general framework to ana-
lyze the performance of multiband UWB-MIMO systems regardless
of specific coding schemes. A combination of space-time-frequency
(STF) coding and hopping multiband OFDM modulation is also
proposed to fully exploit all of the available spatial and frequency
diversities, richly inherent in UWB environments. We quantify the
performance merits of multiband UWB-MIMO systems in case of
Nakagami-m frequency-selective fading channels. We show that the
maximum achievable diversity of the proposed system is the product
of the number of transmit and receive antennas, the number of
multipath components, and the number of jointly encoded OFDM
blocks. Interestingly, theoretical result shows that the diversity gain
does not severely depend on the fading parameter m. Finally,
simulation results are presented to support the theoretical analysis.

I. INTRODUCTION

Ultra-wideband (UWB) is an emerging technology that offers
great promises to satisfy the growing demand for low cost
and high-speed digital wireless home networks. A traditional
UWB technology is based on single-band approaches that di-
rectly modulate data into a sequence of impulse-like waveforms,
which occupy the available bandwidth of 7.5 GHz. Recently,
multiband UWB schemes were proposed in [1], in which the
UWB frequency band is divided into several subbands, each
with a bandwidth of at least 500 MHz in compliance with the
FCC regulations. To efficiently capture the multipath energy,
orthogonal frequency division multiplexing (OFDM) technique
has been used to modulate the information in each subband.
The major difference between multiband OFDM and traditional
OFDM schemes is that the multiband OFDM symbols are not
continually sent on one frequency-band; instead, they are inter-
leaved over different subbands across both time and frequency.

In conventional RF technology, multiple-input multiple-output
(MIMO) has been well known for its effectiveness of im-
proving system performance in fading environment. Space-time
(ST) codes have been proposed for narrowband communications,
where the fading channel is frequency-non-selective. When the
fading is frequency-selective, space-frequency (SF) coded MIMO-
OFDM systems [2] have been shown to be an efficient approach
to make benefits of spatial and frequency diversities. Recently,
space-time-frequency (STF) codes (see [3] and references therein)
have also been proposed for MIMO-OFDM systems. By utilizing
some proper STF coding and modulations, STF coded MIMO
systems can exploit all of the spatial, temporal and frequency
diversities, hence promise to yield remarkable performance im-
provement.

Currently, UWB technology achieves data rates ranging from
55 Mbits/s to 480 Mbits/s over distances up to 10 meters. To
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enhance the data rates and the coverage ranges, the application of
MIMO scheme to UWB has gained considerable interest recently.
To this date, multi-antenna UWB technology has been well
documented for the traditional single-band UWB system [4]. On
the other hand, research for multi-antenna multiband UWB is still
largely unexplored, thus offering limited resources in handling the
benefits and challenges of UWB-MIMO communications.

In this paper, we propose a general framework to characterize
the performance of UWB-MIMO systems with multiband OFDM.
A combination of STF coding and hopping multiband UWB
transmission is proposed to exploit all of the available spatial
and frequency diversities. In the performance evaluation, we do
not impose any restriction on the delays or the average powers
of the multipath components, and the proposed framework is
applicable for any channel models. Since Nakagami-m statistics
can be used to model a wide range of fading conditions, we
evaluate the theoretical performances of UWB systems by using
the tap-delay line Nakagami-m fading model, as it can provide
some insightful understanding of UWB systems. We quantify the
average pairwise error probability as well as the diversity and the
coding advantages, regardless of specific coding schemes. Simu-
lation results confirm the theoretical expectation of considerable
performance improvement, gained from adopting STF codes in
multiband system.

The rest of the paper is organized as follows. In Section II,
we present the multiband UWB-MIMO system model, including
the signal modulation, channel model, receiver description, and
detection technique. The performance analysis of a peer-to-peer
multiband UWB-MIMO system is presented in Section III. Sec-
tion IV shows simulation results, and finally Section V concludes
the paper.

II. MULTIBAND UWB-MIMO SYSTEM MODEL

Consider a multiband OFDM scenario that has been proposed
in the IEEE 802.15.3a WPAN standard [5]. The available UWB
spectrum of 7.5 GHz is divided into several subbands, each
with bandwidth BW of at least 500 MHz. Each user utilizes
one subband per transmission. For each user, signals from all
transmit antennas share the same subband. Within each subband,
OFDM modulation with N subcarriers is used at each transmit
antenna. Different bit rates are achieved by using different channel
coding, frequency spreading, or time spreading rates. We consider
a multiband system with fast band-hopping rate, i.e., the signal
is transmitted on a subband during one OFDM symbol interval,
then moved to a different subband at the next interval.

A. Transmitter Description

We consider a peer-to-peer multiband UWB system with Nt

transmit and Nr receive antennas, as shown in Fig. 1. The
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Fig. 1: Multiband UWB-MIMO system.

information is encoded across Nt transmit antennas, N OFDM
subcarriers, and K OFDM blocks.

At the transmitter, the coded information sequence from a
channel encoder is partitioned into blocks of Nb bits. Each block
is mapped onto a KN × Nt STF codeword matrix

D =
[

DT
0 DT

1 · · · DT
K−1

]T
, (1)

where
Dk =

[
dk

1 dk
2 · · · dk

NT

]
, (2)

in which dk
i =

[
dk

i (0) dk
i (1) · · · dk

i (N − 1)
]T

for i =
1, 2, . . . , Nt and k = 0, 1, . . . ,K − 1. The symbol dk

i (n), n =
0, 1, . . . , N − 1, represents the complex symbol to be transmitted
over subcarrier n by transmit antenna i during the kth OFDM
symbol period. The matrix D is normalized to have average
energy E

[‖D‖2
]

= KNNt, where ‖ · ‖ denotes the Frobenius
norm. At the kth OFDM block, the transmitter applies N -point
IFFT over each column of the matrix Dk, yielding an OFDM
symbol of length TFFT .

The IFFT output is added with a cyclic prefix of length TCP

and a guard interval of duration TGI , and then passed through
a digital-to-analog converter, resulting in an analog baseband
OFDM signal of duration TSY M = TFFT + TCP + TGI . The
baseband OFDM signal to be transmitted by the ith transmit
antenna at the kth OFDM block can be expressed as

xk
i (t) =

√
E

Nt

N−1∑
n=0

dk
i (n) exp {(j2πn∆f)(t − TCP )} (3)

for t ∈ [TCP , TFFT + TCP ]. In (3), j �
√−1, and ∆f =

1/TFFT = BW/N is the frequency separation between two
adjacent subcarriers. The factor

√
E/Nt guarantees that the

average energy per transmitted symbol is E, independent of the
number of transmit antennas.

The complex baseband signal xk
i (t) is filtered, up-converted to

an RF signal with a carrier frequency fk
c , and finally sent from

the ith transmit antenna. The transmitted multiband UWB signal
at transmit antenna i over K OFDM symbol periods is given by

si(t) =
K−1∑
k=0

Re
{
xk

i (t − k TSY M ) exp(j2πfk
c t)
}

.

The carrier frequency fk
c specifies the subband, in which the

signal is transmitted during the kth OFDM symbol period. The
carrier frequency can be changed from one OFDM block to
another, so as to enable the frequency diversity while minimize
the multiple access interference. Note that fk

c is the same for
every transmit antenna, and the transmissions from all of the Nt

transmit antennas are simultaneous and synchronous. Since Nb

information bits are transmitted in KTSY M seconds, the trans-
mission rate (without channel coding) is R = Nb/(KTSY M ).

B. Channel Model

We consider frequency-selective fading channel [6], which is
modeled as a tapped-delay line with L taps. At the kth OFDM
block, the channel impulse response from the ith transmit antenna
to the jth receive antenna can be described as

hk
ij(t) =

L−1∑
l=0

αk
ij(l)δ(t − τl), (4)

where αk
ij(l) is the multipath gain coefficient, L denotes the

number of resolvable paths, and τl represents the path delay of the
lth path. The measurements in UWB channels indicate that the
amplitude of each path follows either a log-normal or Nakagami-
m distribution [7]. The advantage of Nakagami-m statistics is that
they can model a wide range of fading conditions by adjusting
their fading parameters. In fact, Nakagami-m distributions with
large value m are similar to the log-normal distributions. There-
fore, we will assume that the amplitude of the lth path, |αk

ij(l)|,
is modeled as a Nakagami-m random variable [8] with fading
parameter m and average power Ωl = E

[|αk
ij(l)|2

]
. The powers

of the L paths are normalized such that
∑L−1

l=0 Ωl = 1. We assume
that the time delay τl and the average power Ωl are the same for
every transmit-receive link.

C. Receiver Processing

The signal received at each receive antenna is a superposition of
the Nt transmitted signals corrupted by additive white Gaussian
noise. Assume that the receiver perfectly synchronizes to the band
switching pattern. The received RF signal at each receive antenna
is down-converted to a complex baseband signal, matched to
the pulse waveform, and then sampled before passing through
an OFDM demodulator. After the OFDM modulator discards the
cyclic prefix and performs an N-point FFT, a maximum-likelihood
detection is jointly performed across all Nr receive antennas.
The choice of prefix length greater than the duration of the
channel impulse response ensures that the interference between
OFDM symbols is eliminated. Effectively, the frequency-selective
fading channel decouples into a set of N parallel frequency-non-
selective fading channels, whose fading coefficients are equal to
the channel frequency response at the center frequency of the
subcarriers. Therefore, the received signal at the nth subcarrier
at receive antenna j during OFDM block k can be expressed as

yk
j (n) =

√
E

Nt

Nt∑
i=1

dk
i (n)Hk

ij(n) + zk
j (n), (5)

where

Hk
ij(n) =

L−1∑
l=0

αk
ij(l) exp [−j2πn∆fτl] (6)

is the frequency response of the channel at subcarrier n between
the ith transmit and the jth receive antenna during the kth OFDM
block. In (5), zk

j (n) represents the noise sample, which is modeled
as complex Gaussian random variable with zero mean and a two-
sided power spectral density of N0/2.

For subsequent performance evaluation, we rewrite the received
signal (see (5)) at receive antenna j in the matrix form as

Yj =
√

E

Nt
SDHj + Zj , (7)
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where SD is a KN × KNNt data matrix of a form

SD =
[

S1 S2 · · · SNt

]
, (8)

in which Si is a KN×KN diagonal matrix whose main diagonal
comprises the information to be sent from transmit antenna i. We
format Si as

Si = diag
([

(d0
i )

T (d1
i )

T · · · (dK−1
i )T

]T)
,

where diag(x) is a diagonal matrix with the elements of x on its
main diagonal. The KNNt × 1 channel vector Hj is of a form

Hj =
[

HT
1j HT

2j · · · HT
Ntj

]T
, (9)

Hij =
[
H0

ij(0) · · ·H0
ij(N−1) · · ·HK−1

ij (0) · · ·HK−1
ij (N−1)

]T
.

The received signal vector Yj of size KNNr × 1 is given by

Yj =
[(

y0
j

)T (
y1

j

)T · · · (yK−1
j

)T ]T
, in which yk

j is an N ×1
vector whose nth element is yk

j (n). The noise vector Z has the
same form as Y by replacing yk

j (n) with zk
j (n).

We assume that the receiver has perfect knowledge of the
channel state information, while the transmitter has no channel
information. The receiver exploits a maximum likelihood decoder,
where the decoding process is jointly performed on Nr receive
signal vectors. The decision rule can be stated as

D̂ = arg min
D

Nr∑
j=1

‖Yj −
√

E

Nt
SDHj‖2.

III. PERFORMANCE ANALYSIS

In this section, we present a general framework to analyze the
performance of multi-antenna multiband UWB system. We derive
the performance of STF coded multiband UWB systems in terms
of pairwise error probability (PEP). Suppose that ∆S � SD−SD̂
is the difference between two data matrices, SD and SD̂, which
are related to two distinct STF codewords D and D̂, respectively.
Following the computation steps as in [6], the PEP conditioned
on the channel matrix is given by

Pe|Hj
= Q



√√√√ ρ

2Nt

Nr∑
j=1

‖∆SHj‖2


 (10)

where ρ = E/N0 is the average signal-to-noise ratio (SNR) at
each receive antenna, and Q(x) is the Gaussian error function,
Q(x) = 1√

2π

∫∞
x

exp(− s2

2 )ds. The average PEP can be obtained
by calculating the expected value of the conditional PEP with
respect to the distribution of γ �

∑Nr

j=1 ‖∆S Hj‖2, i.e.,

Pe =
∫ ∞

0

Q
(√

ρ

2Nt
s

)
pγ(s)ds, (11)

where pγ(s) is the probability density function (PDF) of γ.
For convenience, let us denote an NtNrLK×1 channel vector

a =
[
aT

1 , aT
2 · · · aT

Nr

]T
,

where aj contains the multipath gains from all transmit antennas
to the jth receive antenna. The NtLK × 1 vector aj is

aj =
[
(a0

1j)
T · · · (a0

Ntj)
T · · · (aK−1

1j )T · · · (aK−1
Ntj

)T
]T

(12)

in which

ak
ij =

[
αk

ij(0) αk
ij(1) · · · αk

ij(L − 1)
]T

. (13)

According to (6) and (12), we can express (9) as

Hj = (IKNt
⊗ W)aj ,

where ⊗ denotes the Kronecker product, IM represents an M ×
M identity matrix, and W is an N × L Fourier matrix whose
(n, l)th component is exp(−j2πn∆fτl). As a consequence, γ can
be expressed as

γ =
Nr∑
j=1

∥∥∆S(IKNt
⊗ W)aj

∥∥2. (14)

We can see from (14) that the distribution of γ depends on the
joint distribution of the multipath gain coefficients, αk

ij(l).
In the sequel, we first analyze the performance of multiband

UWB-MIMO system with independent fading. Such assumption
allows us to characterize the performances of UWB systems with
the diversity and the coding advantages. Then, we investigate the
performance of a more realistic system, where the multipath gain
coefficients are allowed to be correlated.

A. Independent Fading

Due to the band hopping, the K OFDM symbols in each STF
codeword are sent over different subbands. With an ideal band
hopping, we assume that the signal transmitted over K different
subbands undergo independent fading. We also assume that the
path gains αk

ij(l) are independent for different paths and different
transmit-receive links, and each transmit-receive link has the same
power delay profile, i.e., E

[|αk
ij(l)|2

]
= Ωl. The correlation

matrix of aj is given by

E
[
ajaH

j

]
= IKNt

⊗ Ω, (15)

where (·)H denotes conjugate transpose operation, and Ω =
diag(Ω0, Ω1, · · · , ΩL−1) is an L × L matrix formed from the
power of the L paths.

Denote Ω
1
2 = diag

(√
Ω0

√
Ω1 · · ·

√
ΩL−1

)
, and let qj =

(IKNt
⊗ Ω

1
2 )−1aj . We can show that the elements of qj are

identically independent distributed (iid) Nakagami-m random
variables with normalized power Ω = 1. Substitute aj = (IKNt

⊗
Ω

1
2 )qj into (14), and apply the property of Kronecker product

([9] p.251), resulting in

γ =
Nr∑
j=1

∥∥∆S(IKNt
⊗ WΩ

1
2 )qj

∥∥2 =
Nr∑
j=1

qH
j Ψqj , (16)

where Ψ = (IKNt
⊗ WΩ

1
2 )H∆H

S ∆S(IKNt
⊗ WΩ

1
2 ). Since

Ψ is a Hermitian matrix of size KNtL × KNtL, it can be
decomposed into Ψ = VΛVH, where V � [v1 · · ·vKNtL] is
a unitary matrix, and Λ = diag{λ1(Ψ), . . . , λKNtL(Ψ)} is a
diagonal matrix whose diagonal elements are the eigenvalues of
Ψ. After some manipulations, we arrive at

γ =
Nr∑
j=1

KNtL∑
n=1

λn(Ψ)|βj,n|2, (17)
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where βj,n � vH
n qj . Since V is unitary and components of qj are

iid, βj,n’s are independent random variables, whose magnitudes
are approximately Nakagami-m̃ distributed with ([8] p.25)

m̃ = (KLNtm)/(KLNtm − m + 1) (18)

and average power Ω = 1. Hence, the PDF of |βj,n|2 ap-
proximately follows Gamma distribution. Now, the average PEP
can be obtained by substituting (17) into (10), and averaging
(10) with respect to the distribution of |βj,n|2. To this end,
we resort to an alternate representation of Q function, Q(x) =
1
π

∫ π/2

0
exp(− x2

2 sin2 θ
)dθ for x ≥ 0. This allows us to express

(10) in term of moment generating function (MGF) of γ, denoted
by φγ(s). Due to the fact that φ|βj,n|2(s) =

(
1 − Ω

m̃s
)−m̃

, and
|βj,n|2 are independent, the average PEP is given by

Pe =
1
π

∫ π
2

0

KLNt∏
n=1

(
1 +

ρ(Ω/m̃)
4Nt sin2 θ

λn(Ψ)
)−m̃Nr

dθ.

By bounding the PEP above with θ = π/2 and assuming high
SNR, we arrive at the upper bound of the PEP:

Pe ≤

rank(Ψ)∏

n=1

(
ρ

4Nt

Ω
m̃

λn(Ψ)
)

−m̃Nr

, (19)

where rank(Ψ) is the rank and {λn(Ψ)}rank(Ψ)
n=1 are nonzero

eigenvalues of matrix Ψ. From (19), we can quantify the perfor-
mance of STF coded multiband UWB with the diversity gain
Gd = minD�=D̂ m̃Nrrank(Ψ), and the coding gain Gc =

minD�=D̂
Ω
m̃

(∏rank(Ψ)
n=1 λn(Ψ)

)1/rank(Ψ)

.
In order to specify the maximum achievable diversity gain,

we calculate the rank of Ψ as follows. According to (16) and the
rank property, we have rank(Ψ) = rank

(
∆S(IKNt

⊗ WΩ1/2)
)
.

Observe that the size of ∆S is KN × KNNt, whereas the size
of WΩ1/2 is N × L. Therefore, the rank of matrix Ψ becomes
rank(Ψ) ≤ min{KN,KLNt}. Hence, the maximum achievable
diversity gain is

Gmax
d = min{m̃KLNtNr, m̃KNNr}. (20)

Note that the diversity gain in (20) depends on the parameter m̃
which is close to one for any fading parameter m. Indeed, for
multiband UWB-MIMO systems,

m̃ = (1 − (KLNt)−1 + (KLNtm)−1)−1 ≈ 1. (21)

In this case, the maximum achievable diversity gain is well
approximated by

Gmax
d = min{KLNtNr,KNNr}. (22)

The result in the analysis above is somewhat surprising since
the diversity gain of multiband UWB-MIMO system does not
depend on the fading parameter m. The reason behind this is that
βj,n in (17) is a normalized summation of KLNt independent
Nakagami random variables. When KLNt is large enough, βj,n

behaves like a complex Gaussian random variable, and hence the
channel is like Rayleigh faded. Since the ultra-wide bandwidth
results in a large number of multipath components, the effect
of KLNt on the diversity gain dominates the effect of fading

parameter m. This implies that the diversity advantage does not
depend on the severity of the fading. The diversity gain obtained
under Nakagami fading with arbitrary m parameter is almost the
same as that obtained in Rayleigh fading channels.

We emphasize here the major difference between the use of
STF coding in the conventional OFDM systems and in the multi-
band OFDM systems. For STF coding in the conventional OFDM
systems, the symbols are continuously transmitted in the same
subband, hence the temporal diversity depends on the time vary-
ing nature of the channel [3]. In contrast, the diversity gain in (22)
reveals that with band switching, the STF coded multiband UWB
is able to achieve the diversity gain of min{KLNtNr,KNNr},
regardless of the channel time-correlation property.

It is worth noting that the proposed framework incorporates the
analysis for ST or SF coded UWB systems as special cases. In
case of single-carrier frequency-non-selective channel, i.e., N = 1
and L = 1, the performance of STF coded UWB is similar to that
of ST coded UWB system. In case of coding within one OFDM
block (K = 1), the performance of STF coded UWB is the same
as that of SF coded scheme. The maximum diversity reduces to
min{LNtNr, NNr}. This reveals that STF coding together with
band hopping across K OFDM blocks can offer the diversity
advantage of K times larger than that of SF coding approach.

B. Correlated Fading

In case of correlated fading, we express γ in (14) as

γ = aH
{
INr

⊗ [(IKNt
⊗ WH)∆H

S ∆S(IKNt
⊗ W)

] }
a. (23)

To simplify the analysis, we assume that the channel correlation
matrix, RA = E

[
aaH] is of full rank. Since RA is positive

definite Hermitian symmetric, it has a symmetric square root U
such that R = UHU, where U is also of full rank [9]. Let
q = U−1a, then it follows that E

[
qqH] = IKLNtNr

, i.e., the
components of q are uncorrelated. Substituting a = Uq into
(23), we have γ = qHΦq where

Φ = UH{INr
⊗ [(IKNt

⊗ WH)∆H
S ∆S(IKNt

⊗ W)
] }

U.
(24)

Accordingly, using an eigenvalue decomposition of the matrix Φ,
we can express γ as γ =

∑KLNtNr

n=1 λn(Φ)|βn|2, where βn �
vH

n q, vn’s and λn(Φ)’s are the eigenvectors and the eigenvalues
of matrix Φ. From (11), the PEP can be obtained by averaging the
conditional PEP with respect to the joint distribution of {|βn|2}:

Pe =
∫ ∞

0

· · ·
∫ ∞

0

Q



√√√√ ρ

2Nt

M∑
n=1

λn(Φ)sn




× p|β1|2···|βM |2(s1, . . . , sM ) ds1 · · · dsM , (25)

where M = KLNtNr. In general, βn’s for different n are not
independent, and the closed-form solution for (25) is difficult, if
not possible, to determine. In what follows, we will discuss two
special cases where (25) can be further simplified.

Special case 1: Constant fading
In case of constant fading over K OFDM blocks, i.e., the

modulated OFDM signal is transmitted continually over the same
subband for entire K OFDM blocks, (14) can be re-expressed as

γ =
Nr∑
j=1

∥∥(CD − CD̂) (INt
⊗ W)ãj

∥∥2, (26)
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where CD =
[
CT

0 CT
1 · · · CT

K−1

]T
is a KN × NtN matrix,

and Ck =
[
diag(dk

1) · · · diag(dk
Nt

)
]
. The channel vector ãj of

size LNt × 1 is given by ãj =
[
aT

1j aT
2j · · · aT

Ntj

]T
, in which

aij is defined in (13). Since the path gains ak
ij’s are the same for

every k, 0 ≤ k ≤ K−1, the time superscript index k is omitted to
simplify the notations. Following the steps given previously, we
can show that the average PEP has the same form as (25) with M
replaced by LNtNr and {λn(Φ̃)}LNtNr

n=1 being the eigenvalues of

Φ̃ = ŨH{INr
⊗ [(INt

⊗ WH)∆H
C ∆C(INt

⊗ W)
] }

Ũ.

Here, ∆C � CD − CD̂ and Ũ is a symmetric square root of

R̃A = E
[
ããH], in which ã =

[
ãT

1 ãT
2 · · · ãT

Nr

]T
.

With a further assumption that the path gains are independent
for every transmit-receive link, the average PEP can be obtained
in a similar fashion to that derived in Section III-A as

Pe ≤

rank(Θ)∏

n=1

(
ρ

4Nt

Ω
m̃

λn(Θ)
)

−m̃Nr

, (27)

where λn(Θ)’s are the nonzero eigenvalues of the matrix Θ =
(INt

⊗WH)∆H
C ∆C(INt

⊗W). Observe that the maximum rank
of ∆C(INt

⊗ W) is min{LNt,KN}. Hence, the maximum
achievable diversity gain becomes

Gmax
d = min{m̃LNtNr, m̃KNNr}. (28)

Since KN is typically larger than LNt, we can conclude from
(28) that when K OFDM symbols are sent on one subband prior
to band switching, coding across K OFDM blocks does not offer
any additional diversity advantage compared to the coding scheme
within one OFDM block.

Special case 2: Fading parameter m = 1
With m = 1, Nakagami is equivalent to Rayleigh distribution,

and the path gain coefficients can be modeled as complex Gaus-
sian random variables. Recall that for Gaussian random variables,
uncorrelated implies independent. Thus, {|βn|2} in (25) becomes
a set of iid Rayleigh random variables. By the use of MGF of γ,
the average PEP in (25) is given by

Pe =
1
π

∫ π/2

0

KLNtNr∏
n=1

(
1 +

ρ

4Nt sin2 θ
λn(Φ)

)−1

dθ,

where Φ is defined in (24). The PEP above can be bounded by

Pe ≤
[

KLNtNr∏
n=1

(
ρ

4Nt
λn(Φ)

)]−1

at high SNR. Therefore, the performance of this system can be
quantified as the diversity gain: Gd = minD�=D̂ Nrrank(Φ), and

the coding gain: Gc = minD�=D̂

(∏rank(Φ)
n=1 λn(Φ)

) 1
rank(Φ)

.

IV. SIMULATION RESULTS

We performed simulations for multi-antenna multiband UWB
systems with N = 128 subcarriers and the subband bandwidth
of BW = 528 MHz. The OFDM symbol is of duration TFFT =
242.42 ns. After adding the cyclic prefix of length TCP =
60.61 ns and the guard interval of length TGI = 9.47 ns, the
symbol duration becomes TSY M = 312.5 ns. Our simulated

channel model is based on (4) with the path amplitudes |αk
ij(l)|

being independent Nakagami-m random variables and the phases
∠αk

ij(l) being uniform over [0, 2π). The power delay profile,
used to specify the path delays τl’s and powers Ωl’s, follows the
statistical model in [10]. In our simulations, the STF codeword
D =

[
DT

0 DT
1 · · ·DT

K−1

]T
in (1) is further simplified as

Dk =
[

GT
k,1 GT

k,2 · · · GT
k,P 0T

(N−PΥNt)×Nt

]
,

in which Υ is a fixed integer between 1 and L, P = �N/(ΥNt)	,
and 0m×n stands for an m×n all-zero matrix. The ΥNt×Nt code
matrices {Gk,p}K−1

k=0 for each p are jointly designed, whereas the
matrices Gk,p and Gk′,p′ with p 
= p′ are designed independently.
Such code structures are able to provide the maximum achievable
diversity, while enable low computational complexity [3].

Let us consider a system with two transmit antennas. Based on
the repetition STF code in [3], Gk,p is given by

Gk,p = (INt
⊗ 1Υ×1)

(
xp,1 xp,2

−x∗
p,2 x∗

p,1

)
,

where 1m×n denotes an m × n all-one matrix, and xp,i’s are
selected from BPSK or QPSK constellations. Note that Gk,p is
the same for all k’s. We also use a full-rate STF code with [3]

Gk,p =
√

Nt

(
xk

p,1 0Υ×1

0Υ×1 xk
p,2

)
,

where xk
p,i is a Υ × 1 matrix whose elements are specified as

follows. Omitting subscript p and denoting L = KΥNt, the 1×L
matrix x � [(x0

1)
T (x0

2)
T · · · (xK−1

1 )T (xK−1
2 )T ] is given by x =

(1/
√

K)sV(θ1, θ2, . . . , θL), in which s = [s1 s2 · · · sL] is a
vector of BPSK or QPSK symbols, and V is a Vandermonde
matrix with θl = ej(4l−3)π/(2L) for L = 2s(s ≥ 1) and θl =
ej(6l−1)π/(3L) for L = 2s · 3t(s ≥ 0, t ≥ 1).

First, we consider the performance of coding approach over
one OFDM block (K = 1). We utilize both repetition and full-
rate codes, each with spectral efficiency of 1 bit/s/Hz (omitting
the prefix and guard interval) and the data rate (without channel
coding) of 409.6 Mbits/s. Fig. 2 depicts the performances of the
STF coded UWB system with Υ = 2. We observe that regardless
of particular coding scheme, the spatial diversity gained from
multi-antenna architecture does improve the system performance
significantly. In addition, the performance can be further improved
with the choice of STF codes and permutation schemes. In Fig.
3, we compare the performance of multiband UWB system with
different frequency diversity orders. Here, we employ the full-rate
code with Υ = 2, 3, and 4. We can see that by increasing the
number of jointly encoded subcarriers, the system performance
can be improved. This observation is in accordance with our
theoretical result in (19). Therefore, with a properly designed
STF code, we can effectively exploit both spatial and frequency
diversities in UWB environment.

Second, we compare the performances of STF coded multiband
UWB system with fast band-hopping rate and time spreading
factors, K = 1, 2. Fig. IV shows the performances of full-rate
STF codes with Υ = 2 and spectral efficiency of 1 bit/s/Hz. It is
apparent that the diversity advantage increases with the number
of jointly encoded OFDM blocks. Such achieved improvement
results from the band hopping rather than the temporal diversity,
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Fig. 2: Performance of multiband UWB with different codes (K = 1).
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Fig. 3: Performance of multiband UWB with different diversity orders.

and hence the diversity order increases significantly regardless
of the temporal correlation of the channel. This supports our
analytical results in Section III-A that the diversity order of STF
coded multiband UWB with fast hopping rate increases with K.

Finally, we compare the performance of multiband systems
with different band-hopping rates. Fig. 5 depicts the performance
of full-rate STF coded UWB system with Υ = 2 and K = 2.
We observe the performance degradation when the band-hopping
rate decreases, which corresponds to the results in (19) and (27)
that coding over multiple OFDM blocks will offer the additional
diversity advantage when the STF coding is applied together with
fast band-hopping scheme, i.e., the K OFDM symbols in each
STF codeword are transmitted on various frequency-bands.

V. CONCLUSIONS

In this paper, we proposed a multiband MIMO coding frame-
work for UWB systems. By a technique of band hopping in
combination with jointly coding across spatial, temporal and
frequency domains, our scheme is able to exploit all available
spatial and multipath diversities, richly inherent in UWB envi-
ronments. We showed that the maximum achievable diversity
advantage of our proposed system is KLNtNr regardless of
the temporal correlation of the channel. An interesting result
is that the diversity advantage obtained under Nakagami fading
with arbitrary m parameter is almost the same as that obtained
in Rayleigh fading channels. Simulation results showed that the
employment of STF coding and band hopping techniques is able
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Fig. 4: Performance of multiband with different time spreading factors.
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Fig. 5: Performance of multiband UWB with different hopping rates.

to increase the diversity order significantly, thereby considerably
improving system performance. In case of single-antenna system,
increasing the number of jointly encoded OFDM blocks from one
to two yields the performance improvement of 6 dB at a BER of
10−4. By increasing also the number of transmit antennas from
one to two, the proposed STF coded multiband UWB system has
a total gain of 9 dB at a BER of 10−4.
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