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ABSTRACT 

This paper addresses the problem of joint optimization of trans- 
mit beamforming and space-frequency (SF) coding for MIMO- 
OFDM systems with spatial correlation feedback. This problem is 
challenging in the sense that the transmitter, should be designed to 
beamform across multiple eigenspaces. The performance analysis 
for SF-coded MIMO-OFDM systems with beamforming is pro- 
vided, and a general optimization problem for the beamforming 
design is formulated. Three suboptimal approaches to design the 
beamformer based on the derived design criteria are proposed. In 
terms of bit error rate, simulations show that improvement in the 
performance over SF coding without beamforming is about 3 dB 
€or highly correlated channels. 

1. INTRODUCTION 

Recently there has been much interest in designing transmit- 
diversity schemes for multiple-input-multiple-output (MIMO) sys- 
tems in the presence of partial channel state information (CSI) 
[ l ,  21. However, these works have considered only the MIMO sys- 
tems with flat fading channel model. For the case of frequency se- 
lective fading channels, which generally arises in broadband com- 
munication systems, few works have investigated the effect of the 
CSI feedback on MIMO-OFDM systems. In 141, the authors as- 
sumed perfect CSl at the transmitter, and they proposed a joint 
transmit-receive beamforming design for multicartier frequency 
selective fading MlMO systems. A mean feedback model was 
adopted in [5], and an adaptive two-dimensional space-time coded 
beamformer was developed, based on a space-time (ST) coding 
strategy over each OFDM subcarrier. Note that utilizing ST coding 
on each subcarrier cannot exploit the frequency diversity available 
i n  the frequency selective fading environment [6]. 

In mobile scenarios, the channel may be quickly varying, and 
covariance feedback becomes an adequate approach to adopt as the 
channel statistics do not vary quickly. In this paper, we consider 
the problem of transmit beamforming design for MIMO-OFDM 
systems when the covariance matrix of the channel is available at 
the transmitter. We derive the average pairwise error probability 
of a MIMO OFDM system with arbitrary spatial correlation, and 
we formulate a general beamformer optimization problem in terms 
of minimizing the average pairwise error probability of MIMO- 
OFDM systems. For this joint optimization problem, we provide 
the criteria to design a SF-beamforming scheme. Then, we adopt 
a transmitting scheme in which we utilize a predesigned SF code 
and then design a beamformer that enhances the performance of 
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the code under the knowledge of the channel covariance struc- 
ture. The analysis reveals that in a MIMO multipath environment 
the eigenspace associated with the channel covariance matrices is 
larger than that of the beamformer, i.e., the beamformer has to 
match to multiple eigenspaces simultaneously, which makes it dif- 
ficult to find a closed form solution for the optimal beamformer. 
This is different from the MIMO flat fading case, where the num- 
ber of degrees of freedom available to design the beamformer is 
equal to the dimension of the channel covariance matrix that the 
beamformer should match to [2 ] .  Based on the average painvise 
error probability, we propose three suboptimal approaches to de- 
sign the beamformer: i )  Per-subcamer scheme; ii) Eigenvalue se- 
lection scheme; and iii) Eigenspace selection scheme. Simulation 
results indicate that the Eigenvalue selection scheme provides the 
best performance among the proposed algorithms in terms of bit 
error rate (BER). This scheme locates the subspace associated with 
the largest eigenvalues in the eigenspaces of the channel covari- 
ance matrices. The corresponding eigenvectors are taken to be the 
beamfomer’s directions, and power is distributed along these di- 
rections proportional to the values of the corresponding channel 
eigenvalues. Simulation results show that this scheme has a 3 dB 
performance gain over SF coding without beamforming in highly 
correlated channels. For channels with lower correlations, it shows 
better performance in low to moderate SNR regions. This is due 
to the fact that at high enough SNR, diversity gain dominates. 

The rest of the paper is organized as follows. in Section 2, the 
system model is described. In Section 3, we analyze the MIMO- 
OFDM system performance and formulate a general optimization 
problem for the beamformer design. In Section 4, we propose 
three approaches to design the beamformer. Simulation results are 
shown in Section 5, and finally, Section 6 concludes the paper. The 
following notations are used in the paper: the superscripts T ,  IH, 
and * represent the transpose, conjugate transpose and element- 
wise conjugation respectively, and @ represents the tensor prod- 
uct. Finally, vec(C) transforms a matrix C = [c, . . . CA<] into a 
co~umn vector vec (c) = -cT . . . cM T -2- . 

2. SYSTEM MODEL 

We consider a MIMO frequency selective fading channel model 
with Mt transmit antennas and M,  receive antennas. OFDM is 
utilized as it provides an attractive means to lower the complexity 
of equalization and decoding in frequency selective environment, 
and it has N subcarriers. The multipath channel has L signifi- 
cant delay paths between each transmit-receive antenna pair. The 
path gains for different delays are assumed to be independent. The 
channel impulse response from transmit antenna i to receive an- 
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tenna j can be modeled as hij ( T )  = -'-I l =D  ~ y i j  (l) 6 (T - n)  , 
where 7~ is the delay of the I-th path and a i j  (I) is the complex 
path gain between transmit antenna i and receive antenna j .  The 

In (41, T (Ra) and pi (Rs) are the rank and the i-th eigenvalue 
of the covariance matrix R*, respectively. We can show that the 
covariance matrix R+ in (5) can be decomposed as follows 

mij  ( E )  cv CN(0, p,") are modeled as zero mean, circularly sym- 
metric complex Gaussian random variables with variance R:. The R+ =IM,  @Fdiag[R, ,o ,R, , I , .* -  , R a , ~ - - l ] F R ,  (6)  

I .  

channel gains are assumed jointly Gaussian. The power of the 

MIMO-OFDM systems to have spatial correlation at the transmit- 

where &,[ = E[aj(~)ay(i)] ,  ai(l) = [ali(i) ,  . . . , antti(i)I7, - I L paths are normalized such that -&' @ = 1. We consider - 7  -7 
and F = [D'O 3 - B , . - .  , DrL-l B - B 1, in which 

ter side, while different receive antennas are assumed independent 
and have the same fading statistics. 

Each SF-beamformer symbol can be expressed as an Mt x N 
matrix E3 = [b (0) b (1) . . . b ( N  ~ I)] , where b (n) is 
an Mt x 1 column vector, and B is assumed to satisfy the energy 
constraint E -11B1I;- = N M t ,  where E [.] denotes expectation, 
and IlBll~ is the Frobenius norm of E. The OFDM transmitter 
applies IFFT to each row of the matrix B. By appending a cyclic 
prefix, it uansmits the i-th row of B at the z-th antenna. At the 
receiver, after matched filtering, removing the cyclic prefix, and 
applying FFT, the received signal at the n-th subcanier at receive 
antenna j is given by 

where h, (n)  = [Hlj . (n)  H z j  (n) . . . H n ~ ~ j  ( . , ) I T ,  in 
which Hij (n) = -:=;I ct.ij ( I )  e-jzanAfTL , represents the chan- 
ne1 frequency response at fhe n-th subcarrier between transmit an- 
tenna i and receive antenna j, where Af is the subcarrier fre- 
quency separation. The term v j  (n)  - CN(0,l) in (1) denotes 
the additive white circularly symmetric complex Gaussian noise, 
with zero mean and unit variance, at the n-th subcarrier at receive 
antenna j .  p is the SNR per receive antenna. 

3. PERFORMANCE ANALYSIS AND GENERAL 
OPTIMlZATlON FORMULATION FOR BEAMFORMER 

DESIGN 

First we derive an expression for the average pairwise error prob- 
ability. We rewrite the received signal in ( 1 )  in  matrix form as 

- 
y =  LHve.c(B)+v,  (2) Mt 

where the N M r  x N A l t  channel matrix H is formatted as 

in which Hj represents the channel frequency response to receive 
antenna j ,  and is formatted as an N x NAl, block diagonal ma- 
trix as follows Hj = diag(hT (0) , hT (1) , . . . , hj' ( N  - l)). 
We can show that the average painvise error probability of a ML 
decoder is upper bounded by 

-I-- (4) 
where 9 = H vec (B) - vec B is an NAl, x 1 vector, and 

R * = E  . (5) 

- - 
D = diag 1,e-j2*Af,. . . , e-jza(N-l)af . The proof is omit- 
ted for space limitations. 

We state the optimization problem as follows. We try to jointly 
design a general SF-beamformer matrix 3, that minimizes the 
system pairwise error probability (4), i.e., 

with the energy constraint E -1lB11$- = N M t ,  and where the ma- 
trix R* is specified i n  (6). The objective function (7) suggests two 
criteria to design a general SF-beamfonner symbol B: (i) Maxi- 
mize the rank of the matrix R+, which corresponds to maximizing 
the diversity gain of the system. (ii) Maximize the product of the 
nonzero eigenvalues of Fta, which corresponds to maximizing the 
coding gain of the system. We emphasize at this point that the 
above design criteria for SF-beamformer are general in the sense 
that we do not impose any structure on the SF-beamformet B. If 
there is no spatial correlation at the transmitter side, i.e., the spa- 
tial correlation matrices R a , ~  are identity, the above conditions 
reduces to the design criteria of SF codes [7]. The general opti- 
mization problem is difficult to tackle analytically. To overcome 
this problem, we will adopt another transmitting scheme in which 
a SF code is already designed to achieve full diversity for a spatial 
correlation-free channel, and then we try to design a beamformer 
W to match to the channel correlation matrix. 

In the sequel, we denote the SF code by a Mt x N matrix 
C. The linear transformation, or beamformer W, can take vari- 
ous forms, for example: i) vec(B) = Wvec(C); ii)B = WC. 
In general, we represent the relation between the SF-beamformer 
symbol B and the SF-code C as follows f(B) = Wf(C). For 
space limitations, we only consider the conventional definition of 
the beamformer B = WC, hawever, the analysis can be extended 
for the general case. Substituting this definition into (6), we get 

- , -7 - , - 7  - 
where* = Dfa C - C , ... , D'L-1 C - c  . 
In order to simplify the notations, let the LMt x LMt matrix R 
denote the block diagonal matrix in (8) as 

R=diag-WTR , , o W * , W ~ R ~ , ~ W * , . . .  ,WTRa,t-lW'- . 

Assuming that the SI; code is designed to ac@:ve full diversity in 
the case of no spatial correlation, we rewrite FRFx after row and 
column reordering in the form 

(9) 
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where J is the reordered mapix, @I is o f  size LMt x LMt and 
is full rank, and the matrix F2 takes the rest of the matrix. Since 
the ordered singuIar values of a matrix are not smaller than the 
corresponding singular values of any square submatrix obtained by 
defeting equal number of rows and columns of the original matrix 

where p i ( . )  denotes the i-th eigenvalue of a matrix and are ordered 
in non-increasing order. 

According to-qstrowski [9], the eigenvalues of FIRFF are 
given by pi(F1RFy) = O,piJR), where Bi is a nonnegative 
real number such that p m j n ( F I F y )  5 Bi 5 p m a z ( & ~ F F ) ,  and 
pmin and f i m a z  denote the smallest and largest eigenvalues, re- 
spectively. Applying Ostrowski’s theorem along with ( I  I) ,  the 
eigenvalues of the matrix I?&?” can be lower bounded as fol- 
lows 

pz (FxiP) L pwzin ( h F ; n ) P i  (R). (12) 

Nore that, maximizing the coding gain of the system corresponds 
to maximizing the product of the nonzero eigenvalues of the ma- 
trix R* which is equiv_alent to maximizing the product of the 
nonzero eigenvalues of FRFw, From (12), this product can be 
lower bounded as follows 

r(R)-1 -- +-1 

pLi(R.1. (13) - - ‘7-1 - 
PL,(FRF ) 2 Y 

i-0 i = O  

where y is a constant that depends on pmrn(@lFy). If the ma- 
trix R is full rank, ‘the product of its eigenvalues corresponds to 
its determinant. Accordicg to Hadamard’s inequality [9], the de- 
terminant af the matrix R is upper bounded-by the prod_uct of its 
diagonal elements, i.e., det(R) 5 Rf, where Rii is the 
i-th diagonal element of the matrix k. The equality holds when 
the matrix R is diagonalized and this corresponds to choosing W 
to daigonalize WTR,,lW*, for a11 o 5 E 5 ( L  - 1) .  

According to (8) and the above discussion, the beamformer W 
should match the multiple eigenspaces of the spatial correlation 
matrices Ra,l, 0 5 1 5 L - 1 simultaneously. This can not be 
achieved, in general, except for the speciaf cases when all of the 
L delay paths have the same spatial correlation matrix, or when 
L = 1 which corresponds to the flat fading case. As a result, it 
is very difficult, if not impossible, to find a cIosed form soIution 
for the optimal beamformer. The above optimization problem is 
challenging, as it is different from the problem of beamforming in 
a MIMO flat fading channe! in the sense that the transmitter should 
bearnfom across multiple eigenspaces simultaneously. In order to 
provide some insights, we will render to suboptimal solutions for 
the problem. 

4. SUBOPTIMAL DESIGNS OF BEAMFORMERS 

In this section, three different approaches for designing the beam- 
former are proposed. The proposed approaches, although subop- 
timal, are well motivated by the derived performance criteria and 
the understanding of the underlying physics of the problem. 

4.1. Per-subcarrier Solution 

First, we consider designing a beamformer independently for each 
subcarrier. Analyzing the system performance, we can show that 

the corresponding matrix that determines the performance in this 
case is given by 

-L-l - - 
Rs(n) = Ini,.@ ( ~ ( n )  - E(n))TWT(n) R,,t 

1=0 

.W*(n)(~(n)  - E(n) ) * ] .  (14) 

W ( n )  denotes the beamformer at the n-th subcamer. Equation 
(14) asserts that independent of the subcarrier, the beamformer 
should match to the same matrix which is given by -,”;’ Ra,l. 
The interpretation for this result is that the channel transfer func- 
tion at any subcarrier is given by the FFT of the channel gains at all 
delays, and thus they all have the same spatial information about 
the channel. 

To get an expression for the beamformer, let the eigendecom- 
position of the matrix I=o Ra,i = 
VAV“. Two main components constitutes any beamformer: the 
directions along which the information are being sent, and the 
power loading along each of these directions. We represent the 
beamformer W in the following way 

-L-1 Rm,i be given by 

w = ur, (15) 

where the i-th column in U corresponds to the i-th direction, and 
I? is a diagonal matrix with the i-tb diagonal element representing 
the power loading along this direction. We can show that in order 
to whiten the effect of the spatial correlation, the eigenbeams in U 
should be chosen such that 

U = v*. (1 6)  

Substituting (16) and (15) into (14) thematrix R s ( n )  can be writ- 
ten as 

Aft - 
b ( n )  = IM,. (3 1 ~ ( n )  - &(n) l 2  a:Xi, (17) 

i- 1 

where oi and X i  are the i-th diagonal entries in the matrices !? and 
A respectively. To maximize the diagonal entries in (17) irrespec- 
tive of the SF code design, which corresponds to maximizing the 
eigenvalues of Re(n), we can upper and lower bound it as follows 

M i  - Aft - hit 
I 

Cmin 0:xi 5 I ci(n)-&(n) 12 a?X, 5 c,,, o:,”xi, 
i=l i= 1 +I 

( 1  8) 
where C,,, and C,,, are the minimum and maximum of the 
quantity I ci(n) - ~ ( n )  1 2 ,  respectively. We try to maximize -zl a:&, which appears jn both the lower and upper bounds 
shown in (18). However, there is an energy constraint given by 

which guarantees that the energy of the SF-beamformer symbol B 
does not exceed N M t .  This optimization can in general be done 
numerically, however we found through simulations an efficient 
way to do power loading. More specifically, applying Schwartz 
inequality to the quantity -:21 cr?Xi we get 
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where P is a constant and depends on the energy constraint (19). 
The rationale behind doing the power loading in this way is that 
in general the available power should be distributed according to 
the channel conditions, i.e., more power should be allocated to 
channels with better quality. 

4.2. Eigenvalue Selection Scheme 

In this subsection, we design the beamformer jointly for all sub- 
carriers, and propose the Eigenvalue selection scheme. As stated 
before, it is very difficult, if not impossible, to design the optimal 
W to match to all of the L channel covariance matrices simulta- 
neously. One intuitive way to overcome this problem is to design 
the beamformer in order to span the best Mt directions from the L 
eigenspaces. In the following, we propose an Eigenvalue selection 
approach, in which we choose the largest A[* eigenvalues X i  from 
the LAft eigenvalues available from the eigendecomposition of the 
L covariance matrices, and the corresponding A& eigenvectors vi. 
The algorithm can be summarized in the following steps: 

Let the eigendecomposition of the spatial correlation matrix 
at the I - t h p t h  be given by R&J = VlhlVF, where 0 5 
l Y L - 1 .  
Choose the largest Aft eigenvalues and the corresponding 
eigenvectors from the LMt available eigenvalues and eigen- 
vectors in A) and Vl, 1 = 0,1,. . . , L - 1. 

Arrange the &It selected pairs in matrix format as follows 

A = d i U g ( X l , . . .  ,A,,), V =  [VI;.. , v ~ I , ] .  

(21) 
The beamformer W i s  determined as W = Ur, in which 

U = V', r = diag(al ,  . . . , gAft) ,  (22) 
A .  

1 =o 
ando: = --L--tl x, P .  

It can be expected that choosing the directions with the largest 
eigenvalues, i.e., with the most reliable channel conditions, en- 
hance the coding gain. However, since the directions associated 
with the beamformer belong to different eigenspaces, they are no 
more orthogonal. Hence, full diversity is not guaranteed in this 
Eigenvalue selection approach. We will expiore this more in an- 
other approach described next. 

43. Eigenspace Selection Scheme 

i n  this scheme, we try to jointly select the eigenvalues and eigen- 
vectors, not only based on coding gain, but also based on the diver- 
sity order of the system. The criteria that we suggest i s  maximizing 
the volume occupied by the beamformer matrix, which is given by 
the absolute value of the determinant of the beamformer matrix 

W = argmax 1 det(W) I . (23) 
A; .vi 

L M t  i = l ,  . . . .  

To understand the intuition behind using this cost function, let us 
investigate the AIt  = 2 case, in which the beamformer can be 
written as follows 

In this case, the criteria is proportional to the area spanned by the 
matrix W. This area is given by UICZ sin(< u1, uz >). where 

U+ and ui are the i-th eigenbeam and associated allocated power 
respectively, and < ., . > denotes the angle between the two vec- 
tors. Clearly, the coding gain i s  controlled by the part qu2 ,  which 
corresponds to the power loading and themagnitude of the channel 
eigenvalues. The diversity gain is controlled by sin(< u1,uz >). 
Note that full diversity corresponds to the case when the two eigen- 
vectors u1 and u2 are orthogonal, while diversity order one results 
when these two vectors are parallel. 

In a higher dimensional space, the volume occupied by the 
beamformer, given by det(W), is merely the volume spanned by a 
parallelepiped in an Mt-dimensional space. Maximizing det(W) 
provides a tradeoff between the coding gain and the diversity or- 
der achieved by the system. We summarize the algorithm for the 
Eigenspace selection scheme in the following steps: 

Let the eigendecompositian of the spatial correlation matrix 
at the I-th path be given by R a . ~  = VIAIVF, where 0 5 
l I L - 1 .  
Choose every possible combination of 84i eigenvalue and 
eigenvector pairs from the LMt pairs available from the 
eigendecomposition in the previous step. 

Arrange the Mt selected pairs in matrix format as in (21). 

The beamformer W is determined as in (22). 

Calculate I det(W) 1. 
From among all possible combinations, choose W with the 
largest determinant. 

Similar to the Eigenvalue selection scheme, the columns of 
the matrix U in the Eigenspace selection algorithm are not oc- 
thogonal. Hence, we need to normalize the energy of the new 
SF-beamformer symbol as B = fi m. 

5. SLMULATION RESULTS 

To demonstrate the performance improvement due to applying the 
proposed algorithms compared to that of SF coding without bearn- 
forming, we performed some computer simulations. The channel 
model used is a two-ray, equal-power delay profile, with a delay 
of 2Obs between the two rays. The MIMO-OFDM system has 
N = 128 subcmiers, and QPSK modulation is used. The to- 
tal bandwidth of the system is 1MHz. h& = 2 and M ,  = 
2 antennas are used throughout the simulations. We choose the 
full-diversity SF code via mapping from [7] to conduct the sim- 
ulations. In our simulations we use the 2 x 2 Alamouti's code 
[3] with repetition two times. To generate the spatial correlation 
channel coefficients, we use the following - model a1 = At&, 
where 1 E - 0, ... , the vector QZ is defined as 
al = c.T(t), ... , a&,(l) , ai i s  an A4rA4t x 1 vec- 
tor with i.i.d entries chosen from a complex Gaussian distribution 
with zero mean and variance pf, and the matrix Al contains the 
correlation coefficients. For space limitations, two channel sce- 
narios are considered in the simulation experiments: (i) Channel 
1: The eigenvalues of the 2 x 2 matrix R0,i, 1 f (0,1}, has one 
non-zero eigenvalue. This can be considered as a highly correiated 
scenario. (ii) Channel 2: The eigenvalues for R,,o are 0.13 and 
0.8, and for are 0.7 and 0.2. This corresponds to a channel 
with low spatial correlation. 

Fig. 1 depicts the results for channel 1, in which both the 
Eigenvalue and Eigenspace selection schemes choose the same 
eigenvector pair. As shown in the results, the proposed algorithms 

, L - 1 
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have better performance compared to that of SF coding without 
beamforming. Also, it can be seen that the performance curves are 
approximateIy parallel, as the beamformer achieves coding-gain, 
and does not incur any diversity loss in this case, due to the fact that 
Channel 1 is highly correlated. The performance of the Eigenvalue 
selection scheme is better than that of the per-subcamier algorithm, 
and it has approximately 3 dB gain over SF coding without beam- 
forming. This is due to the fact that the Eigenvalue selection al- 
gorithm beamfoms in the two non-zero directions, while SF cod- 
ing distributes its power equally among all directions, hence los- 
ing half its power along the two non-reliable directions with zero 
eigenvalues, 

. . .  . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  . . .  . .  . .  . .  

4 5 6 7 E 9 10 11 18 13 I4 

Auevage SNR -31 MidSl 

r e  1 1  I ’ 8 3 8 

Fig. 1. Bit error rate performance comparison: Channef 1 with 
hilt = 2 transmit and M, = 2 receive antennas. 

Fig* 2 depicts the results for channel 2, which is a law corre- 
lated channel. In this scenario, EigenvaIue and Eigenspace beam- 
forming choose different eigenvector pairs. It can be seen that at 
low to medium SNR, Eigenvalue selection stifl gives the best per- 
formance, while the performance becomes in favor of SF coding at 
high SNR regions. This can be interpreted as follows: Since Chan- 
nel 2 is less correlated than Channel 1, the eigenvalues are more 
spread. In the region of low and medium SNR, sending informa- 
tion on the most reliable channels gives the best performance, this 
is achieved by the Eigenvalue selection scheme as it chooses the 
directions with largest eigenvalues. While in high SNR region, 
diversity gain dominates the performance, which corresponds to 
equal power loading along all directions, and it is achieved by SF 
coding. As expected, Eigenspace selection beamforming provides 
the tradeoff between the two extreme cases: Eigenvalue selection 
scheme, which corresponds to optimizing the coding gain, and SF 
coding without beamforming which achieves full diversity gain. 

6. CONCLUSION 

In this paper, we derived the performance analysis for a MIMO- 
OFDM system with arbitrary spatial correlation, and we provided 
the criteria to jointly design an optimum SF-beamformer at the 
transmitter. The analysis revealed that finding a closed form for 
the optimal beamformer design is not tractable due to the fact that 
the beamformer need to match to multiple eigenspaces simultane- 
ously. Based on our analytical results, we proposed three subop- 

Fig. 2. 3it error rate performance comparison: Channel 2 with 
ATt = 2 transmit and M ,  = 2 receive antennas. 

timal transmitting schemes. For any SF code designed for a spa- 
tially uncorreIated channel, we designed beamformers that match 
to the spatial covariance structure of the channel. Simulation re- 
sults indicated that the Eigenvalue selection scheme provides the 
best performance among the proposed schemes in terms of the 
system BER. The Eigenvalue selection scheme can achieve a 3 
dB gain over SF coding without beamforming in highly correlated 
channels. For channels with lower correlations; it results in a better 
performance in  low to moderate SNR regions. 
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