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Abstract—We develop an algorithm to reconstruct the wavelet
coefficients of an image from the Radon transform data. The
proposed method uses the properties of wavelets to localize the
Radon transform and can be used to reconstruct a local region of
the cross section of a body, using almost completely local data that
significantly reduces the amount of exposure and computations in
X-ray tomography. The property that distinguishes our algorithm
from the previous algorithms is based on the observation that for
some wavelet bases with sufficiently many vanishing moments,
the ramp-filtered version of the scaling function as well as the
wavelet function has extremely rapid decay. We show that the
variance of the elements of the null-space is negligible in the
locally reconstructed image. Also, we find an upper bound for
the reconstruction error in terms of the amount of data used in
the algorithm. To reconstruct a local region 16 pixels in radius in
a 256� 256 image, we require 22% of full exposure data.

Index Terms—Local tomography, multiresolution tomography,
wavelet.

I. INTRODUCTION

I T IS WELL KNOWN that in dimension two and in fact
in any even dimension, the Radon transform is not local,

that is, the recovery of an image at any fixed point requires
the knowledge of all projections of the image. This means
that a patient would have to be exposed to a relatively large
amount of X-rays even if it was desired to view only a small
part of the patient’s body. Thus, searching for a means to
reduce exposure, and at the same time to be able to perfectly
reconstruct the region of interest (ROI), has been of great
interest recently [6]–[11].

The application of wavelet theory to the inversion of the
Radon transforms was first proposed in [3] and [4]. An
inversion formula based on the continuous wavelet transform
was proposed in [1]. This formula was based on an intertwin-
ing between the one-dimensional (1-D) continuous wavelet
transform of the projection data at each angle and the two-
dimensional (2-D) wavelet transform of the original image.
The fundamental observation was that the admissibility or
vanishing moment condition that is characteristic of a wavelet
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is preserved under the Hilbert transform. Moreover (as was
noted in [2] and [8]), the Hilbert transform of a function
with many vanishing moments should decay very rapidly.
This is related to the notion that certain singular integral
operators are almost diagonalized by wavelets [20]. In [2], the
intertwining formula of [1] was used for local recovery, and
explicit error estimates on the recovered image within the ROI
were obtained. It was noted that high-frequency features of an
image can be recovered locally using the wavelet transform.

The first numerical algorithm using wavelets for local
reconstruction was implemented by DeStefano and Olson
in [8]. This algorithm reconstructs the local values of a
function directly from the 1-D wavelet transform of
at each angle In [9], Delaney and Bresler compute the 2-
D separable wavelet transform of a function directly from
the projection data as a means to do local recovery from
local measurements. Both algorithms take advantage of the
observation that the Hilbert transform of a function with
many vanishing moments has rapid decay; and both algorithms
recover the high-resolution parts of the image locally (that is,
by exposing the ROI plus a small extra margin) and obtain the
low-resolution parts by global measurements at a few angles.
In this sense, these algorithms cannot accurately be described
as local tomography algorithms. Both of these algorithms
exhibit similar savings in exposure and similar quality of
the reconstructed image in the ROI. Recently, Olson [11]
has improved his algorithm by replacing the usual wavelet
transform with the local trigonometric transform of Coifman
and Meyer [14] and has reduced the exposure still further.

In this paper, we implement a wavelet-based algorithm to
reconstruct a good approximation of the low-resolution parts of
the image as well as the high-resolution parts using only local
measurements. The algorithm is based on the observation that
in some cases, the Hilbert transform of a compactly supported
scaling function also has essentially the same support as
the scaling function itself. This phenomena is related to the
number of vanishing moments of the scaling function of an
orthonormal or biorthonormal wavelet basis. That is, if is
such a scaling function, and if for
for some large then the Hilbert transform of will have
rapid decay. This gives substantial savings in exposure and
computation compared to the methods in [8] and [9], and
somewhat greater exposure (though still fewer computations)
than the algorithm in [11]. Our algorithm reconstructs a region
of radius 16 pixels in a 256 256 image to within 1% average
error using 22% of the data, and to within 1% maximum error
using 30% of the data. The methods proposed in [8] and [9]
require a higher exposure of 40% of the data for the same
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size region and 1% maximum error, and the method in [11]
uses 20% for the same case. Since the algorithm in [11] is not
truly local, we believe that our algorithm is valuable even if
the exposure is somewhat higher.

It should be noted that the goal of the algorithm described
in this paper is to reconstruct the function locally from
local measurementsup to the nullspaceof the interior Radon
transform. That is, the problem of recovery of local values
of a function from local projections only is not uniquely
solvable [22]–[25]. In [23], an example is given of functions
that are nonzero on a disk but whose projections on all lines
intersecting that disk are zero (Fig. 7). Such a function is
said to be an element of the nullspace of the interior Radon
transform. Any algorithm that uses only local measurements
cannot reconstruct these nullspace elements. The advantage
is that taking only local measurements is much easier to
implement in hardware. It has been shown that the elements
of the null-space of the interior Radon transform do not vary
much in the ROI [23]. In our algorithm this phenomenon
appears as a constant bias in the reconstructed image. Such a
bias is commonly observed in the local reconstruction problem
[23], [25].

The algorithms of DeStefano/Olson [8], Delaney/Bresler
[9], and Olson [11] are not true local tomography algorithms
in that they use measurements far from the ROI to recover
the function exactly on the ROI. The algorithm described
in this paper is more closely related to the technique of

-tomography, which is used to reconstruct the function
rather than the density function [5], [6]. The

function has the same singularities asand is cupped
where is constant. The addition of the cup correction factor

results in good qualitative reconstructions of[7].
In this paper, we will present an algorithm to reconstruct

the wavelet and scaling coefficients of an image directly
from its projections. This is useful in applications where the
wavelet coefficients of the reconstructed image are used, in
that it saves the computations required to obtain the wavelet
coefficients from the reconstructed image. We also show how
this reconstruction technique leads to a local tomography
algorithm that uses the projections of the image on lines
intersecting the local ROI plus a small number of projections,
in the immediate vicinity, to obtain a very good approximation
of the image in the ROI.

The main features of our algorithm are as follows.

• It hasreduced exposurecompared to previous algorithms
(cf. [8], [9]), though the exposure is increased when com-
pared to [11]. In our algorithm there is no need to obtain
a rough estimate of the global properties of the Radon
transform by sparsely sampled full exposure projections.
We just compute a small number of projections on lines
passing close to the ROI to reconstruct the local values
of the image up to a constant bias. Moreover, the number
of pixels in the margin is independent of the size of
the ROI and is also independent of the resolution of
the measurements taken. Therefore, for the same ROI,
a high resolution computerized tomography (CT) scan
would have a smaller region of exposure than a lower
resolution scan (see Figs. 13 and 14).

• It is computationally more efficientthan other algorithms,
because it uses fewer projections overall to locally recon-
struct the image.

• It offers uniform exposure at all angles, which allows
for easier implementation in hardware. (In the algorithms
proposed in [8]–[11], different amount of projections have
to be computed with variable lengths for different angles.)

• It offers theability to reconstruct off-center or even multi-
ple regions of interest, as well as centered reconstruction.

• It is applicable to the cases where the wavelet basis is not
separableand there exists no multiresolution approach to
obtain the wavelet coefficients. (The method proposed in
[9] can only be used for separable wavelet bases.)

• It allows for reconstruction of the wavelet coefficientsof
the image with the same complexity as the conventional
filtered backprojection method.

This paper is organized as follows. In Section II, we will
briefly introduce the Radon transform, discuss the nonlocality
of the Radon transform and the conventional reconstruction
technique, i.e., the filtered backprojection method. In Section
III after reviewing the basics of the wavelet transform, we
will introduce a full-data reconstruction technique based on the
wavelet transform. We will discuss the locality property of the
proposed algorithm in Section IV. Section V then discusses
the implementation of this method, and in Section VI the
simulation results will be presented.

II. PRELIMINARIES AND NOTATIONS

In this section, we will briefly introduce the terminology
and definitions required in the subsequent discussions. In this
paper, we use the following notations. Thedimensional
Euclidean space is denoted by Given a set
denotes the indicator function of We define the Fourier
transform in by The in-
verse Fourier transform is defined by

Both continuous and discrete convo-
lution operators are denoted by

A. Radon Transform

In CT, a cross section of a human body is scanned by
a nondiffracting thin X-ray beam whose intensity loss is
recorded by a set of detectors. The Radon transform (RT)
is a mathematical tool that is used to describe the recorded
intensity losses as averages of the tissue density function
over hyperplanes which, in dimension two, are lines. Given

restricted to a disc of radius one, we define the Radon
transform of by

where and is the
subspace perpendicular to

The interior Radon transform [24], [25] is the Radon trans-
form restricted to lines passing through the ROI, which is a
circle of radius about the origin. It is defined by
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(a) (b)

Fig. 1. (a) Wavelet analysis filterbank. (b) Wavelet synthesis filterbank.

The problem of recovery of from the interior Radon trans-
form is called the interior problem or region of interest
tomography. The interior problem in dimension two is not
uniquely solvable, i.e., there are functions that are not zero in
the ROI but whose projections on lines intersecting that region
are zero. However, these functions do not vary much inside
the ROI, and in fact a crude approximation to the missing
projections suffices to approximatewell inside the region of
interest up to an additive constant [23].

B. Reconstruction

The basic formula for inverting the Radon transform is
based on the fact that the Fourier transform of the Radon
transform with respect to the variableis the Fourier transform
of the function along a line passing through the origin. This
property is known as the projection theorem or Fourier slice
theorem, as follows:

Thus, the Fourier transform of the projections at enough angles
could in principle be assembled into a complete description
of the 2-D Fourier transform of the image and then simply
inverted to arrive at the function Using the polar Fourier
inversion formula and the Fourier slice theorem, we can
reconstruct the function from the projection data by

(1)

The above formula, called the filtered backprojection formula,
can be implemented in two steps, the filtering step, which in
the Fourier domain can be written as

(2)

and the backprojection step

(3)

Because is not bounded and filtering by this filter tends to
magnify the high-frequency noise, it is expedient in practice

to multiply this operator by a smoothing window as

(4)

Therefore, the reconstruction will result in an approximation
of rather than itself. Normally the approximation has the
form where is an approximate delta function, called
the point spread function (psf) [18]. The psfis related to

by

C. Nonlocality of RT Inversion

In (2), the Radon transform data is filtered by This
operation can be formulated in the space domain as

where is the Hilbert transform on and is ordinary
differentiation. In the above equation the derivative part is a
local operator, but the Hilbert transform

(5)

introduces a discontinuity in the derivative of the Fourier
transform of a function at the origin. Hence, the Hilbert
transform of a compactly supported function can never be
compactly supported. This means that RT inversion based
on (1) can not be accomplished locally; that is, in order
to recover exactly at a point all projections of are
required and not just those on lines passing nearIt has
been noted that the above mentioned filtering will not increase
the essential support of a function if the function’s Fourier
transform vanishes to high order at the origin [2], [8]. Wavelets
that are in general constructed with as many zero moments as
possible are good candidates for these functions.

III. W AVELET RECONSTRUCTION

A. Continuous Wavelet Transform

The wavelet transform has been an increasingly popular tool
for signal and image processing. The transform decomposes
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Fig. 2. Wavelet reconstruction from projection data; the multiresolution reconstruction filterbank (MRFB) is the wavelet synthesis filterbank (Fig. 1).

the signal onto shifts and dilates of a function called the mother
wavelet. In two dimensions, the wavelet transform is defined
as follows. Let satisfy

(6)

Let and define the continuous wavelet
transform of on by

(7)

where and and
In order to reconstruct the functionfrom its wavelet

transform, we use

B. Multiresolution Wavelet Representation

In practice, one prefers to writeas a discrete superposition
of wavelets, therefore we define the discrete wavelet transform
by

which is derived from (7) by setting and where
and

Below we describe a multiresolution analysis approach to
recovering from its discrete wavelet transform (precise
definitions and further details can be found in [17]). Let

be the operator that approximates a measurable func-
tion with finite energy at resolution

We consider the vector space as the
set of all possible approximations at the resolution of
functions in such that For

each multiresolution approximation there exists a unique
function called a scaling function. Let

the Fourier transform of denoted
by is defined as

The Fourier transform of is given by

and

Define the function the mother wavelet, by
where It can be

shown that

if

if

Letting

(8)

forms an orthonormal basis for in a multiresolution ap-
proximation in where

The projection of
onto can therefore be computed in this case by
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The discrete approximation at resolution is defined by

(9)

where and The difference be-
tween the approximation and called
the detail signal at resolution corresponds to the projection
of on the orthogonal complement of in denoted
by Let

(10)

then the set of functions

where is an orthonormal basis
for The projection of on the vector space
is given by

The detail coefficients are given by

(11)

where and Fig. 1(a) shows
the conventional filterbank, which is usually used to obtain
approximation and details of a signal.

The discrete approximation at resolution can be ob-
tained by combining the detail and approximation at resolution

i.e.,

(12)

Therefore, in order to recover the approximation at level ,
the approximations at level are filtered by and
the detail coefficients are filtered by and

, respectively. These wavelet reconstruction filters in
the Fourier domain are given by

(13)

Fig. 1(b) shows the block diagram of the analysis fil-
ter bank which obtains the approximation at levelfrom
the approximations and detail at level This block
diagram can be used in a pyramidal structure to recon-
struct the approximation at resolution 1, from the set

In those applications that we are
interested in namely recovering a local region of the image
from the approximate and detail coefficients, we have to
calculate these coefficients for that region plus a margin for
the support of the wavelet reconstruction filters. That margin
is equal to half of the length of the filters and

C. Wavelet Reconstruction from the Projection Data

In this section, we present an algorithm that can be used to
obtain the wavelet coefficients of a function on from its
Radon transform data. In those applications for which one is
interested in the wavelet coefficients of the function, it involves
fewer computations than first reconstructing the function and
then taking its wavelet transform. Also using this method, one
can obtain locally the wavelet coefficients of a function, which
will allow the local reconstruction of a function and can be
used in local tomography. This property will be explained
in Section IV. We first introduce the main formulas for the
reconstruction of the continuous wavelet transform directly
from the Radon transform data.

Given a real-valued, square integrable functionon
that satisfies condition (6), let be given on the wavelet
transform of function can be reconstructed from its 1-D
projections by

(14)

where In the discrete case the above
equation becomes

(15)
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(a) (b)

(c) (d)

Fig. 3. Wavelet with less dissimilar lengths,l = k =
~k = 4: (a) Scaling function. (b) Wavelet basis. (c) Ramp-filtered scaling function. (d)

Ramp-filtered wavelet basis.

where The right-hand side can be evaluated in
two steps, the filtering step,

and the backprojection step

(16)

The filtering step can be implemented in Fourier domain as

where and are the Fourier trans-
forms of the functions and respectively, and

is a smoothing window. Therefore, (15) can be imple-
mented using the same algorithm as the conventional filtered
backprojection method while the ramp filter is replaced by
the wavelet ramp filter

If the wavelet basis is separable, the approximation
and detail coefficients are given by (9) and (11). These
coefficients can be obtained from the projection data by
(15), replacing by

and ,
respectively. For example, the approximation coefficients are

obtained by

(17)

These coefficients can be calculated using the standard filtered
backprojection method, while the filtering part in the Fourier
domain is given by

where The
detail coefficients can be found in a similar way as

for (18)

To get the detail coefficients, the filtering step is modified as

for

This means that the wavelet and scaling coefficients of the
image can be obtained by filtered backprojection method while
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(a) (b)

(c) (d)

Fig. 4. Wavelet with extremal phase and highest number of vanishing moments with length 4. (a) Scaling function. (b) Wavelet basis. (c) Ramp-filtered
scaling function. (d) Ramp-filtered wavelet basis.

the ramp filter is replaced by

(19)

which are called the scaling and wavelet ramp filters. In
order to obtain pyramidal wavelet coefficients, the and

are found using (18) and
(17). To reconstruct the image from these coefficients, we use
the multiresolution reconstruction formulas (12). Fig. 2 shows
the block diagram of the multiresolution reconstruction system.
The reconstruction part uses the conventional multiresolution
reconstruction filterbank (cf. Fig. 1), which appear as black
boxes in the block diagram.

IV. L OCAL RECONSTRUCTION

It has been noted [2], [8] that if a function has a large
number of vanishing moments (or, equivalently, if its Fourier
transform vanishes to high order at the origin), then its
Hilbert transform will decay very rapidly at infinity. If a
compactly supported function has this property, then the
essential support of its Hilbert transform (5) should not be
large. This phenomenon is in part a manifestation of the
observation made in [20] that an integral operator with singular
kernel of Calderon–Zygmund type is almost diagonalized in
a wavelet basis.

More specifically, the following holds.
Lemma 1: Suppose that outside the interval

and satisfies for
Then for

Proof: Assume that The argument for is
the same. Since
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Fig. 5. Normalized error (23) versus the number of remaining coefficients. (a) Biorthogonal wavelet with less dissimilar lengths ([15, Tab. III]). (b)
Orthogonal wavelet with extermal phase and highest number of vanishing moments with length 4 ([16, Tab. 6.2]).

since outside and since

Fixing and expanding in a Taylor series about
gives for some

Since so that

The significance of this observation for local tomography
is the following. If is the wavelet corresponding to the
scaling function for a multiresolution analysis, then at
least the zeroth moment of must vanish. It is possible to
design wavelets that have compact support and have many
vanishing moments. In this case, the functions
where are given by (10), will have very rapid
decay for each Numerically, even for wavelets with a few
vanishing moments, the essential support of is the
same as the support of for each This means that by
(14), the discrete wavelet coefficients (18) can be computed
locally using essentially local projections.

Rapid decay after ramp filtering is also observed in scaling
functions provided that has vanishing moments. Specif-
ically, if satisfies and for

then satisfies

Fig. 6. Exposure percentage versus the size of the ROI.

and for Therefore, as
in Lemma 1, it follows that

Even though the decay is dominated by the term, ramp-
filtered scaling functions with vanishing moments display
significantly less relative energy leakage outside the support
of the scaling function than those without vanishing moments.

In order to quantify this locality phenomenon, we define
the spreadof a function with respect to an interval under
ramp-filtering to be the normalized energy of the function

outside i.e., with denoting the complement
of

The rapid decay of the ramp-filtered scaling functions is
related to the number of vanishing moments of the scaling
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(a) (b)

Fig. 7. (a) Projection of a null-space element. (b) Reconstruction of the null-space element.

function. Orthonormal wavelets corresponding to scaling
functions with vanishing moments have been called “coiflets”
by Daubechies in [6, Sec. 8.2]. For coiflets with 1 and 3
vanishing moments, supported on the intervals [0, 5], and [0,
11], respectively, we have measured spreads with respect to
these intervals of .016 and .013, respectively. These scaling
functions correspond to scaling filters with 6 and 12 taps,
respectively. Daubechies has also observed in [6, Sec. 8.3.5],
that the symmetric biorthogonal bases constructed in [15]
are numerically very close to coiflets. For the biorthogonal
“near-coiflet” scaling functions supported on the intervals [0,
4], [0, 8], and [0, 12], we have measured spreads with respect
to these intervals of .029, .016, and .0095, respectively. These
scaling functions correspond to scaling filters with 5, 9, and
13 taps, respectively. For the purposes of this paper, it is most
desirable to minimize both the spread of the scaling function
and the number of taps in the corresponding filter. Under
these criteria, the near-coiflet filter with 5 taps is near optimal
[see Fig. 3(a) and (c) and Fig. 5(a)] and is therefore used in
our simulations. The measured spreads for various compactly
supported wavelet and scaling functions are given in

Table I. We have observed that even ifis replaced by scaling
function given by (8), has essentially the same support
as for each Fig. 3 shows the Daubechies’ biorthogonal
wavelet and scaling function ([15, Table III]) as well as the
ramp filtered version of these functions. Observe that the ramp-
filtered scaling functions has almost the same essential support
as the scaling function itself.1 Therefore, in order to reconstruct
the wavelet and scaling coefficients for some wavelet basis, we
only need the projections passing through the region of interest
plus a margin for the support of the wavelet and scaling ramp
filters. Moreover, in order to reconstruct the image from the
wavelet and scaling coefficients, we have to calculate these
coefficients in the ROI plus a margin for the support of the
wavelet reconstruction filters (13). Since wavelet and scaling

1This is not the case in general, for example, in Fig. 4 we have plotted
another wavelet and scaling functions ([16, Tab. 6.2]) and their ramp-filtered
versions, for comparison. The scaling function in this basis does spread
significantly after ramp filtering.

Fig. 8. Maximum error and average error versus the amount of nonlocal
data used in the reconstruction scheme.

ramp filters and also the wavelet reconstruction filters get
wider in lower scales, we need to increase the exposure to
reconstruct the low resolution coefficients in the ROI. In our
algorithm, we can reconstruct the scaling coefficients locally,
and we use only one level of the wavelet filterbank.

A. Error Analysis

It is mentioned in [23] that the error in the interior Radon
transform is not negligible because the derivative Hilbert
transform (the impulse response of the filter is not local
in space. This means that in order to reconstruct even a small
local ROI we have to consider some data outside the region
of interest to get negligible reconstruction error. We will find
an upper bound for the reconstruction error, in terms of the
amount of nonlocal data that we consider in the reconstruction.
We will also compare the upper bound of the error in a locally
reconstructed image using our algorithm to the upper bound
of the error when we use the standard filtered backprojection
method with local data. For simplicity of notation, we assume
the ROI and region of exposure (ROE) are centered at the
center of the image. Consider the filtered backprojection
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TABLE I
SPREAD OF WAVELET AND SCALING FUNCTIONS

Filter Coefficients Support Wavelet Spread Scaling Spread
Haar 1

1
[0,1] .3837 .6900

Linear spline 0.50000000000000
1.00000000000000
0.50000000000000

[0,2] 0.09167 0.3726

Quadratic spline 0.25000000000000
0.75000000000000
0.75000000000000
0.50000000000000
0.25000000000000

[0,3] 0.01691 0.1959

Cubic spline 0.12500000000000
0.50000000000000
0.75000000000000
0.50000000000000
0.12500000000000

[0,4] 0.003767 0.1389

Degree 4 spline 0.06250000000000
0.31250000000000
0.62500000000000
0.62500000000000
0.31250000000000
0.06250000000000

[0,5] 0.0009341 0.1105

Daubechies 4 tap filter 0.68301270189222
1.18301270189222
0.31698729810778
�0.18301270189222

[0,3] 0.03391 0.3449

Daubechies 6 tap filter 0.47046720778416
1.14111691583144
0.65036500052623
�0.19093441556833
�0.12083220831040
0.04981749973688

[0,5] 0.005446 0.1929

Daubechies 8 tap filter 0.32580342805100
1.01094571509000
0.89220013842700
�0.03957026356000
�0.26450716736900
0.04650360107100
�0.01498698933040

[0,7] 0.001058 0.1232

Daubechies 10 tap filter 0.22641898258329
0.85394354270476
1.02432694425952
0.19576696134736
�0.34265671538239
�0.04560113188406
0.10970265864207
�0.00882680010864
�0.01779187010184
0.00471742793840

[0,9] 0.0002376 0.08907

Coiflet with 1 moment vanishing �0.05142972847100
0.23892972847100
0.60285945694200
0.27214054305800
�0.05142997284700
�0.01107027152900

[0,5] 0.0003069 0.01613

formula (1), while the ramp filter is replaced by a general
angle dependent filter

(20)

We assume that for each angle the projection
data is sampled with a radial sampling interval of

and the support of is a disk of radius centered at
the origin. The region of interest, a disc of radiuspixels
centered at the origin, will be denoted by ROI, and the region
of exposure, a disc of radius pixels centered at the origin,

will be denoted by ROE. If is chosen to be the impulse

response of the ramp filter (2), the reconstructed function

is an approximation of the function and if it is the

impulse response of the wavelet and scaling ramp filters (19),

the reconstructed function will be the approximation

of the wavelet and scaling coefficients. The discrete version

of (20) is given by
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TABLE I
SPREAD OF WAVELET AND SCALING FUNCTIONS (continued.)

Filter Coefficients Support Wavelet Spread Scaling Spread
Coiflet with 3 moments vanishing 0.01158759673900

�0.02932013798000
�0.04763959031000
0.27302104653500
0.57468239385700
0.29486719369600
�0.05408560709200
�0.04202648046100
0.01674441016300
0.00128920335600
�0.00050950539900

[0,11] 0.000006154 0.01307

Near coiflet (5 taps) �0.05000000000000
0.25000000000000
0.60000000000000
0.25000000000000
�0.05000000000000

[0,4] 0.001682 0.02890

Near coiflet (9 taps) 0.01250000000000
�0.03125000000000
�0.05000000000000
0.28125000000000
0.57500000000000
0.28125000000000
�0.05000000000000
�0.03125000000000
0.01250000000000

[0,8] 0.00005151 0.01632

Near coiflet (12 taps) �0.00317382812500
0.00585937500000
0.01904296875000
�0.04882812500000
0.04760742187500
0.29296875000000
0.56347656250000
0.29296875000000
�0.04760742187500
�0.04882812500000
0.01904296875000
0.00585937500000
�0.00317382812500

[0,12] 0.000001515 0.009547

where is the total
number of evenly spaced angles at which the projections are
measured, is the projection and

We can divide the inner summation into two parts,
corresponding to the ROE and its complementROE

Thus, the magnitude of error using only ROE is given by

To get an upper bound for the error we use the

Cauchy–Schwartz inequality as

If we assume that the support of is in the disc of radius
1, then Hence
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. (a) A sample projection with the Shepp–Logan head phantom. (b) Projection filtered byj!j. (c) Projection when nonlocal data is set to zero. (d)
Filtered projection. (e) Projection extrapolated outside the ROI. (f) Filtered projection. (The marked area is the ROE.)

We define the relative error as
then

(21)

In the worst case, the ROI is a single point. Thus we may
bound (21) by

We define the truncated filter, as

otherwise.
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Therefore

The inner sum can be written in the frequency domain. That is

(22)

where and are the Fourier transform of and
, respectively. In order to calculate the upper bound of the

error in standard filtered backprojection method, we replace
in (22) by the ramp filter (2). The upper bound for the

error in the reconstruction of wavelet and scaling coefficients
can be obtained by replacing in (22) with (19). In our
algorithm, the scaling and wavelet coefficients at resolution

are reconstructed directly from the projection data. The
recovered coefficients are then filtered by the reconstruction
filters (13) to obtain the original image. To consider the effect
of the wavelet reconstruction filterbank in the error upper
bound, we move these filters to the projection domain, i.e.,

(23)

where

where and

with and

being the ramped scaling and wavelet filters (19),

and the wavelet reconstruction filters

(13), and the truncated versions of the

filters and The normalized upper bound
of the relative error in the reconstructed image, versus the
amount of nonlocal data is depicted in Fig. 5. These
bounds are given by (22) and (23) for the standard filtered
backprojection method and our algorithm, respectively. The
horizontal axis in Fig. 5 shows the amount of nonlocal data
that is collected in order to reconstruct the ROI.

B. Interior Problem

The interior problem in even dimensions is not uniquely
solvable, since there are nonzero functions that have zero
projections on the ROE. Clearly, our algorithm will be unable
to reconstruct such a function. It has been noted that these
functions, which are in the null-space of the interior problem,
do not vary much well inside the ROE [23].

To illustrate this, we will reconstruct an element of the null-
space and measure the variation of this element on the ROI.
We assume that the ROI is the interior 32 pixels of the image
and ROE is the ROI plus a margin of 22 pixels in each side.
This margin shows the amount of nonlocal data used in the
reconstruction scheme. Fig. 7(b) shows a slice of a circularly
symmetric element of the null-space. The projection of this
element for each angle is shown in Fig. 7(a) . The projections
are zero inside the ROE, which is the interior 76 pixels of the
projections, and one in 16 pixels at each side of the ROE. The
measured maximum variation of the null-space on the ROI is
less than 1%. We consider two measure criteria for the error in
the local reconstruction: the maximum error and the average
error. Since, in our approach, most of the error occurs in a
small ring at the boundary of the ROI, the average error is
an order of magnitude smaller than the maximum error. The
maximum error and the average error of the null-space element
on the ROI versus the amount of nonlocal data (the difference
of the radius of the ROE and ROI) is shown in Fig. 8. Based
on the upper limit on the average error or maximum error,
we determine the size of extra margin to collect the nonlocal
data. In order to limit the maximum error to 1%, we require
a margin of 22 pixels, and in order to limit the average error
to 1%, we require a margin of 12 pixels.

In Section V, we will present a method to reduce the error
at the boundaries of the ROI. In consequence, the amount of
error is much smaller than the upper bound predicted by the
null space element energy in the ROI. In Section VI, we will
show that the reconstruction of the ROI using only 12 pixels of
extra margin results in a reconstruction with negligible error
in the ROI.

In the sequel, we calculate the amount of exposure versus
the size of ROI in our method and previous methods. Let
the support of reconstruction filters in the wavelet filterbank
be samples. And also consider an extra margin of
samples in the projection domain, and denote the radius of the
region of interest by The radius of the region of exposure
is pixels. The amount of exposure in our
algorithm normalized to the full exposure is given by

The amount of exposure in our algorithm with
pixels and pixels is plotted in Fig. 6. In the
Delaney and Bresler’s algorithm [9] the exposure is given by
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(a) (b)

Fig. 10. (a) Complexity of filtering part. (b) Total complexity.

(a) (b)

Fig. 11. (a) Wavelet coefficients. (b) Reconstruction from wavelet coefficients.

where is the number of levels in the wavelet filterbank.
Similar exposure is required in DeStefano and Olson’s algo-
rithm [8]. Fig. 6 shows the relative amount of exposure versus
the size of the region of interest in a 256 256 image for

pixels for these methods. Also the amount
of exposure for [11] is plotted for comparison. All of the
exposures in Fig. 6 are divided by two if we use interlaced
sampling.

V. IMPLEMENTATION

A. Practical Considerations

In local reconstruction, artifacts are common close to the
boundary of the ROE. To illustrate this, we consider the
Shepp–Logan head phantom and an ROE of diameter 32 pixels
at the center of the image. We set the projections outside the

ROE to zero [see Fig. 9(c)] and apply the filtering part of the
filtered backprojection formula (2) to the remaining projec-
tions. Fig. 9(d) shows the artifacts that appear at the borders
of the region of exposure. When the backprojection formula
is applied to the filtered projections, these artifacts cause
large errors at the borders of the ROE in the reconstructed
image.

In order to avoid the artifacts, we have extrapolated the
projections continuously to be constant on the missing pro-
jections. The extrapolation scheme is the same even when
the ROE is not centered. Let the ROE’s, which is the sub-
set of projections on which is given, be a circle of
radius whose center is located at polar coordinates
i.e,

(24)
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(a) (b)

(c) (d)

Fig. 12. Local wavelet reconstruction. (a) Wavelet coefficients. (b) Reconstruction from wavelet coefficients; blowup of the region of interest. (c)
Reconstruction using wavelet method (local data). (d) Reconstruction using standard filtered backprojection method (global data).

We use the constant extrapolation

(25)

Fig. 9(e) and (f) shows an extrapolated projection and its
ramp-filtered version (2), respectively. When we apply the
ramp filter to the extrapolated projection, there is no spike
at the edge of the region of exposure. The comparison with
the ramp-filtered version of the projection using global data
[see Fig. 9(b)] shows that the filtered projection has a constant

bias difference compared to the one using global data. This
is natural in local tomography and, after backprojection of
all projections, appears as a constant bias in the locally
reconstructed image [23], [25]. In [23], it is suggested to
extrapolate the data outside the ROI using a minimum norm
approach, which has the same effect on the artifacts (cf., [23],
Fig. VI.8).

B. Algorithm

We assume the support of image is a disc of radiusand
the radius of the ROI is A region of radius
is exposed, where and are the extra margin due to
the support of the decomposition filters in the projection
domain and the reconstruction filters in the image domain,
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(a) (b)

Fig. 13. (a) Wavelet coefficients. (b) Reconstruction from wavelet coefficients.

respectively. Suppose the projections are sampled atevenly
spaced angles. In the following we summarize the algorithm.

1) The region of exposure of each projection is filtered by
modified wavelet filters (2), at angles. The complexity
of this part, using FFT, is

2) The bandwidth of the projections is reduced by half
after filtering with modified scaling filters. Hence, we
use of the projections at evenly spaced angles.
These projections are extrapolated to pixels, using
(25), and are then filtered by modified scaling filters.
The complexity of filtering part using the fast Fourier
transform (FFT) is

3) Filtered projections are obtained in step 1 and 2 are
backprojected to every other point, using (16), to obtain
the approximation (17) and detail (18) coefficients at
resolution The remaining points are set to zero.
The complexity of this part, using linear interpolation,
is

4) The image is reconstructed from the wavelet and scal-
ing coefficients by (12). The complexity of filtering is

We have compared the complexity of the filtering part
of our algorithm with the filtered backprojection method
and the algorithm presented in [9]. Fig. 10(a) shows the
complexity of each method as a function of the radius of
the region of interest. The complexity of our algorithm and
the algorithm proposed in [9] is less than the standard filtered
backprojection method when the size of the ROI is small. But
as the radius of the ROI is increased, the complexity of both
algorithms exceeds that of filtered backprojection, since in both
methods we have to apply filtering for different resolutions.
However, the complexity of our algorithm is smaller than
Bresler/Delaney’s algorithm because of smaller length of
projections. If we use linear interpolation at the backprojection
part, the total complexity depends on the backprojection part,

which is almost the same in all of the above methods. Fig.
10(b) shows the total complexity of different methods. If, in
the backprojection step, we use another method like the nearest
neighbor, the total complexity mostly depends on the filtering
part and our algorithm can reduce the complexity compared
to the method in [9].

VI. SIMULATION RESULTS

We have obtained the wavelet and scaling coefficients of the
256 256 pixel image of the Shepp–Logan head phantom
using global data (Fig. 11). In this decomposition, we used
the Daubechies’ biorthogonal basis [15, Tab. III]. The quality
of the reconstructed image is the same as with the filtered
backprojection method. Fig. 12 shows an example in which
a centered disk of radius 16 pixels is reconstructed using the
local reconstruction method proposed in this paper. Fig. 12(c)
and (d) shows the blow up of the ROI using both standard fil-
tered backprojection using global data and local reconstruction
for comparison. In this example the projections are collected
from a disk of radius 28 pixels, therefore the amount of
exposure is 22% of the conventional filtered backprojection
method. We have observed a constant bias in the reconstructed
image, which is natural in the interior reconstruction problem
[23], [25]. In the above example, the mean square error (MSE)
between the original image and the locally reconstructed image
after removing bias is computed over the region of interest.2

The error energy in the reconstructed image is the same as
filtered backprojection method using full exposure data.

2The MSE is calculated using this equation

1

N
(n;m):(n;m)2ROI

(f(n;m)� f̂(n;m))2

wheref is the original image,̂f is the reconstructed image with the constant
bias removed, andN is the number of pixels in the ROI.
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(a) (b)

(c) (d)

Fig. 14. Local wavelet reconstruction. (a) Wavelet coefficients. (b) Reconstruction from wavelet coefficients; blowup of the ROI. (c) Reconstruction using
wavelet method (local data). (d) Reconstruction using standard filtered backprojection method (global data).

The proposed method is applied to the real data obtained
from a CT scanner. In the local reconstruction even with 12
pixels extra margin, the reconstructed image has the same qual-
ity as the filtered backprojection method. Fig. 13 shows a 1024

1024 scan of heart reconstructed from projections sampled
at 720 angles over 180with each projection consisting of
1024 samples covering a recon diameter of 47.5 cm. Using
our algorithm, a local centered region of radius 128 pixels
of this scan has been reconstructed by using only 27% of
exposure (see Fig. 14). The reconstruction in the region of
interest is as good as what can be obtained using the filtered
backprojection method, which involves global data and 100%
exposure. The blow-up of the ROI reconstructed by our local
method and global standard filter backprojection is shown in
Fig. 14(c) and (d), respectively.

In order to make an accurate comparison with other meth-
ods, most notably those described in [8], [9], and [11], we
consider two measure criteria for the error in local reconstruc-
tion, the maximum relative error (21), and the average relative
error. Since most of the error in our reconstructions occurs in
a small ring at the boundary of the ROI, the average error is
an order of magnitude smaller than the maximum error. This
determination is based on the examination of a typical element
of the nullspace of the interior Radon transform. Based on the
examination of this element, and on other considerations, we
fix the size of the margin outside of the region of interest,
on which we collect data. In order to limit the maximum
error to 1%, we require a margin of 22 pixels, and in order
to limit the average error to 1%, we require a margin of
12 pixels (see Fig. 8). Since we are doing extrapolation in
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addition to collecting nonlocal data, the actual error is much
smaller than the values predicted by examining the nullspace
element. Hence, we believe that the 1% average error criterion
is the most reasonable in light of the nature of our algorithm.
Therefore, the 12-pixel margin is used in our simulations, but
we also report comparisons based on the 22-pixel margin.

VII. CONCLUSION

We have developed an algorithm to reconstruct the wavelet
and scaling coefficients of a function from its Radon transform.
Based on the observation that for some wavelet bases with
sufficiently many zero moments, the scaling and wavelet func-
tions have essentially the same support after ramp filtering, we
have developed a local reconstruction scheme to reconstruct
a local region of a cross section of a body with essentially
local data. An upper bound for the local reconstruction error
is obtained in terms of the amount of nonlocal data which
is used in the reconstruction scheme. Nonuniqueness of the
interior problem appears as a constant bias in the reconstructed
image. The measured error between the original image and the
reconstructed image after removing this bias is negligible. This
fact shows that if we use a sufficient amount of nonlocal data
in the reconstruction, this bias is reasonably constant on the
ROI.
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