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ABSTRACT

Environmental information is recorded in the multipath prop-
agation, and can be accessed in the form of channel state in-
formation (CSI) through commodity WiFi devices. A single
CSI reading for event detection is adopted in most existing
CSI based indoor monitoring system. However, due to the im-
pact of noise, event inconsistency and environmental dynam-
ics, this type of approaches is not very robust. In this work,
we design efficient algorithms to fully exploit the information
embedded in the CSI time series to combat interference in-
troduced by CSI perturbations, and propose an indoor event
monitoring system that achieves accurate real-time monitor-
ing. The accuracy and robustness of the proposed system is
evaluated through experiments, which illustrate its potential
in future smart home applications.

Index Terms— Smart radio; real-time monitoring; indoor
event monitoring.

1. INTRODUCTION
During the wireless transmission, wireless signals propagate
through a multipath channel such that the received signal con-
sists of copies of the transmitted signal reflected and scattered
by different objects in the environment. The multipath propa-
gation enables wireless passive sensing, because each indoor
environment can be interpreted with the help of the wireless
channel state information (CSI) which records the environ-
mental information.

Early approach for wireless passive sensing systems re-
lies on detecting changes in the received signal strength (RSS)
[1–5]. The major drawback for RSS-based systems is that the
multipath brings in undesirable changes to the RSS and thus
corrupts it. To address this problem, RSS-based sensing sys-
tems often require a line-of-sight (LOS) path between the tar-
get and transceivers, resulting in a limited accuracy and cov-
erage in detection. Another category of wireless passive sens-
ing uses the time-of-flight (ToF) information of radio signals
to track moving objects [6–9]. Due to the fact that the spatial
resolution of wireless sensing is inversely proportional to the
sensing bandwidth, in order to extract the fine-grained ToF
information, extremely large bandwidths or special designed
frequency sweeping signals are required, both of which are

infeasible in commodity WiFi devices. Recently, the CSI be-
comes available in commodity WiFi devices and can be ex-
tracted from the PHY layer. Since the CSI is a feature with
a higher sensitivity to the change of wireless propagation, it
has been utilized in fine-grained classification applications to
detect human activities [10–17]. Due to the random phase
distortion, only CSI amplitude was leveraged in most of ex-
isting works, in spite of how informative the CSI phase is.
Although both the amplitude and phase information of the
CSI was utilized in [11], it can only differentiate between the
static and dynamic states in a LOS setting. In [16], Xu et al.
proposed a time-reversal (TR) based indoor event detection
system (TRIEDS) that utilizes TR technique to distinguish
among different indoor events. However, as based on a single
CSI reading, TRIEDS may not be robust due to the perturba-
tions in EM propagation introduced by noise and environmen-
tal dynamics. To our knowledge, none of the previous works
exploits both full CSI information and the temporal relation-
ship in the CSI time series for indoor multi-event monitoring.
Recently, Ohara et al. proposed to use a deep neural network
(DNN) and hidden Markov model (HMM) for CSI based in-
door event detection [18], which introduces significantly high
complexity in training data collection and network learning.

On the contrary, in this paper, we propose an indoor moni-
toring system that monitors the occurrence of different indoor
events in real time with commercial WiFi devices, by exploit-
ing the temporal information embedded in the CSI time series.
Since the occurrence of an indoor event lasts for a certain pe-
riod and possesses a similar transition pattern among different
realizations, information is embedded not only in each CSI
sample but also in that of how CSI changes along time. In-
stead of treating each CSI as an independent feature, in this
work, the time series of CSI samples captured continuously
is used for identifying and classifying different indoor events.
Feature extraction algorithms is designed to refine the most
distinct and representative sequence of CSI from the entire
time series, and to reduce the feature dimension by remov-
ing the correlation among different subcarriers. A modified
classifier based on the k-nearest-neighbor (kNN) is proposed
to overcome the perturbation and divergence in the real-time
measured feature introduced by event inconsistency, and un-
known start and end point of the occurrence. We use the door

6393978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



opening and close in smart home scenario as a representative
set of events to study the CSI time series classification, and
the technique can be generalized to other types of events.

The rest of the paper is organized as follows. We intro-
duce the proposed feature extraction algorithms in Section 2.
In Section 3, the classification methodology designed for the
proposed system is discussed. The performance of the pro-
posed system is studied and evaluated through experiments in
Section 4. This work is concluded in Section 5.

2. FEATURE EXTRACTION
In this section, we present the proposed algorithm that refines
the measured CSI time series and extracts distinct features for
all indoor events of interest during the training phase.

2.1. Multi-Antenna Diversity

MIMO transmission provides a large number of degrees of
freedom delivered through spatial diversity for RF sensing.
Suppose there is a number of |S| indoor events to be mon-
itored and let H(m,n)

i [l] denote the lth complex-valued CSI
vector, a.k.a., channel frequency response (CFR), measured
on the link between the mth transmitter (TX) antenna and the
nth receiver (RX) antenna during event Si ∈ S. To fully
utilize the spatial diversity, we concatenate CSI vectors from
different links into a single column vector as the augmented
CSI, i.e.,H̃i[l] =

[
H

(1,1)
i [l]T, · · · , H(NTX ,NRX)

i [l]T
]T

. Here,
H̃i[l] is a complex-valued column vector of length Nsub ×
NTX ×NRX , Nsub denotes the number of accessible subcar-
riers, and NTX and NRX denote the number of TX and RX
antennas respectively.

A real-valued waveform vector Gi[l] is generated by
concatenating the real and imaginary part of the obtained
augmented CSI. Even though information on all transmission
links is included in Gi[l]’s, the dimension of feature increases
dramatically and makes the classification more difficult. In
this work, we propose a feature extraction algorithm that
performs refinement and dimension reduction on Gi[l]’s.

2.2. Refinement of CSI Time Series

The essential part of the proposed algorithm is to extract the
most representative segment in the CSI time series captured
during the occurrence of each indoor event for building a good
classifier later. In the training phase the CSI time series re-
ceived at the RX may capture some indoor status similar to
other indoor events at the beginning and the end part of the
series. Resembling CSI sub-sequences, captured from dif-
ferent indoor events, introduce ambiguity into pattern match-
ing and degrade the classification performance. To address
that, a waveform extraction algorithm is proposed to track the
change in waveform series and only keep a portion of wave-
form sequence that contains significant changes.

For example, during the training phase, a time series of
Gi[l], l = 1, 2, · · · , L is captured for event Si. The proposed
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Fig. 1: Study on PCA denoising and dimension reduction.
(a) Waveform series Gi[l]’s before PCA. (b) Feature series
Zi[l]’s after PCA.

algorithm is to find the index ls,i and le,i such that the subse-
quence of Gi[l], ls,i ≤ l ≤ le,i contains significant variations
introduced by event Si. The algorithm is as follows.

1. The Euclidean distance Ds,i[l] = ‖Gi[l] − Gi[1]‖ is
obtained for all CFR samples.

2. Given the CSI sampling period Ts, a median filter with
length Lm = 1/2Ts is applied to the sequence of
Ds,i[l]’s and outputs D̂s,i[l]’s.

3. ls,i is determined by ls,i = arg min
l

{
l|D̂s,i[l] > γs,i

}
with an empirical threshold γs,i.

The index le,i can be determined similarly by tracking the
changes from the end point Gi[L] with the help of threshold
γe,i. The γs,i and γe,i are determined by both the overall
dynamics in Gi[l]’s and the environmental dynamics learnt
from waveforms captured in the static environment.

2.3. PCA based Denoising & Compact Representation

In reality, the obtained CSI is inherently noisy due to thermal
noise and imperfection on hardware, and the channel informa-
tion on all subcarriers are correlated. Based on that, the pro-
posed algorithm applies principal component analysis (PCA)
to remove noise, de-correlate, and reduce dimensions for the
CSI. Also, PCA is applied to waveform vectors of all indoor
events for the purpose of seeking a good feature representa-
tion that amplifies the distinction among waveforms.

Let Ωall denote the super waveform matrix generated as
Ωall =

[
G1[ls,1 : le,1], · · · ,G|S|[ls,|S| : le,|S|]

]
. By applying

PCA on columns of matrix Ωall, a projection matrix Φ of di-
mension pc×P is obtained as the collection of eigenvector of
the correlation matrix of Ωall, and pc represents the number of
principle components (PCs) to be kept. Also, a waveform G
is generated as the mean of all columns in Ωall, which can be
viewed as the background information in the waveform vec-
tors. Then, for each event Si, the final feature vector Zi[l] can
be obtained by Zi[l] = Φ× (Gi[l]−G), where the projected
feature vector Zi[l] is of length pc. An example of compari-
son between Gi[l]’s and Zi[l]’s is plotted in Fig.1, where the
projected feature series Zi[l]’s exhibits a significant variations
among all PC dimensions while changes in original waveform
series Gi[l]’s is too small and too diffuse to be observed.

In practice, the value of pc is determined by picking the
first several largest eigenvalues that cover 80% of the total

6394



Fig. 2: Illustration of the proposed real-time monitoring algo-
rithm using CSI time series.

energy of Ωall. Since only the first few PCs are considered,
the PCA can be computed efficiently through thin-SVD.

3. CLASSIFICATION

After obtaining the projected feature Zi[l]’s, the proposed sys-
tem builds a classifier that can detect the occurrence of trained
events in real time based on the distinct time series of fea-
ture vectors. The proposed classification algorithm adopts
dynamic time warping (DTW) proposed in [19,20] to quanti-
tatively evaluate the similarity between the training series and
the real-time measured testing series of Ztest[l]’s. In addition,
without a global view over Ztest[l]’s, it is difficult to locate
the start and end point of the occurrence of an event to extract
the entire feature patten. The current series of Ztest[l]’s may
only contain partial information of the event occurrence. On
the other hand, due to the event inconsistency, the event oc-
curs during the testing phase may exhibit a perturbed feature
pattern, e.g., happening with a different speed. In what fol-
lows, we propose a classification algorithm that addresses all
the aforementioned difficulties.

3.1. Dynamic Time Warping

In the proposed algorithm, given two sequences of feature se-
ries Z1[l]’s and Z2[l]’s with equal length L, the DTW opti-
mal cost c is defined as the distance of a warping path, i.e.,

c(Z1,Z2) =
∑|P∗|

w=1

∥∥∥Z1[l∗1,w] − Z2[l∗2,w]
∥∥∥2, where P ∗ de-

notes the optimal warping path with length |P ∗|, and l∗1,w
and l∗2,w are the indexes of Z1[l]’s and Z2[l]’s at the wth

point on P ∗. For all possible warping paths (P, l1,w, l2,w),

P ∗ is the optimal in that
∑|P∗|

w=1

∥∥∥Z1[l∗1,w] − Z2[l∗2,w]
∥∥∥2 ≤∑|P |

w=1

∥∥∥Z1[l1,w]− Z2[l2,w]
∥∥∥2, ∀P .

With a warping step-size larger than 1, the DTW algo-
rithm is able to overcome issues of missing feature samples
introduced by event inconsistency and WiFi traffic collision.
In addition, in the proposed algorithm, the Sakoe-Chiba Band
introduced in [21] is adopted which reduces the number of
searchable indexes and thus the proposed algorithm benefits
from a quick and low-complexity computation of DTW. Con-
sequently, a simple kNN classifier is sufficient to classify test-
ing features, provided that both testing and training sequences
contain the same information.

(a) (b)

Fig. 3: Experiment setting: floorplan. (a) Facility 1: single
family house. (b) Facility 2: offices.

3.2. Real-Time Monitoring
However, due to the event inconsistency and unknown start
and end point of event occurrence, the current testing series
often contains only partial event information or a perturbed
pattern of the training series. Also, real-time monitoring is
sensitive to latency. In this part, a sliding window based clas-
sifier is proposed and an example is shown in Fig.2 to demon-
strate the concept. As shown in Fig.2, Ztest[l]’s is the incom-
ing testing series with an infinite length denoted by the orange
dot on the dashed curve, and Zi[l]’s is the training series with
a finite length marked by the orange dot on the solid curve.
Although the two curves share the similar shape, collections
of sampled points (orange dots) are different.

To promptly and accurately detect the indoor states,
the current testing feature vector Ztest[l] along with its an-
tecedent feature samples form a temporary testing series of
finite length denoted by W′

l. Meanwhile, the training series
Zi[l]’s is also divided into several segments of adjacent fea-
ture vectors with the same length of W′

l and a certain overlap,
denoted by Wj , ∀j. Then the similarity between W′

l and
event Si is evaluated by the normalized distance ĉ(W′

l,Zi)
as ĉ(W′

l,Zi) = min
j

1
|Pwarp,j |c(W

′
l,Wj), where Wj is in

Zi[l]’s and |Pwarp,j | is the length of the optimal warping path
between testing W′

l and training Wj .
Based on the obtained similarity scores, the decision out-

put for current testing series W′
l is determined by

Dtest(W
′
l) =

{
arg min

Si∈S
ĉ(W′

l,Zi), if min
Si∈S

ĉ(W′
l,Zi) ≤ β

Unknown, otherwise
(1)where β is an empirical threshold on the similarity score.

In reality, the length of the temporary testing series and
training segments is 2/Ts based on the intuition that indoor
events often lasts for several seconds and features within a
couple of seconds should be distinct enough for classification.
The length of the stride, i.e., the number of antecedent feature
samples to be included in the temporary testing series is set
to be 1/Ts and the overlap in generating training segments is
often set to be 1/2Ts to avoid misdetection and unnecessary
calculation complexity.

4. PERFORMANCE EVALUATION
To evaluate the performance of the proposed algorithms, ex-
tensive experiments have been conducted to protect a single
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Fig. 4: Experimental results. (a)Accuracy test: 3 minutes under “all-doors-closed” with someone walking outside and close
to front and back door. (b) Accuracy test: front door is opened and closed twice from outside. (c)Accuracy test: back door
is opened twice from outside. (d) Robustness test: front door is opened under a fast speed. (e) Robustness test: front door is
opened under a slow speed. (f) Robustness test: front door is opened to half-open. (g) Front door opened at Day 2. (b) Front
door opened at Day 9.

family house and a multi-room office from intrusion whose
floorplans are shown in Fig.3. A prototype of the proposed in-
door monitoring system is implemented using a pair of com-
mercial WiFi devices, which performs 3×3 MIMO transmis-
sion with the carrier frequency being 5.845GHz and under a
40MHz bandwidth. Both of the TX and the RX are placed in
the protected area under a NLOS setting to monitor the status
of the front door and the back door.

In the training phase, one tester, as the intruder, inten-
tionally opens the front door and the back door from outside
once, and one CSI time series is collected during the occur-
rence of each event. In addition, an “all doors closed” event
is defined as the state that both the front door and the back
door are closed and no one is moving inside the facility. The
channel sampling rate is 30 Hz. For the search range of the
DTW algorithm, the width of the Sakoe-Chiba Band is set to
be 0.03× 2/Ts and the step-size is 2.

I. Accuracy of Event Detections: Experiments are con-
ducted in Facility 1 to validate the feasibility and accuracy of
the proposed system. Results are shown in Fig.4a-4c where
the x-axis is the time index and y-axis is the output of the pro-
posed system. Validated by experiments, the proposed system
can detect the occurrence of all trained events accurately and
it is robust to outside activities.

II. Robustness to Event Inconsistency: Further experi-
ments are conducted in Facility 2 to investigate the impact of
event inconsistency on the real-time monitoring. In the test-
ing phase, a second tester opens the same door at different
speeds and also performs a half-open test where the door is
only opened to approximately 45 degree. As shown in Fig.4d-
4f, it is verified that the proposed system is robust to individ-
ual diversity and event inconsistency, and detects the occur-

rence accurately even when only partial trained information
is captured by the testing series.

III. Long-Term Monitoring: To study the long-term be-
havior of the proposed system, the prototype is deployed in
Facility 1 for 9 days with everyday resident activities and
a commercial home security system is installed to provide
ground truth. The resident activities may jeopardize the pro-
posed system by changing the indoor environment, given the
training conducted at Day 1. Examples are shown in Fig.4g,
4h. Because each door opening and closing event takes sev-
eral seconds to complete, several decisions will be output con-
tinuously during the occurrence as the proposed system up-
dates every second. As long as one decision matches the real
event, we consider it as detected. Hence, the overall detection
rate for each single event is 100%, even if occasional misde-
tections happen since propagation environment changes over
time. Without significant environment changes, the proposed
system successfully detects the occurrence of all 30 intrusions
performed by testers during 9 days.

5. CONCLUSIONS
We propose a real-time indoor event monitoring system that
utilizes CSI time series to differentiate between indoor states.
A feature extraction algorithm is proposed to refine and ex-
tract features and the proposed classifier is capable of over-
coming CSI perturbations, event inconsistency, and unknown
start and end point of event occurrence. Experimental results
illustrate the potential of the proposed system in future real-
time indoor monitoring applications.
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