
A Fast Sphere Decoding Framework for
Space-Frequency Block Codes

Zoltan Safar
Department of Innovation

IT University of Copenhagen
Copenhagen, Denmark
E-mail: safar@itu.dk

Weifeng Su, and K. J. Ray Liu
Department of Electrical and Computer Engineering

University of Maryland
College Park, MD, USA

E-mail: {weifeng, kjrliu}@eng.umd.edu

Abstract— In order to make multi-antenna OFDM systems an
attractive choice for practical applications, implementation issues
such as decoding complexity must be addressed successfully.
In this paper, we propose a computationally efficient decoding
algorithm for space-frequency block codes. The central part
of the algorithm is a complex-domain, modulation-independent
sphere decoding framework. The simulation results demonstrate
that the proposed algorithm can significantly reduce the decoding
complexity. For 64 QAM modulation, we observe up to about
73% reduction in the required FLOP count per code block
compared to previously proposed methods without noticeable
performance degradation.

I. INTRODUCTION

The recently proposed space-time (ST) and space-frequency
(SF) coded multiple-input-multiple-output (MIMO) systems
have promised considerable performance improvement over
the single-antenna systems. However, the computational com-
plexity of the maximum likelihood (ML) decoding algorithm
may hamper the widespread use of such systems, so the de-
velopment of low complexity ST and SF decoding algorithms
is a problem of paramount importance.

Computationally efficient decoding algorithms have only
been proposed for decoding ST block codes in quasi-static, flat
fading environment [1], [2]. For ST block codes transmitted
over temporally evolving channels and for SF block-coded
MIMO-OFDM systems, where the channel changes along the
frequency axis, low complexity decoding algorithms still do
not exist in the literature.

The sphere decoding algorithm was introduced in [3] as-
suming a single-antenna, real-valued fading channel model.
Later results [4], [5] generalized the algorithm to complex-
valued MIMO channels. A reduced complexity algorithm was
proposed in [6], where the signal coordinates were sorted
according to their partial metrics and explored in this order.
The authors of [7] achieved complexity reduction by exploring
the signal coordinates in a zig-zag order. This approach was
further refined and improved in [8]. In [9], the sphere decoding
algorithm was applied to equalize frequency selective MIMO
channels. All of these works considered uncoded MIMO sys-
tems and assumed quasi-static, flat fading channels. Moreover,
they formulated the sphere decoding problem in the real
domain, so the resulting algorithms can only be used with

modulation methods that can be decomposed into the product
of two real constellations (for example, square QAM).

A complex-domain sphere decoding algorithm was de-
scribed in [10]. This work considered iterative (turbo) de-
coding in a MIMO system where linear ST mapping was
combined with an outer channel code, and a sphere detector
was used to approximate the log-likelihood ratio in a compu-
tationally efficient way. This approach was specific to modula-
tion methods that can be decomposed into PSK constellations,
and its objective was to identify a set of candidate solutions,
as opposed to finding the best candidate solution with the
maximum possible efficiency.

In this work, we propose a general framework for decod-
ing SF block codes constructed from orthogonal and quasi-
orthogonal designs based on the idea of sphere decoding.
We formulate the decoding problem in the complex domain,
which allows us to exploit the distance structure of complex
signal constellations. We propose a modulation-independent
sphere decoding framework by interpreting the sphere de-
coding problem as a greedy, constrained depth-first search
algorithm. Due to the modular structure of the framework, it
can be used to construct a decoding algorithm that can be used
with any memoryless modulation, and it can also be tailored
to a particular modulation method.

II. SYSTEM MODEL AND NOTATION

Consider a SF-coded MIMO-OFDM system having K
transmit antennas, L receive antennas and M sub-carriers,
with M being a multiple of K. Suppose that the frequency
selective fading channels between each pair of transmit and
receive antennas have P independent delay paths and the same
power delay profile. The MIMO channel is assumed to be
constant over each OFDM block period. The channel impulse
response from transmit antenna k to receive antenna l at time
τ is modeled as hk,l(τ) =

∑P−1
p=0 βk,l(p)δ(τ − τp), where

τp is the delay and βk,l(p) is the complex amplitude of the
p-th path between transmit antenna k and receive antenna l.
The βk,l(p)’s are modeled as zero-mean, complex Gaussian
random variables with variances E[|βk,l(p)|2] = δ2

p. The
powers of the P paths are normalized such that

∑P−1
p=0 δ2

p = 1.
The frequency response of the channel is given by Hk,l(f) =∑P−1

p=0 βk,l(p)e−j2πfτp . We assume that the MIMO channel
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is spatially uncorrelated, i.e. the βk,l(p)’s are independent for
different indices (k, l).

The input bit stream is divided into b bit long segments,
creating B-ary (B = 2b) source symbols. The encoder forms
M/K source symbol blocks, each containing N source sym-
bols. Source symbol si ∈ {0, 1, . . . , B−1}, i = 0, 1, . . . , N −
1, is mapped onto a complex channel symbol (or constellation
point) xi according to xi = Ω(si), where the function Ω(.)
represents the modulation operation. The average energy of
the constellation will be denoted by Eavg .

Then, the SF encoder forms two-dimensional, square code-
words from the channel symbols. The SF codeword corre-
sponding to the t-th (t = 0, 1, . . . ,M/K − 1) source symbol
block can be expressed as a K by K matrix C = {ck[Kt+m]}
(k,m = 0, 1, ..,K−1), where ck[i] denotes the channel symbol
transmitted over the i-th sub-carrier by transmit antenna k.
We assume that each ck[i] is either zero, or a channel symbol
or a negative and/or complex conjugate of a channel symbol
corresponding to a source symbol in the appropriate source
symbol block.

At the receiver, after matched filtering, removing the cyclic
prefix, and applying FFT, the received signal corresponding
to the t-th source symbol block at sub-carrier Kt + m (m =
0, 1, . . . ,K − 1) and receive antenna l is given by

yl[Kt+m] =
K−1∑
k=0

Hk,l[Kt+m]ck[Kt+m]+nl[Kt+m], (1)

where Hk,l[i] = Hk,l(i∆f) is the channel frequency response
at the i-th sub-carrier between transmit antenna k and receive
antenna l, ∆f = 1/T is the sub-carrier separation in the
frequency domain, and T is the OFDM symbol period. We
assume that the channel state information Hk,l[i] is known at
the receiver, but not at the transmitter. In (1), nl[i] denotes the
complex, zero-mean, additive white Gaussian noise component
at the i-th sub-carrier at receive antenna l. The variance of the
noise samples is assumed to be 1/(ργ), where the scaling
factor γ is defined as γ = b/(K2Eavg), so ρ is the signal to
noise ratio (SNR) per bit at each sub-carrier at each receive
antenna. In the sequel, we will focus our attention on decoding
a single code block, so a simplified notation will be used by
dropping the block index t:

yl[m] =
K−1∑
k=0

Hk,l[m]ck[m] + nl[m], (2)

for m = 0, 1, . . . ,K − 1.

III. EQUIVALENT REPRESENTATION

In general, SF coding introduces spatial and frequency-
domain dependence among the code symbols ck[i] within a
code block C. For example, in case of the 2 × 2 orthogonal
design (K = 2, N = 2) [1]

C =
[

x0 x1

−x∗
1 x∗

0

]
, (3)

the channel symbols transmitted from different transmit an-
tennas and through different sub-carriers are clearly related.

However, to be able to use a sphere decoder (to be able to
make sequential decisions on the sent signal coordinates), it
is necessary to transform the received signal to an equivalent
signal representation, where the coordinates of the sent signal
vector are independent. Due to space limitations, we will only
consider SF codes constructed from the 2×2 orthogonal design
(3) in this paper, but our approach can be extended to more
transmit antennas and quasi-orthogonal designs.

The transformed equivalent received signal vector yl =
[yl[0], y∗

l [1]]T for receive antenna l can be rewritten in matrix-
vector form as

yl = Hlx + nl,

where x = [x0, x1 ]T is the N ×1 transmitted channel symbol
vector, nl = [nl[0], n∗

l [1]]T is the equivalent noise component,
and Hl is defined as

Hl =
[

H0,l[0] H1,l[0]
H∗

1,l[1] −H∗
0,l[1]

]
.

By collecting the received signal and noise components cor-
responding to different receive antennas in KL × 1 vectors
as y = [ yT

0 , . . . ,yT
L−1 ]T , and n = [ nT

0 , . . . ,nT
L−1 ]T , the

equivalent received signal can be expressed as

y = Hx + n, (4)

where the KL × N matrix H is the equivalent channel
matrix, defined as H = [ HT

0 , ...,HT
L−1 ]T . Note that the

above described equivalent representation has the following
properties that are important from the viewpoint of the sphere
decoding algorithm. First, the coordinates of the noise vector
n are independent, zero mean, complex Gaussian random
variables with variance 1/(ργ). Second, the coordinates of
the x vector are independent. Third, the matrix H has at least
as many rows as columns, independently of the number of
receive antennas. Fourth, since the entries in the matrix H are
complex, zero mean, Gaussian random variables and we have
assumed that the MIMO channel is spatially independent, the
matrix H has full (column) rank with high probability.

IV. THE PROPOSED ALGORITHM

For systems described by (4), to decode the sent signal
vector x with the maximum likelihood (ML) algorithm, the
task is to find a valid signal vector x that minimizes the metric
||y − Hx||2. Unfortunately, in some cases this can only be
performed by exhaustive search over all valid signal vectors.
To alleviate this computational burden, sphere decoding can
be used, where the decoder searches over only a subset of x
vectors that lie within a hyper-sphere of radius r centered
around the received signal vector, i.e. ||y − Hx||2 ≤ r2.
We have divided the proposed algorithm in two parts: the
preprocessing stage and the searching stage.

A. Preprocessing Stage

The purpose of this stage is to transform the expression
||y−Hx||2 in such a form that the decisions on the coordinates
of x can be made sequentially. First, the complex Cholesky
factorization of the matrix HHH is calculated, obtaining an
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N×N complex, upper triangular matrix R = {Rk,l} with pos-
itive and real diagonal elements. We used a simple extension
of the “Gaxpy” version of the real Cholesky decomposition
algorithm [11]. Then, the elements of the N × N matrix
Q = {Qk,l} are calculated as Qk,k = R2

k,k and Qk,l =
Rk,l/Rk,k for k < l. After that, the zero forcing solution
z = H+y is determined, where H+ denotes the pseudo-
inverse of H. This can be done most efficiently by solving
the lower triangular system RHw = HHy for w and solving
the upper triangular system Rz = w for z. The last step is to
obtain the modified radius r′2 = r2 − ||y||2 + ||Hz||2. Using
these quantities, the sphere decoding problem can be expressed
in the following way: find only those x signal vectors that
satisfy ||R(z − x)||2 ≤ r′2.

B. Searching Stage

The searching stage generates the sent signal vectors x
satisfying the sphere constraint and selects the decoded signal
vector. To be able to make the decisions on the signal vector
x coordinate by coordinate, the sphere constraint is expressed
in a recursive manner by defining the quantities αk and Tk as
follows.

αk = zk +
N−1∑

l=k+1

Qk,l(zl − xl) = zk +
N−1∑

l=k+1

Qk,l∆l

for k = N − 1, N − 2, ..., 0, where xk and zk denote the k-th
coordinates of x and z, respectively, and ∆k = zk − xk is
defined for computational convenience. TN−1 = r′2, and

Tk = Tk+1 − Qk+1,k+1|αk+1 − xk+1|2

for k = N −2, N −3, ..., 0. The quantity Tk can be thought of
as the remaining squared distance between the partial solution
xN−1, xN−2, ..., xk+1 and the surface of the sphere, and αk

can be interpreted as the k-th received signal component given
xN−1, xN−2, ..., xk+1. The sphere decoding problem can be
solved by going over the coordinates of x starting from k =
N − 1 and continuing down to k = 0. For each k value, we
need to calculate αk and Tk, and determine those valid xk

values that satisfy

|αk − xk|2 ≤ Tk/Qk,k. (5)

Then, we go over each xk value, decrease the value of k by
one, and repeat the procedure. If the k = 0 level is completed,
we have found an x vector inside the sphere.

The original sphere decoding algorithm [3] was based on
an algorithm developed for finding the shortest vector in a
lattice. Our objective is to devise a decoding framework for
any memoryless modulation method, so the signal coordinates
xk may take on any complex value, and the set of vectors
{Hx} does not form a lattice. To extend the sphere decoding
to arbitrary constellations, we provide an alternative interpre-
tation. We abandon the lattice concept and look at the sphere
decoding problem from a different angle. For each k value, all
xk values satisfying the partial constraint (5) are enumerated
and explored, so the search space can be represented by a

tree. The sphere constraint limits the number of branches
emanating from each node of the tree. Finally, as suggested
in [6], the valid xk values are sorted according to the metric
dk = |αk − xk|2 in increasing order, and they are explored
in this order, which corresponds to a “greedy” strategy. As
a consequence, the proposed sphere decoding framework can
be interpreted as a greedy, constrained depth-first tree search
algorithm.

The flowchart of the proposed algorithm can be observed
in Figure 1. The main differences between this algorithm and
the one described in [6] are that we formulated the decoding
problem in the complex domain and not in the real domain,
and that our algorithm can be used with any constellation, not
only with square QAM.

The variable d indicates whether a node is reached from
above (”DOWN”), i.e. it is visited for the first time, or from
below (”UP”), i.e. it has been visited before. The variable
nc counts the number of valid candidate solutions that have
been generated. The index k is checked, and if it is non-
negative, the bottom level of the tree has nor been reached
yet. If the current tree node is visited for the first time, the
value of αk is calculated, and the function SYMLIST generates
the list of possible source symbols sk,i, whose corresponding
channel symbols xk,i = Ω(sk,i) satisfy the normalized partial
constraint |αk − xk,i|2 ≤ Tk/Qk,k. The SYMLIST function
takes αk and the normalized partial constraint Tk/Qk,k as
inputs and produces 3 outputs. The first output, nk (0 ≤
nk ≤ B), is the number of symbols satisfying the current
partial constraint, so there will be nk branches emanating
from the current node. The second output is the symbol
list sk = [ sk,0, sk,1, . . . , sk,nk−1 ]T , and the vector dk =
[ dk,0, dk,1, . . . , dk,nk−1 ]T whose coordinates are the metrics
dk,i = |αk − xk,i|2. The symbols in sk are ordered according
to increasing dk,i values. The symbol pointer pk points to the
current element of sk. The next source symbol is taken from
the list, the new partial constraint value is calculated, and the
algorithm moves one level down the tree.

If the value of k becomes negative, we have reached
the bottom level, so a valid candidate solution x has been
found. At this point, the radius of the sphere is reduced
to further decrease the decoding complexity by adjusting all
partial constraint values such that the last solution satisfies the
constraints with equality (the “surplus” partial constraint T−1

is subtracted from each partial constraint). The last x vector is
the best solution so far, so the corresponding source symbols
are saved in the {sbest

i } variables by overwriting the previous
solution. The source symbol lists are also modified by the
UPDATE function, which keeps only those source symbols on
the list whose corresponding dk metric values satisfy the new
partial constraints. Since the symbols are ordered according
to the corresponding dk values, this can be done simply by
changing the value of nk at each level.

V. SIMULATION RESULTS

To illustrate the performance of the proposed sphere de-
coding algorithm, we provide some simulation results. The
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Fig. 1. The flowchart of the decoding algorithm

simulated communication system had 2 transmit antennas
(K = 2), 2 receive antennas (L = 2), and the 2×2 orthogonal
design (3) with 64 QAM modulation was used as the SF code
(N = 2). The OFDM modulation had 128 sub-carriers with
an OFDM symbol period of 128 µs. The frequency selective
MIMO channel was modeled by the COST 207 Typical Urban
6-ray power delay profile. The initial radius was set to r = 10
to ensure ML performance.

We compared the total decoding complexity, including
the preprocessing and searching stages, of five different de-
coding algorithms: the ML decoding algorithm (performing
exhaustive search), the real-domain sphere decoding algo-
rithm described in [6] (preprocessing stage: real Cholesky

decomposition), the real-domain sphere decoding algorithm
described in [8] (preprocessing stage: real QR decomposi-
tion), and the proposed decoding framework (preprocessing
stage: complex Cholesky decomposition) with two symbol
list generating method: the modulation-independent search and
the fast QAM-specific search, corresponding to two different
implementations of the SYMLIST function. The first method,
the modulation-independent approach, assumes that there is no
apriory information available on the used constellation, so it
works with any memoryless modulation. The second method,
the fast QAM-specific search approach, performs a nearest
neighbor signal point search around the αk values. The details
of these algorithms can be found in [12].
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Figure 2 depicts the bit error rate (BER) curves as functions
of the average SNR. The total number of FLOPs per decoded
code block, including both stages, as a function of the SNR is
depicted in Figure 3. The FLOP count for the ML decoding
algorithm was 331776. Based on the above figures, we can
make several observations. First, using sphere decoding, the
computational complexity of the SF decoder can be reduced
by orders of magnitude without perceptible performance loss
in the meaningful BER range. Second, the complexity of
the decoding algorithms do not change considerably as the
SNR increases. The reason is that the initial radius was
kept constant, and most of the time, the first solution found
by the greedy tree search was actually the ML solution.
Finally, the proposed QAM-specific fast search algorithm is
the computationally most efficient: the total number of FLOPs
per code block was reduced to about 64% of the FLOP
count of the algorithm in [6], and to about 27% of the
FLOP count of the algorithm in [8]. The performance gain
compared to [6] is due to the higher efficiency of the complex-
domain processing, and the avoidance of the unnecessary
enumeration and sorting operations. The higher complexity of
[8] is mainly the consequence of the complexity of the real QR
decomposition of an 8× 4 matrix (as opposed to the complex
Cholesky decomposition of a 2 × 2 matrix).

We also performed simulations with 16 QAM modulation.
The observed tendencies were similar, and the total FLOP
count per code block was reduced by the proposed algorithm
to about 71% and 26% of that of the methods in [6] and [8],
respectively.

VI. CONCLUSION

We proposed a sphere decoding approach for decoding SF
block codes. We formulated the sphere decoding problem in
the complex domain and developed a modulation independent
decoding framework by interpreting the decoding problem
as a greedy, constrained depth-first tree search algorithm.
The simulation results demonstrated significant complexity
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reduction compared to previously existing algorithms. For
problems of larger size (larger K, L and B values), even more
pronounced complexity reduction is expected.
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