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Abstract—Recently, there has been considerable interest in
using antenna arrays in wireless communication networks to
increase the capacity and decrease the cochannel interference.
Adaptive beamforming with smart antennas at the receiver in-
creases the carrier-to-interference ratio (CIR) in a wireless link.
This paper considers a wireless network with beamforming capa-
bilities at the receiver which allows two or more transmitters to
share the same channel to communicate with the base station. The
concrete computational complexity and algorithm structure of a
base station are considered in terms of a software radio system
model, initially with an omnidirectional antenna. The software
radio computational model is then expanded to characterize a
network with smart antennas. The application of the software
radio smart antenna is demonstrated through two examples.
First, traffic improvement in a network with a smart antenna
is considered, and the implementation of a hand-off algorithm in
the software radio is presented. The blocking probabilities of the
calls and total carried traffic in the system under different traffic
policies are derived. The analytical and numerical results show
that adaptive beamforming at the receiver reduces the probability
of blocking and forced termination of the calls and increases the
total carried traffic in the system. Then, a joint beamforming
and power control algorithm is implemented in a software radio
smart antenna in a CDMA network. This shows that, by using
smart antennas, each user can transmit with much lower power,
and therefore the system capacity increases significantly.

Index Terms—Adaptive beamforming, handoff, power control,
smart antennas, software radio.

I. INTRODUCTION

T HE software radio is emerging from military applications.
Because of recent advances in high-speed digital signal

processors (DSP’s) and analog-to-digital converters (ADC’s),
the commercial implementation of software radios has become
viable. In software radio systems, the IF signal is digitized
using wide-band ADC’s, and all of the subsequent processing
is implemented in software [1]–[8]. The main advantage of
software radio is its great flexibility such that it can be pro-
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grammed for emerging standards. It also can be dynamically
updated with new software without any changes in hardware
and infrastructure. Rapid deployment is another important
feature of the software radio. In wireless applications where
different standards might be deployed, users’ roaming can be
a big issue in existing platforms. In the software radio system,
users just need to download the new air interface upon entering
the new territory.

The reallocation of bandwidth is a standards-setting process
that takes a considerably long time. On the other hand, due to
fixed finite resources, one cannot assume that more physical
radio channels will be added to a spectrum allocation to reduce
the probability of blocking or forced termination [9]–[13]. The
increasing popularity of wireless communication services to-
gether with the limited amount of the available radio spectrum
calls for highly efficient usage of resources (traffic channels)
in the system [14]. The interference reduction capability of
antenna arrays has been considered as a means to increase
the capacity of wireless systems [15]–[21]. Specifically, using
beamforming techniques at the receiver, two or more trans-
mitters can share the same traffic channel to communicate
with the base station at the same time. An adaptive antenna
array is used at the base station to form several antenna
beams simultaneously. Each beam captures one transmitter by
automatically pointing its pattern toward that transmitter while
nulling other cochannel transmitters and multipath signals
[19]–[21]. In this way, the cochannel interference (CCI) is
minimized, and therefore the carrier-to-interference ratio (CIR)
for the signal of interest is maximized. In urban wireless
environments, the signal transmitted by each user is reflected
by surrounding buildings and the terrain. Therefore, several
copies of the transmitted signal are received at the base station
with different delays and different attenuation. This effect is
called multipath fading. In space-only diversity, given a cell
with channels, an -element antenna array that forms
distinct array nulls at the receiver allows a maximum of
users to be served in a cell, where and is the
multipath factor representing the number of distinct strong
path components received from each mobile station at the
beamforming array. In space–time diversity, spatial nulls reject
the CCI, while intersymbol interference (ISI) is eliminated by
time diversity.

Sectorization is an alternative to smart antennas. Sectorized
cell sites employ hardware beamforming array antennas in
which each beam is assigned a distinct RF channel set.
The direction and gain of sectorized antennas are fixed in
the hardware. They cannot place nulls on interference like
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the smart antenna. The cost of a sectorized cell site is an
increase in the (analog) hardware complexity of the cell
site, but there is virtually no impact on the single-channel
cell site software. When the capacity of a sectorized site
is exceeded, one may then overlay a smart antenna with
its dedicated digital signal processing (DSP) capacity and
unique software architecture which accommodates the vastly
increased computational demand of the beamforming network.
The smart antenna’s beams are not fixed, but are dynamic per
user, and will place nulls that cancel interference. Another
advantage of the smart antenna system is the reduced rate
of handoffs because of tracking the user. In this paper, the
term “cell” means either a conventional cell or one sector of
a sectorized cell.

This paper first presents a tutorial review of beamforming
algorithms. It then reviews a software radio architecture, first
with omnidirectional antennas, and then with smart antennas.
Two applications show the advantages of a system with a
smart antenna. First, a wireless network with beamforming
capabilities at the receiver allows two or more transmitters
to share the same channel to communicate with the base
station. Each cell is modeled by a multiuser multiserver service
facility. Each server is a beamformed channel formed by the
cell’s base station. For a set of cochannel transmitters, the
probability of successful capture by a separate antenna beam
is computed. The success probabilities are taken into account
in the queueing model of the system. From this generalized
model, the closed-form blocking probabilities of the calls and
total carried traffic in the system under different traffic policies
are derived. The second application shows how to implement
a robust power control algorithm when using a smart antenna
at the base station. In CDMA networks, power control is an
important issue because of the near–far effect. Therefore, the
effective power control algorithm results in a capacity increase
in the system.

The paper is organized as follows. In Section II, various
adaptive beamforming algorithms are discussed. The software
radio architecture in a system with an omnidirectional antenna
and also with a smart antenna is presented in Section III. The
complexity issue is also discussed in this section. Some appli-
cations and advantages of using software radio smart antennas
are presented in Section IV, where traffic improvement and
capacity enhancement are addressed. Section V includes our
conclusions and remarks.

II. REVIEW OF SPATIAL MULTIPLEXING

USING ADAPTIVE BEAMFORMING

A smart antenna is a multibeam adaptive array with its
gain pattern adjusted dynamically [23]. For a fixed-beam
sectorized antenna and an-element smart antenna system,
the antenna gain and system capacity are increased approxi-
matelyM-fold. In a fixed beam system, the handoff from one
beam to another is the main disadvantage, while in a smart
antenna system, each beam tracks its user within the coverage
of the cell. Moreover, smart antenna systems provide diversity
gain against multipath signals and strong interferers by placing
antenna nulls toward those sources. Since the beamforming in

Fig. 1. A diversity combining system.

Fig. 2. Sample array pattern.

adaptive arrays is done in IF and baseband, these systems are
well suited for software radio implementation.

Space and time diversity reduce the cochannel interference
(CCI) and intersymbol interference (ISI). If the desired signal
and the cochannel signals have different temporal or spatial
signatures, time and space diversity can improve the signal-
to-noise ratio (SNR). The block diagram of an adaptive array is
depicted in Fig. 1. In general, the objective is to form the main
beam toward the desired user and nulls toward the interference
sources as illustrated in Fig. 2.

An antenna array consisting of elements is considered at
the receiver. Adaptive beamforming capabilities of antenna
arrays may be used to maintain a constant gain for the
signal along the direction of interest, and adjusting the nulls
so as to reject the cochannel interference. In this way, the
interference is minimized and the CIR for the signal of interest
is maximized. A set of cochannel transmitters is considered.
Let for denote the th transmitted signal.
Assume that at most multipath signals from each user arrive
in the base station with different delays Therefore, the
received signal vector due to the is

(1)



664 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 4, APRIL 1999

Fig. 3. Space diversity combiner.

where is the arrival direction of the th multipath signal
from the th user, is the power of theth transmitter, is
the link gain between theth transmitter and the base station,

is the th path fading coefficient, and is the array
response to the multipath signal arriving from direction
with

(2)

A. Space Diversity Combining

In a space diversity system, the weighted sum of the
received signal is combined at the output of beamformer as
illustrated in Fig. 3. A weighted sum of the outputs of the
array elements is generated by a beamformer in the following
way:

(3)

where is the weight and
is the received signal vector sampled at

the output of the downconverters.
Minimum Variance Distortionless Response (MVDR):One

can choose the weight vector to steer a beam toward the
direction of the signal of interest and adjust the nulls to
reject the interference. This is done by attempting to maintain
a distortionless response in the direction of interest and placing
the nulls in the directions of other cochannel interferers. The
average output power is given by

(4)

where

(5)

The correlation matrix due to the interference terms is

(6)

If the array response in the direction of the desired user is
known, the beamformer tries to minimize the output power
subject to maintaining a distortionless response in the direction
of interest such that For this reason, this

adaptive beamformer is called an MVDR [15] beamformer.
From (4) and (5), with the constraint that
the received signal power plus the interference power as a
function of is

(7)

Let denote the total interference plus noise power given by

(8)

In (7), is the received power from the signal of interest,
while given by (8) is the contribution to the output power

from the interference and noise.
The optimum weight vectorminimizes the interference

while maintaining a unity gain in the direction of interest by
imposing The solution of this problem is

(9)

Since the desired signal (arriving along will not be affected
by the beamforming process and only the interference is
rejected, the CIR is maximized for the signal in the direction
of interest, i.e.,

(10)

Minimum Mean-Square Error (MMSE):If the array re-
sponse is not known, one may employ a training sequence
and minimize the difference between the training sequence
and the output of the beamformer in the mean-square sense

(11)

The solution to this problem is given by [14]

(12)

where is defined as before and is the cross correlation
between the received vector and the training sequence;

The maximum CIR in this case is given by

(13)



RAZAVILAR et al.: SOFTWARE RADIO ARCHITECTURE WITH SMART ANTENNAS 665

Fig. 4. Space–time diversity combiner.

B. Space–Time Diversity Combining

In the space diversity combining system of Fig. 3, the
interference and multipath signals are rejected by placing
nulls at the directions of those signals. In a broadband linear
combiner, illustrated in Fig. 4, the desired signal and its
multipath are combined at the combiner output to estimate
the desired signal.

MMSE Space-Time Combining:The output of a broadband
combiner can be expressed as

where is the weighting vector and
is the received signal vector at the

th element equalizer.
Let and

The output of the beamformer can
be written as

In this case also, the objective is to minimize the mean-square
error between the output of combiner and the desired signal

i.e.,

The optimal beamformer coefficients are similar to space
diversity MMSE by

Many adaptive methods that update weight vectors according
to the incoming data have been developed [51], such as
recursive least square (RLS) [21] and minimum mean-square
error (MMSE) [23].

Blind Methods: Using a training sequence consumes some
bandwidth. In order to save the bandwidth allocated to the
training sequence, one may use blind methods. Forsingle-
input single-output(SISO) systems, numerous blind identifi-
cation algorithms [24]–[27] and blind equalization algorithms
[28]–[37] have been proposed that exploit the higher order
statistics of channel output. Among these algorithms, the
Godard algorithm (GA) [30], also known as theconstant

Fig. 5. Space–time diversity combiner in a CDMA system.

modulus algorithm(CMA) [35], [36], is one of the best
and simplest adaptive blind equalization algorithms.Single-
input multiple-output (SIMO) systems may be viewed as
fractionally spaced sampled communication systems which
receive the distorted versions of one input signal. Fractionally
spaced CMA adaptive blind equalizers under symbol timing
offsets is considered in [38]. The equalization of multiple-
input multiple-output (MIMO) transmission systems is studied
in [39] and [40], where the MIMO channel impulse response
is known. When the channel parameters of the MIMO systems
are unknown, blind identification and equalization techniques
must be used to separate and capture signals. The capture
properties of the CMA algorithm used in MIMO systems with
constant modulus input signals are studied in [36], [41], and
[42]. The blind identification of MIMO systems using second-
order statistics or higher order statistics are also studied in
[43]–[46]. Some subspace algorithms with fast convergence
rate are proposed in [47].

C. Space–Time Diversity in CDMA Systems

In code-division multiple-access systems (CDMA), all users
are sharing the same channel and each user has a different
pseudonoise (PN) sequence. The received signal due to
cochannel users at the receiver is given by

where is the received signal at the array, is the
transmitted sequence, and

is the th path delay associated with theth user, and is
the th user PN sequence. In a space-diversity combiner, the
signals from the main path are despread and combined at the
beamformer output, as shown in Fig. 5. Code filters (CF) are
matched to the desired user code and the delay is matched to
the th path delay, i.e.,

and
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Fig. 6. Functional block diagram of the software radio for a base station with single omnidirectional antenna.

It has been shown [16] that the optimal beamformer for the
above architecture is given by

where and are defined as before, and

where is the processing gain and

If the delay spread is larger than a chip period, a correlator
may be employed for the signal received from each path.
In signal antenna systems, signals from different correlators
may be combined using maximum ratio combining. In those
receivers, known as Rake receivers, each correlator is called a
finger of the Rake receiver. In a multiple-antenna system, one
can design a beamformer for each resolvable path, and then
combine the outputs with a standard Rake receiver [48], i.e.,

where is the maximum number of paths in each link.

III. SOFTWARERADIO ARCHITECTURE WITHSMART ANTENNA

The software radio allows one to build flexible, multiband
radio systems rapidly. The functional block diagram of the
software radio in a system with an omnidirectional antenna
is shown in Fig. 6. The architecture of the software radio is
described in more detail in [1]. As illustrated in this figure,
a wide-band front end downconverts the received signal to
the IF where it is sampled and digitized by a high-speed

ADC. The rest of the processing is implemented in software
[2]. Such a radio may be dynamically updated with new
software without changes in hardware and infrastructure [2].
One may achieve better performance by introducing coding
on the bitstream using coding gain to improve the bit-error
rate (BER). In the case of the omnidirectional antenna, the
software of the cell site may either have an IF software
radio architecture, in which the waveforms are synthesized
and received in software, or they may have a baseband DSP
radio architecture, in which the software is limited to bitstream
signal processing. There are MIPS of processing capacity
required per server, with P(IFbaseband) (baseband). A
block diagram of a typical digital downconverter is depicted
in Fig. 7. The wide-band IF signal is translated to a complex
baseband signal by the quadrature multiplier. The numerically
controlled oscillator (NCO) block generates the quadrature
signals for the multipliers. Then the complex baseband signal
is low-pass filtered to prevent aliasing due to decimation [5].
In a software radio architecture, these blocks are implemented
in software. The high sampling rate of a wide-band receiver
allows time for only a few operations per sample; however,
the digital downconverter combines the frequency translation
and filtering in one step. The specific signal processing steps
show how the multiplication and convolution required to
perform the frequency shift and filtering may be combined.
The first step is frequency translation of the real-valued
received signal samples to baseband by multiplication
with the appropriate complex exponential as follows:

(14)

where is the carrier frequency before translation to baseband
and is the sample interval. The next step is to filter
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Fig. 7. Block diagram of the down converter and demodulator.

Fig. 8. Functional block diagram of the software radio for a base station with smart antenna.

with an FIR filter with filter coefficients

(15)

From (14) and (15), combine these two processes as follows:

(16)

where Here, not only is the number
of computations reduced, but there is no need to compute
the unfiltered baseband signal which further reduces the
number of operations [5].

The functional block diagram of the software radio with
smart antennas is shown in Fig. 8. Each antenna element
has its own downconverter and ADC. But the subsequent
beamforming and demodulation are implemented in software
and are shared among all of the elements. Fig. 9 illustrates the
software architecture of the beamformer for each channel. The
received signal from each antenna element is passed through
the same software block as depicted in Fig. 7 to generateand

signals. These signals are combined using the “combiner”
block as shown in Fig. 9. The received signal from the user
would be the output of the demodulator in Fig. 9. Using
similar blocks for each channel one allows up tousers to
share the same channel. Since each user generates its carrier
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Fig. 9. Block diagram of the software beamformer for each user.

TABLE I
COMPUTATIONAL COMPLEXITY OF VARIOUS BEAMFORMING ALGORITHMS

locally, there are separate carrier tracking and downconverting
blocks per user. It was mentioned that one can assignusers
to each channel by using beams for each channel. In this
manner, a system with physical channels serves at most
users. Such a software radio with a smart antenna is scalable.
Increasing the number of beams and users is a software process
within the constraints of the hardware costs. The proportion
of increase in computational resources required for the smart
antenna depends on the cell site architecture. With baseband
DSP, one converts the smart antenna channels back to analog
IF to provide only channels in the conventional cell site as
the maximum capacity of each cell. In principle, with an IF
software radio architecture, the smart antenna processing could
be part of the larger pooled DSP resources, and one could
implement or service channels. In the sequel, a
software radio architecture is assumed in which one synthe-
sizes up to servers in the integrated DSP architecture
of the software radio cell site. As illustrated in Fig. 8, the
beamforming process can be implemented on DSP’s. Usually,
adaptive algorithms are used to update the weight vectors. The

Fig. 10. Capturing four mobile users over the same channel successfully by
an adaptive antenna array at the BS.

optimum beamformer weight vector presented in the previous
section requires knowledge of second-order statistics. These
statistics are usually not known, but with the assumption of
ergodicity, they can be estimated. Statistics may also change
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Fig. 11. Flow chart of the channel assignment algorithm in a system with smart antenna.

over time (due to moving interferers). To solve these problems,
weight vectors are typically determined adaptively. One may
employ training sequences to update the weight vectors. The
training sequence is known at the receiver. Let
denote the training sequence. The received training sequence
at the receiver is denoted by

The direct matrix inversion (DMI) is the straightforward
method for calculating the weight vectors. DMI minimizes the
difference between the training sequence and the output of the
beamformer in a mean-square sense

(17)

The solution to this problem is given by [14]

(18)

where is the estimated correlation matrix and is the
cross correlation between the received vector and the training
sequence given by

(19)

The complexity of the DMI method is where
is the length of the training sequence. Adaptive algorithms
that update the weight vector taps reduce the complexity.
In recursive estimation procedure the weights are adjusted
iteratively. Such an approach eliminates the estimation of the
correlation matrix or cross-correlation vector frequently as in
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Fig. 12. Success probabilityp2j1;M for a 2-beam adaptive array for different
values ofM (# of antenna elements), SNR and threshold
:

the DMI method. Moreover, each iteration trains the weight
vector taps to track the incoming signal more accurately.
Finally, at the end of the training sequence (with length,
the new weight vector emerges after the th iteration
satisfying (17). The complexity of the least mean-square
(LMS) algorithm, least square lattice (LSL) algorithm, fast
transversal filter (FTF) algorithm, and QRD–RLS algorithm
increases linearly with the length of the training sequence

[14]. The number of operations required to perform one
iteration of the algorithm is a measure of computational com-
plexity. Operations consist of multiplications, divisions, and
additions. Table I compares the computational complexities
of four important adaptive algorithms: LMS, RLS, FTF, and
LSL. All those operations use complex operands andis the
length of the training sequence. It is worth mentioning that the
numerically stable QRD–RLS algorithm also achieves
complexity [14].

From Table I, the following observations can be made.
The LMS algorithm is the least demanding in computational
complexity. But the LMS algorithm has a slow convergence
rate. The other algorithms belong to the recursive least squares
family with much faster convergence rates. For a software
radio smart antenna with channels and parallel beamform-
ers for each channel, the overall complexity of the software
beamformer is times that of the Table I entries. Another
way to update the weight vectors is to employ the blind
methods which do not need training sequences. But in general,
the complexity for a single channel is more than

Fig. 13. Success probabilityp3j2;M for a 3-beam adaptive array for different
values ofM (# of antenna elements), SNR and threshold
:

IV. A PPLICATIONS

This section presents two applications of smart antennas in
a wireless network. In the first example, the smart antenna is
deployed to reduce the blocking probability (or forced termi-
nation) of the handoff calls. The second example illustrates
the use of a smart antenna in a CDMA network to achieve a
more efficient power control algorithm. These two applications
are computationally demanding, but can be implemented in
software efficiently.

A. Traffic and Handoff Improvement with Smart Antennas

This section analyzes the network with adaptive array under
traffic policies proposed in [12] and [13]. In this network
model [14] it is assumed that when a new call (handoff or
originating call) arrives, the adaptive array points one beam
toward that user, and assigns one channel out of those
channels to that user. Each channelfor may
be assigned to one of the users by separate beams, using
the beamformers in parallel for each channel, as shown in
Fig. 10. If the first beam of all channels is occupied, the new
call is assigned to another beam. If there are no multipaths in
the system, with beamformers for each channel andRF
frequency channels, at most users can be accepted into the
system. On the other hand, if there are multipath signals with
effective paths per user, then the number of antennas has
to increase to null those multipaths. In this case, the effective
number of usable channels would be The flowchart
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Fig. 14. State transition diagram of discrete Markov chain, the network model of the system with an adaptive array at the base station and guard channels.

Fig. 15. Blocking probabilities of hand off calls(BH) for different numbers of antenna elementsM; with SNR= 20; 
 = 18 dB, a = 40; c = 8 � = 4;
and a two-beam adaptive array systsem.

of the channel assignment with smart antennas is illustrated
in Fig. 11.

Assume that cochannel transmitters successfully
share the same channel. For acceptable link quality, the newly
arrived th transmitter shares that channel if where
is given by (10) and is a system parameter which is dictated
by the governing standard. For instance, in the IS-54 standard,

is 14 dB, while in AMPS, it is 18 dB. The probability of
establishing an acceptable link, i.e., is estimated by
Monte Carlo simulation. In the network model, the probability
density function for the angular position of the transmitters in
the system is assumed to be for The
Monte Carlo simulations of the success probabilities
and for two-beam and three-beam adaptive arrays,
respectively (with antenna elements), are shown in Figs. 12

and 13. Acall admission control(CAC) is required to avoid
degradations in system performance. If or , that
user is not accepted into the system. The probability of the
event in the system, would yield the success probability

that the th transmitter can share the same channel,
given that transmitters are already using that channel. Clearly,
the success probability depends on Since there
are distinct channels in the system and each channel may
be reused up to times, define theprobability of successful
reception ofthe th user into the system given that there
are already users in the systemas

where is the number of users in the system at timebefore
a new call (user) arrives into the system andis the time
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Fig. 16. Blocking probabilities of hand off calls(BH) for different numbers of antenna elementsM; with SNR= 20; 
 = 18 dB, a = 40; c = 8 � = 4;
and a three-beam adaptive array system.

index which increases by 1 at each epoch corresponding to a
new handoff or originating call. For a -beam adaptive array
system, the success probabilities are [14]

(20)

where
and

denotes the vector representing the number
of calls assigned to the channels in the second beam up to the

th beam. Let
where and are the arrival rate and service rate for

originating calls, and and are the arrival rate and service
rate for handoff calls, respectively. In the network with an
adaptive array, the effective arrival rate into the cell at state

is [14], [52]

(21)

Similarly, the effective service rate in the system at a given
state Fig. 14 illustrates the

queueing model of the system with adaptive arrays under a
guard channel traffic policy.

Using this model, the state probabilities
(where is the number of ongoing calls

in the cell) are derived [50], [51], and from there, the
blocking probability of originating calls and the blocking
probability of handoff calls are given by [14]

(22)



RAZAVILAR et al.: SOFTWARE RADIO ARCHITECTURE WITH SMART ANTENNAS 673

Fig. 17. Power control algorithm.

The performance of the system is evaluated with parameters
drawn from [12]. Choose a cell with channels, with
a total offered traffic of Erlangs (heavy traffic) and
a handoff traffic of Erlangs. Blocking probabilities
of handoff and originating calls for different values of SNR,
threshold and number of antenna elementsare plotted in
Figs. 15 and 16. In these simulations, the path loss exponent

is assumed to be four.
Using (22), the blocking probabilities for handoff calls

for different numbers of antenna elements in a two-beam and
three-beam adaptive array system, are plotted in Figs. 15 and
16. These two figures illustrate that for a given SNR and
threshold as the number of antenna elementsincreases,
the decrease. Because of array limitations, the blocking
probability in a two-beam system is
slightly higher than the for the system with

The same property is observed for the three-beam system
compared to the system with These
results confirm that a system using a two-beam adaptive array
has almost the same effect as doubling the number of RF
channels in the system. A three-beam array nearly triples the
capacity [14].

B. Power Control and Beamforming in CDMA Networks

Power control is necessary to reduce the near–far effect in
CDMA [53], to balance the interference in a wireless network,

Fig. 18. The joint power control and beamforming algorithm.

and to minimize the transmitted power while the SNR is set to
a threshold [54]. Distributed algorithms have been proposed
[55] that adjust the power of each transmitter independently. It
has been shown that these algorithms converge to the optimal
power allocation that minimizes the transmitted power for each
mobile while the link quality is guaranteed for each receiver.
The th step of the algorithm is given by

where is the transmitted power at theth iteration, and
is the link gain between theth mobile and the th base

station. is the thermal noise, and the interference at the
th receiver. The right-hand side of this equation is a function

of the interference at theth receiver. In order to update the
power, the interference is measured at each receiver, and
the power is updated by multiplying a constant The
flowchart of the algorithm is shown in Fig. 17.

Each receiver measures the interference power by calculat-
ing the average power at the output of the receiver during a
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(a) (b)

Fig. 19. Mobile and base stations locations for maximum number of users in: (a) power controlled network with single antennas and (b) power controlled
network with smart antenna with four elements.

window of length

It subtracts the received power due to the desired transmitter
power from the total received power

The complexity of power estimation is multiplications
and additions. The transmitted power can be readily
updated up to a few hundred times per second [53].

Joint power control and beamforming algorithms are pro-
posed in [56]–[58]. In these algorithms, the beamforming
weight vectors and power allocations are updated jointly by
a distributed algorithm. Theth iteration of the algorithm is
as follows [58].

• The minimum error is calculated by

• The power is updated by

The weight vectors are updated by the beamforming algorithm
only during the training phase, and are constant between the
training intervals. The complexity of the beamforming algo-
rithms is as discussed in the previous sections. The complexity
of the first step of the power control algorithm is
multiplications and one addition for the calculation of
and one division and addition for updating the power. This
algorithm is depicted in Fig. 18.

The above algorithm converges to the jointly optimal beam-
forming weight vector and power allocation such that the
transmitted power is minimized [56]. In order to show the
performance of the algorithm, we have simulated a network

Fig. 20. The total mobile powers versus the number of users.

of mobiles and base stations where mobiles are randomly
distributed in the network as illustrated in Fig. 19. The total
transmitted power as a function of total number of users in
the network is shown in Fig. 20. As the number of users
approaches the capacity of the network, the total power is
increased significantly. As illustrated in this figure, with smart
antennas with four elements at the base station, for the same
number of users, one can reduce the transmitted power. It is
also possible to increase the maximum number of users in the
network while the SNR is above a threshold.

V. CONCLUSIONS

This paper has presented the software radio architecture with
smart antennas. The advantages of software radio implementa-
tion of wireless communication systems include flexibility for
adaptive beamforming with novel algorithms. This paper also
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has reviewed the commonly employed adaptive algorithms
and their complexities. Finally, two examples illustrated the
effectiveness of software radio smart antenna systems in
increasing the system capacity and enhancing the CDMA
power control.
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