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Abstract—Recently, there has been considerable interest in grammed for emerging standards. It also can be dynamically
using antenna arrays in wireless communication networks to ypdated with new software without any changes in hardware
increase the capacity and decrease the cochannel |nterference.and infrastructure. Rapid deployment is another important

Adaptive beamforming with smart antennas at the receiver in- feat fth fi dio. 1 irel licati h
creases the carrier-to-interference ratio (CIR) in a wireless link. eature of the sortware radio. In wireless applications where

This paper considers a wireless network with beamforming capa- different standards might be deployed, users’ roaming can be
bilities at the receiver which allows two or more transmitters to  a big issue in existing platforms. In the software radio system,

share the same channel to communicate with the base station. The users just need to download the new air interface upon entering
concrete computational complexity and algorithm structure of a the new territory

base station are considered in terms of a software radio system . . . .
model, initially with an omnidirectional antenna. The software The reallocation of bandwidth is a standards-setting process

radio computational model is then expanded to characterize a that takes a considerably long time. On the other hand, due to
network with smart antennas. The application of the software fixed finite resources, one cannot assume that more physical
radio smart antenna is demonstrated through two examples. radio channels will be added to a spectrum allocation to reduce

First, traffic improvement in a network with a smart antenna e . P
is considered, and the implementation of a hand-off algorithm in the probability of blocking or forced termination [9]-{13]. The

the software radio is presented. The blocking probabilities of the increasin_g popu_Iar_ity of wireless CommU_nication SerViceS to-
calls and total carried traffic in the system under different traffic ~ gether with the limited amount of the available radio spectrum

policies are derived. The analytical and numerical results show calls for highly efficient usage of resources (traffic channels)
that adaptive beamforming at the receiver reduces the probability i the system [14]. The interference reduction capability of

of blocking and forced termination of the calls and increases the antenna arravs has been considered as a means to increase
total carried traffic in the system. Then, a joint beamforming y

and power control algorithm is implemented in a software radio the capacity of wireless systems [15]-[21]. Specifically, using
smart antenna in a CDMA network. This shows that, by using beamforming techniques at the receiver, two or more trans-

smart antennas, each user can transmit with much lower power, mitters can share the same traffic channel to communicate
and therefore the system capacity increases significantly. with the base station at the same time. An adaptive antenna
Index Terms—Adaptive beamforming, handoff, power control, array is used at the base station to form several antenna

smart antennas, software radio. beams simultaneously. Each beam captures one transmitter by
automatically pointing its pattern toward that transmitter while
I. INTRODUCTION nulling other cochannel transmitters and multipath signals

[19]-[21]. In this way, the cochannel interference (CCI) is
minimized, and therefore the carrier-to-interference ratio (CIR)
ri’@rl the signal of interest is maximized. In urban wireless
%nvironments, the signal transmitted by each user is reflected

able. | ‘ di he IF sianal is diait @3‘; surrounding buildings and the terrain. Therefore, several
viable. In so tware ra, o systems, the signal 1S 'g't'ze,gopies of the transmitted signal are received at the base station
using wide-band ADC's, and all of the subsequent processi

o . . h different delays and different attenuation. This effect is
is implemented in software [1]-[8]. The main advantage Uy ! Y ! uat ! !

o S . led multipath fading. In ce-only diversity, given a cell
software radio is its great flexibility such that it can be ProLith I, chl;nlgels am/.;-glemesnFt)ZntennZ arl:/ay?;wgt fgol;/i £ al

_ ved b * revised Aol § distinct array nulls at the receiver allows a maximum/ot,
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the smart antenna. The cost of a sectorized cell site is a

increase in the (analog) hardware complexity of the cell

site, but there is virtually no impact on the single-channel

cell site software. When the capacity of a sectorized site\Y Down X
is exceeded, one may then overlay a smart antenna with Converter

its dedicated digital signal processing (DSP) capacity and

Y

unique software architecture which accommodates the vastly Down %

increased computational demand of the beamforming network. Converter

The smart antenna’s beams are not fixed, but are dynamic per y
user, and will place nulls that cancel interference. Another . Adaptive —

. Beamf
advantage of the smart antenna system is the reduced rate camiormer

of handoffs because of tracking the user. In this paper, th
term “cell” means either a conventional cell or one sector of
a sectorized cell.

This paper first presents a tutorial review of beamforming Down X,
algorithms. It then reviews a software radio architecture, first Converter
with omnidirectional antennas, and then with smart antennas.

Two applications show the advantages of a system withrg 1. A diversity combining system.
smart antenna. First, a wireless network with beamforming
capabilities at the receiver allows two or more transmitters
to share the same channel to communicate with the base <
station. Each cell is modeled by a multiuser multiserver service “a
facility. Each server is a beamformed channel formed by the

cell's base station. For a set of cochannel transmitters, the
probability of successful capture by a separate antenna beam

is computed. The success probabilities are taken into account

in the queueing model of the system. From this generalized

model, the closed-form blocking probabilities of the calls and

total carried traffic in the system under different traffic policies

are derived. The second application shows how to implement X
a robust power control algorithm when using a smart antengg. 2. Sample array pattern.

at the base station. In CDMA networks, power control is an

important issue because of the near—far effect. Therefore,
effective power control algorithm results in a capacity increa
in the system.

The paper is organized as follows. In Section II, variou

Y

Desired User

- - X Interference

the . . .

géfaptlve arrays is done in IF and baseband, these systems are
well suited for software radio implementation.

Space and time diversity reduce the cochannel interference

adaptive beamforming algorithms are discussed. The softw %CI) and intersymbql interference _(ISI). If the desired signa}l
radio architecture in a system with an omnidirectional antenA2d the cochannel signals have different temporal or spatial
and also with a smart antenna is presented in Section lll. Tﬂgna_tures,_tlme and space d|ve_rS|ty can |mprove_the S|gngl-
complexity issue is also discussed in this section. Some apﬁﬂin_o'se ratio (SNR). The block d|agr_am_of an adaptive array 1
cations and advantages of using software radio smart antenfigRicted in Fig. 1. In general, the objective is to f"”‘." the main
are presented in Section IV, where traffic improvement a am towarq the deswgd user and nulls toward the interference
capacity enhancement are addressed. Section V includes gjf7¢es as illustrated in Fig. 2. , _
conclusions and remarks. An antenna array consisting 8f elements is considered at
the receiver. Adaptive beamforming capabilities of antenna
arrays may be used to maintain a constant gain for the
II. REVIEW OF SPATIAL MULTIPLEXING signal along the direction of interest, and adjusting the nulls
USING ADAPTIVE BEAMFORMING so as to reject the cochannel interference. In this way, the
.interference is minimized and the CIR for the signal of interest

A smart ante_nna IS a mu_|t|beam adaptive array with '{ maximized. A set off cochannel transmitters is considered.
gain pattern adjusted dynamically [23]. For a fix&ftbeam Lets;(k)for j = 1,2, - - -, J denote thejth transmitted signal.

sectorized antepna and ad-element S mart qntenna SyStemAssume that at mosY multipath signals from each user arrive
the antenna gain and system capacity are increased appr

matelyM-fold. In a fixed beam system. the handoff from Onf?f('the base station with different delays, ). Therefore, the

Feceived signal vector due to the(k) is
beam to another is the main disadvantage, while in a smart g (k)

antenna system, each beam tracks its user within the coverage

of the cell. Moreover, smart antenna systems provide diversity J N

gain against multipath signals and strong interferers by placingz(k) = > _ /PGy > afa(6]))s;(t — ) + n(k) (1)
antenna nulls toward those sources. Since the beamforming in j=1 n=1
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adaptive beamformer is called an MVDR [15] beamformer.
From (4) and (5), with the constraint thata;(6}) = 1,

the received signal power plus the interference power as a
function of w; is

N
E, =P,G; + Z P,G; Z ol wfIaJ(H") (9;’)111Z
j=1,j#1 n=2
N
+ TOHIHTUZ (7

S Let I; denote the total interference plus noise power given by

Z P;G; Z o] wfIa,J 07 )a (9?)wi+%wf[wi.
where#? is the arrival direction of thexth multipath signal J=l.j##i
from theith user,P; is the power of theth transmitter G; is 8)
the link gain between thé&h transmitter and the base station
a? is the nth path fading coefficient, and(6?) is the array
response to the multipath signal arriving from directigh

Fig. 3. Space diversity combiner.

In (7), F,G; is the received power from the signal of interest,
while I; given by (8) is the contribution to the output power
E; from the interference and noise.

with The optimum weight vectominimizes the interferencé;
a(07) = [a1 (07, as(6),-- - an (6] (2) while maintaining a unity gain in the direction of interest by
imposingw!’a;(6}) = 1. The solution of this problem is
A. Space Diversity Combining ®1a;(61)
In a space diversity system, the weighted sum of the wi = aH(el)(b—l;i(el)' ©)

received signal is combined at the output of beamformer as _ . o _
illustrated in Fig. 3. A weighted sum of the outputs of th&ince the desired signal (arriving aloég will not be affected

array elements is generated by a beamformer in the followiRy the beamforming process and only the interference is
way: rejected, the CIR is maximized for the signal in the direction

i of interest, i.e.,
vi(k) = w; 2 (k)

where w! = [w;1, -+, w;p] is the weight andz® (k) = o
[21(k),- -,z (k)] is the received signal vector sampled at ™" PG,
the output of the downconverters. 5 v .
Minimum Variance Distortionless Response (MVDRne A N ngH o rom o H (0n g 0, Ha
can choose the weight vectar; to steer a beam toward the Z PiGj Yinzp ow;’ 0;(07)ag (07 )i, + - i
direction of the signal of interest; and adjust the nulls to
reject the interference. This is done by attempting to maintain
a distortionless response in the direction of interest and placing
the nulls in the directions of other cochannel interferers. The Minimum Mean-Square Error (MMSE)f the array re-
average output power is given by sponse is not known, one may employ a training sequence
o (N H ] — a H N 1N o H oo and minimize the difference between the training sequence
Bi = Blyi(k)y" (h)] = wi’ Ela(k)a” (k)] wi = wi' &sw; and the output of the beamformer in the mean-square sense

J=1,5#
(10)

(4)
h w; = arg min E[|dz - wflai(9il)|2]- (11)
where B
s :PGalai(@l)aH(eil) The solution to this problem is given by [14]
w; = ‘Pi_lpi (12)

al N
+ Z PG, Zocajen 9")+—OI (5)
J=1,57i where ®; is defined as before ang is the cross correlation
between the received vector and the training sequepce;

The correlation matrix due to the interference terms is . . . LS
E[z;d}]. The maximum CIR in this case is given by

al N
ds]\r = Z P G Z Oé a’J 9” 9") + _OI (6) Fi,max it
J=Li#i PG A a7(91) HoHw,
If the array response in the direction of the desired user is 7 N
known, the beamformer tries to minimize the output poer Z PG Z af a;( ,’»‘ ]H(Gy)ﬁzi + 701115{1112

subject to maintaining a distortionless response in the direction j=1,;zi
of interest such thatw!’e;(6}) = 1. For this reason, this (13)
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; E - Fig. 5. Space—time diversity combiner in a CDMA system.

Fig. 4. Space—time diversity combiner.

modulus algorithm(CMA) [35], [36], is one of the best
and simplest adaptive blind equalization algorithr8ingle-
input multiple-output(SIMO) systems may be viewed as
In the space diversity combining system of Fig. 3, thgactionally spaced sampled communication systems which
interference and multipath signals are rejected by placipgceive the distorted versions of one input signal. Fractionally
nulls at the directions of those signals. In a broadband "”%aced CMA adaptive blind equalizers under symbol timing
combiner, illustrated in Fig. 4, the desired signal and if§ffsets is considered in [38]. The equalization of multiple-
multipath are combined at the combiner output to estimaigyut multiple-output (MIMO) transmission systems is studied

B. Space-Time Diversity Combining

the desired signal. in [39] and [40], where the MIMO channel impulse response
MMSE Space-Time Combiningthe output of a broadbandis known. When the channel parameters of the MIMO systems
combiner can be expressed as are unknown, blind identification and equalization techniques
M must be used to separate and capture signals. The capture
y(k) = Z w' (m)x(m) properties of the CMA algorithm used in MIMO systems with
m=1 constant modulus input signals are studied in [36], [41], and
wherew? (m) = [y, - - -, wpar] is the weighting vector and [42]. The plind identification of MIMQ systems using secgnd—_
T ; . : order statistics or higher order statistics are also studied in
' (m) = [xm1, -+, 2mp] IS the received signal vector at th

e[43]—[46]. Some subspace algorithms with fast convergence

mth element equalizer. rate are proposed in [47]

Let W = [w'(l), -, w7 (P))" and X =

DT, ..., 2T(P)]*. The output of the beamformer can . o
l[axe( v)vri’tten’gs( ) P C. Space-Time Diversity in CDMA Systems

In code-division multiple-access systems (CDMA), all users

_ wurH
y(k) =W X. are sharing the same channel and each user has a different

In this case also, the objective is to minimize the mean-squd¥eeudonoise (PN) sequence. The received signal dué to
error between the output of combiner and the desired sigif@channel users at the receiver is given by

d, i.e., J

. k) = PG, 0 (t — T k

W:arg Iré[1,11|d_WI'IX|2 1'() JE:I J stbpl( 42 )+n()

i o

The optimal beamformer coefficients are similar to spaaghere z(k) is the received signal at the array,, is the
diversity MMSE by transmitted sequence, and

A —1 o’ n n

W =E{XX"} E{Xd"}. pi(k) =) aj(f)afci(t —7)').

Many adaptive methods that update weight vectors according, ! . o .
to the incoming data have been developed [51], such T’g is thenth path delay associated with thith user, and; is

recursive least square (RLS) [21] and minimum mean-squar jth user PN sequence. In a space-diversity combiner, the
error (MMSE) [23]. signals from the main path are despread and combined at the

Blind Methods: Using a training sequence consumes Sonpeeamformer output,. as shown in Fig. 5. Code filtgrs (CF) are
bandwidth. In order to save the bandwidth allocated to tﬁ@atChed to the desired user code and the delay is matched to

training sequence, one may use blind methods. dtogle- the pth path delay, i.e.,

input single-output(SISO) systems, numerous blind identifi- N T
cation algorithms [24]-[27] and blind equalization algorithms zj (k) = T (k)e;(t = KT —77') dt
[28]-[37] have been proposed that exploit the higher ord hd

statistics of channel output. Among these algorithms, the

Godard algorithm (GA) [30], also known as theconstant y; (k) = w27 (k).
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Fig. 6. Functional block diagram of the software radio for a base station with single omnidirectional antenna.

It has been shown [16] that the optimal beamformer for th&DC. The rest of the processing is implemented in software
above architecture is given by [2]. Such a radio may be dynamically updated with new
1 o software without changes in hardware and infrastructure [2].
i af}) One may achieve better performance by introducing coding
a(07)He; ta(07) on the bitstream using coding gain to improve the bit-error
rate (BER). In the case of the omnidirectional antenna, the
software of the cell site may either have an IF software
0 1 radio architecture, in which the waveforms are synthesized
Qin = F <(I) B _(1)0> and received in software, or they may have a baseband DSP
) ) ) radio architecture, in which the software is limited to bitstream
where p is the processing gain and signal processing. There af@ MIPS of processing capacity
o, = &y, + Pa(67)a(67)H. required per server, with P(#fbaseband)>> P(baseband). A
! ! block diagram of a typical digital downconverter is depicted
If the delay spread is larger than a chip period, a correlator Fig. 7. The wide-band IF signal is translated to a complex
may be employed for the signal received from each pathaseband signal by the quadrature multiplier. The numerically
In signal antenna systems, signals from different correlatarentrolled oscillator (NCO) block generates the quadrature
may be combined using maximum ratio combining. In thossignals for the multipliers. Then the complex baseband signal
receivers, known as Rake receivers, each correlator is callei$ éow-pass filtered to prevent aliasing due to decimation [5].
finger of the Rake receiver. In a multiple-antenna system, olrea software radio architecture, these blocks are implemented
can design a beamformer for each resolvable path, and thersoftware. The high sampling rate of a wide-band receiver
combine the outputs with a standard Rake receiver [48], i.ea/lows time for only a few operations per sample; however,
N the digital downconverter combines the frequency translation
2(k) = Z 2 (k)a? and filtering in one step. The specific signal processing steps
n=1

w=

where® and ®,,, are defined as before, and

show how the multiplication and convolution required to

perform the frequency shift and filtering may be combined.
where NV is the maximum number of paths in each link.  The first step is frequency translation of the real-valued

received signal samplegn] to baseband by multiplication
[Il. SOFTWARE RADIO ARCHITECTURE WITHSMART ANTENNA  With the appropriate complex exponential as follows:

The software radio allows one to build flexible, multiband
radio systems rapidly. The functional block diagram of the y[n] :7;[n]@—J2ﬂfc"Ts
software radio in a system with an omnidirectional antenna -
is shown in Fig. 6. Tr):e architecture of the software radio is =rlnl{cos(2n fonls) — jsin(2n fenT)}  (14)
described in more detail in [1]. As illustrated in this figure,
a wide-band front end downconverts the received signal wheref, is the carrier frequency before translation to baseband
the IF where it is sampled and digitized by a high-speeathd 7} is the sample interval. The next step is to filign]
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Fig. 8. Functional block diagram of the software radio for a base station with smart antenna.

with an FIR filter with filter coefficientsh[n] where c[m] = h[m]c’?~f-"T: Here, not only is the number
M of computations reduced, but there is no need to compute
z[n] = Z h[m]y[n — m] the unfiltered baseband signgh], which further reduces the
0 number of operations [5].
M The functional block diagram of the software radio with
= Z hlm]r[n — m]e 727 f-(=m)Ts = (15)  smart antennas is shown in Fig. 8. Each antenna element
m=0 has its own downconverter and ADC. But the subsequent
From (14) and (15), combine these two processes as follogamforming and demodulation are implemented in software
M and are shared among all of the elements. Fig. 9 illustrates the
2[n] =92 fenT Z h[mly[n — m] software architecture of the beamformer for each channel. The
- received signal from each antenna element is passed through
M the same software block as depicted in Fig. 7 to gendratel
= Z h[m]r[n — me 27 fermTs @ signals. These signals are combined using the “combiner”
m=0 block as shown in Fig. 9. The received signal from the user
M would be the output of the demodulator in Fig. 9. UsiAg
=92 ferTs Z c[m]r[n — m] (16) similar blocks for each channel one allows upKousers to

m=0 share the same channel. Since each user generates its carrier
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Fig. 9. Block diagram of the software beamformer for each user.

TABLE |
COMPUTATIONAL COMPLEXITY OF VARIOUS BEAMFORMING ALGORITHMS
Algorithm | Multiplications | Divisions Additions
LMS 2Q +1 0 2Q
RLS 202 +7Q+5 | Q*7+4Q+3]2Q°+6Q +4
FTF 7Q + 12 4 60 +3
LSL 10Q + 3 6Q + 2 8Q +2

locally, there are separate carrier tracking and downconverting
blocks per user. It was mentioned that one can askigrsers
to each channel by usingf beams for each channel. In this
manner, a system with physical channels serves at mési.
users. Such a software radio with a smart antenna is scalable.
Increasing the number of beams and users is a software progess
within the constraints of the hardware costs. The proportio

of increase in computational resources required for the smart
antenna depends on the cell site architecture. With baseband
DSP, one converts the smart antenna channels back to analog
IF to provide onlyL channels in the conventional cell site as
the maximum capacity of each cell. In principle, with an IF
software radio architecture, the smart antenna processing could
be part of the larger pooled DSP resources, and one coﬁi@i 10. Capturing four mobile users over the same channel successfully by
. . an adaptive antenna array at the BS.

implementK L or KL/« service channels. In the sequel, a

software radio architecture is assumed in which one synthe-

sizes up toK L servers in the integrated DSP architectureptimum beamformer weight vector presented in the previous
of the software radio cell site. As illustrated in Fig. 8, théection requires knowledge of second-order statistics. These
beamforming process can be implemented on DSP’s. Usuab¥atistics are usually not known, but with the assumption of
adaptive algorithms are used to update the weight vectors. Trgodicity, they can be estimated. Statistics may also change

g Mobile Terminal

g
’f  Base Station With
Antenna Arrays
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Fig. 11. Flow chart of the channel assignment algorithm in a system with smart antenna.

over time (due to moving interferers). To solve these problemshere ©; is the estimated correlation matrix apd is the
weight vectors are typically determined adaptively. One mayoss correlation between the received vector and the training
employ training sequences to update the weight vectors. T$eguence given by

training sequence is known at the receiver.dgt = 1,---,Q o
denote the training sequence. The received training sequence P, — 1 Z Xi()XH(q)
at the receiver is denoted by,,i = 1,---,Q. T Q = ’ '
The direct matrix inversion (DMI) is the straightforward o
method for calculating the weight vectors. DMI minimizes the p, = 1 Z Xi(q)d;. (19)
difference between the training sequence and the output of the tQ pc T
beamformer in a mean-square sense
o The complexity of the DMI method iD(Q?®) where Q
@; = arg min Z d; —w’ X;(q)2. (17) is the length of the_tramlng sequence. Adaptive algonthms
Wi that update the weight vector taps reduce the complexity.

In recursive estimation procedure the weights are adjusted
iteratively. Such an approach eliminates the estimation of the
w; = <I>;1p7¢ (18) correlation matrix or cross-correlation vector frequently as in

The solution to this problem is given by [14]
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Fig. 13. Success probabilipg |2, s for a 3-beam adaptive array for different

Fig. 12. Success probabilify,|; »s for a 2-beam adaptive array for different

values of M (# of antenna elements), SNR and thresheld
values of M (# of antenna elements), SNR and thresheld

the DMI method. Moreover, each iteration trains the weight IV. APPLICATIONS
vector taps to track the incoming signal more accurately._ _ L _
This section presents two applications of smart antennas in

Finally, at the end of the training sequence (with len@th . s )
the new weight vectors emerges after the)th iteration & wireless network. In the flrs_t example,. Fhe smart antenna is
satisfying (17). The complexity of the least mean-squa ployed to reduce the blocking probability (or force_d termi-
(LMS) algorithm, least square lattice (LSL) algorithm, fas'f'at'on) of the handoff calls._The second example |IIus_trates
transversal filter (FTF) algorithm, and QRD-RLS algorithn'€ Us€ Of a smart antenna in a CDMA network to achieve a
increases linearly with the length of the training sequenE@ore eff|C|ent.power control a_lgorlthm. These t\_/vo apphcatlon;
O [14]. The number of operations required to perform ond'e computgt!onally demanding, but can be implemented in
iteration of the algorithm is a measure of computational Con's‘pftware efficiently.
plexity. Operations consist of multiplications, divisions, and i )
additions. Table | compares the computational complexitiés Traffic and Handoff Improvement with Smart Antennas
of four important adaptive algorithms: LMS, RLS, FTF, and This section analyzes the network with adaptive array under
LSL. All those operations use complex operands @nid the traffic policies proposed in [12] and [13]. In this network
length of the training sequence. It is worth mentioning that thmodel [14] it is assumed that when a new call (handoff or
numerically stable QRD-RLS algorithm also achie¥®)) originating call) arrives, the adaptive array points one beam
complexity [14]. toward that user, and assigns one channel out of those
From Table I, the following observations can be madehannels to that user. Each changelor i = 1,2, ---, L may
The LMS algorithm is the least demanding in computationéle assigned to one of th€ users byK separate beams, using
complexity. But the LMS algorithm has a slow convergencie K beamformers in parallel for each channel, as shown in

rate. The other algorithms belong to the recursive least squaFés. 10. If the first beam of all channels is occupied, the new
family with much faster convergence rates. For a softwacall is assigned to another beam. If there are no multipaths in
radio smart antenna with channels and( parallel beamform- the system, withK' beamformers for each channel ahdRF

ers for each channel, the overall complexity of the softwafeequency channels, at maktL users can be accepted into the
beamformer isk'L times that of the Table | entries. Anothersystem. On the other hand, if there are multipath signals with
way to update the weight vectors is to employ the blindffective « paths per user, then the number of antennas has

methods which do not need training sequences. But in genetalincrease to null those multipaths. In this case, the effective
number of usable channels would B&L/«. The flowchart

the complexity for a single channel is more th@Q?).
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Fig. 15. Blocking probabilities of hand off callsB;;) for different numbers of antenna elemedts with SNR= 20,v = 18 dB, a = 40,¢ = 8 5 = 4,
and a two-beam adaptive array systsem.

of the channel assignment with smart antennas is illustratedd 13. Acall admission control(CAC) is required to avoid

in Fig. 11. degradations in system performancellf<~ or ¢ > K, that
Assume that(i — 1) cochannel transmitters successfullyser is not accepted into the system. The probability of the

share the same channel. For acceptable link quality, the ne®Kentl’; > ~ in the system, would yield the success probability

arrivedith transmitter shares that channel'if > v, wherel’; Pili—1,m that theith transmitter can share the same channel,

is given by (10) andy is a system parameter which is dictate@iven that: transmitters are already using that channel. Clearly,

by the governing standard. For instance, in the 1S-54 standdftf Success probability;; , 5, depends omM. Since there
~ is 14 dB, while in AMPS, it is 18 dB. The probability of are L distinct channels in the system and each channel may

establishing an acceptable link, i.&(; > ), is estimated by be reused up td( times, define therobability of successful

Monte Carlo simulation. In the network model, the probabilitgerge;?SQ d?/f;higz:g }zt?htésg;sl?é?ﬂ;he system given that there

density function for the angular position of the transmitters in
the system is .assurrjed to fe,(6;) for 1 < < J The NN Ny =+ 1N, = n)

Monte Carlo simulations of the success probabilitigg »s

and ps2,as, for two-beam and three-beam adaptive arrayssherelV, is the number of users in the system at titrigefore
respectively (withA/ antenna elements), are shown in Figs. 12 new call (user) arrives into the system ahis the time
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Fig. 16. Blocking probabilities of hand off call3;) for different numbers of antenna elemeits with SNR= 20, = 18 dB, a = 40,c = 8 8 = 4,
and a three-beam adaptive array system.

index which increases by 1 at each epoch corresponding tgqueueing model of the system with adaptive arrays under a
new handoff or originating call. For & -beam adaptive array guard channel traffic policy.

system, the success probabilitigs, ;|,, are [14] Using this model, the state probabilitieB(n), n =
0,1,---, KL (where n is the number of ongoing calls
Tngijn = Z Ggn+ 1,20, -, 2K) in the cell) are derived [50], [51], and from there, the
(@2 @x|oR < <wy) blocking probability B, of originating calls and the blocking
plza, - xg)|E2 4+ 2 =n—L]  (20) probability By of handoff calls are given by [14]
where é(n + 17x27...7xK) = 1= (1 — p2|17M)(L—-7:2) % B KL—g—1 ~ a_" n—1 -
(1 _p3|27]w)(-732—-733) X oo X (1 —PK|K—1,M)(W"_W), and Bo = ;;L (1 qn+1ln) ! jl;[o dj+15

(22,3, -, 2x) denotes the vector representing the number ’
of calls assigned to the channels in the second beam up to the . KL n—(KL—g) 7!

T } : s H @111 | P(0)
Kthbeam. Lein= A+~ u=n+rv,a=a/pub=~/p,c= oy 1L J+1lJ

M p, where~ andn are the arrival rate and service rate for n=KlL—g
originating calls, and\ and v are the arrival rate and service KL-g-1 gn "ol
rate for handoff calls, respectively. In the network with aBg = Z (1- qn+1|n)—' H T+l
adaptive array, the effective arrival rate into the cell at state n="L (L
n,)\eﬂ(n) IS [14], [52] N Bifl (1 Y +1| )a[(L_gcn_([(L_g) n—1 q+1|
A (TL) = Qnt1lns n=01, ,KL-g-1 (21) n=KL—g nt j=0 Y
et )‘Qn—l—1|n7 ﬂ:KL—g,,KL—l

CLI(LigCg KL-1
Similarly, the effective service rate in the system at a given T “&Dy Ll % P(0). (22)
staten, p(n) = nun = 1,2,---, KL. Fig. 14 illustrates the J=0
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Fig. 17. Power control algorithm.

The performance of the system is evaluated with parameters
drawn from [12]. Choose a cell witlh = 44 channels, with
a total offered traffic ofa = 40 Erlangs (heavy traffic) and
a handoff traffic ofc = 8 Erlangs. Blocking probabilities _. . . .

. Fig. 18. Th t trol and beamf Igorithm.
of handoff and originating calls for different values of SNR,Ig & Joint power controt and beamlorming aigorfim

thresholdy, and number of antenna elemedtsare plotted in

Figs. 15 and 16. In these simulations, the path loss expon@ﬂt to TrllclijSZA? thDe_ t;agsingtedl pox{vher wr;:le th% SNRiis set tc:j
3 is assumed to be four. a threshold [54]. Distributed algorithms have been propose

Using (22), the blocking probabilities for handoff calis; [55] that adjust the power of each transmitter independently. It

for different numbers of antenna elements in a two-beam aﬂﬁs been shqwn that tr.]e.se. algorithms converge to the optimal
three-beam adaptive array system, are plotted in Figs. 15 &'" allogatlon that MiNiMIzes the transmitted power for gach
16. These two figures illustrate that for a given SNR a obile while the link qual_lty |s_gua_1ranteed for each receiver.
thresholdy, as the number of antenna elemenfsincreases, enth step of the algorithm is given by

the By decrease. Because of array limitations, the blocking

probability By in a two-beam systemik = 2,L = 44) is P[”“ = Gi Z GiP'+N; | = ;“Ii"

slightly higher than theBy for the system withk =1, L = o\ g v

88. The same property is observed for the three-beam systga e Pr is the transmitted power at theth iteration, and

compared to the system with' = 1,1 = 3 x 44. These  is the link gain between thith mobile and thejth base
results confirm that a system using a two-beam adaptive ar@iion. v, is the thermal noise, anfj’ the interference at the
has almost the same effect as doubling the number of RE receiver. The right-hand side of this equation is a function
channels in the system. A three-beam array nearly triples e interference at théth receiver. In order to update the

capacity [14]. power, the interferencd; is measured at each receiver, and
the power is updated by multiplying a constaptG,;. The
flowchart of the algorithm is shown in Fig. 17.

Power control is necessary to reduce the near—far effect inEach receiver measures the interference power by calculat-
CDMA [53], to balance the interference in a wireless networlng the average power at the output of the receiver during a

B. Power Control and Beamforming in CDMA Networks
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Fig. 19. Mobile and base stations locations for maximum number of users in: (a) power controlled network with single antennas and (b) power controlled
network with smart antenna with four elements.

window of Iength 1%%4 Total power versus the number of users
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W
2 [ Power controlled network
Ei = E 5. { ——  Power control with antenna array

i=1 14+

It subtracts the received power due to the desired transmittepl
power from the total received power

o
T

I"=FE, —-G,PF,.

The complexity of power estimation i8V + 1 multiplications
and W + 1 additions. The transmitted power can be readil
updated up to a few hundred times per second [53].

Joint power control and beamforming algorithms are pro- 4|
posed in [56]-[58]. In these algorithms, the beamforming
weight vectors and power allocations are updated jointly byz}

a distributed algorithm. Theth iteration of the algorithm is s
o . s

8um of mobile powers
w
T

2]
T

L !

as follows [58] . 0 500 1000 1500 2000 2500 3000

Number of users

e The minimum error is calculated by

B = 3" [d(k) - wllz, (k)

Fig. 20. The total mobile powers versus the number of users.

of mobiles and base stations where mobiles are randomly
» The power is updated by distributed in the network as illustrated in Fig. 19. The total
-y E. transmitted power as a function of total number of users in
PP =Py =l the network is shown in Fig. 20. As the number of users
! ! approaches the capacity of the network, the total power is
The weight vectors are updated by the beamforming algorithAtreased significantly. As illustrated in this figure, with smart
only during the training phase, and are constant between #gennas with four elements at the base station, for the same
training intervals. The complexity of the beamforming algonumber of users, one can reduce the transmitted power. It is
rithms is as discussed in the previous sections. The complexi{so possible to increase the maximum number of users in the
of the first step of the power control algorithm 48/ + 1 network while the SNR is above a threshold.
multiplications and one addition for the calculation Bf,;,
and one division and addition for updating the power. This
algorithm is depicted in Fig. 18.

The above algorithm converges to the jointly optimal beam- This paper has presented the software radio architecture with
forming weight vector and power allocation such that themart antennas. The advantages of software radio implementa-
transmitted power is minimized [56]. In order to show th&on of wireless communication systems include flexibility for
performance of the algorithm, we have simulated a netwoakdaptive beamforming with novel algorithms. This paper also

V. CONCLUSIONS
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has reviewed the commonly employed adaptive algorithnes]
and their complexities. Finally, two examples illustrated thE4]
effectiveness of software radio smart antenna systems “in
increasing the system capacity and enhancing the CDM2§]

power control.
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