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Algorithm-Based Low-Power/High-Speed
Reed–Solomon Decoder Design

Arun Raghupathy, Member, IEEE,and K. J. R. Liu, Senior Member, IEEE

Abstract—With the spread of Reed–Solomon (RS) codes to
portable wireless applications, low-power RS decoder design
has become important. This paper discusses how the Berlekamp
Massey Decoding algorithm can be modified and mapped to
obtain a low-power architecture. In addition, architecture level
modifications that speed-up the syndrome and error computations
are proposed. Then the VLSI architecture and design of the pro-
posed low-power/high-speed decoder is presented. The proposed
design is compared with a normal design that does not use these
algorithm/architecture modifications. The power reduction when
compared to the normal design is estimated. The results indicate
a power reduction of about 40% or a speed-up of 1.34.

Index Terms—Berlekamp Massey algorithm, Channel coding,
decoding, error-correction coding, Forney’s method, high-speed
integrated circuits, low power systems, parallel algorithms, par-
allel architectures, Reed–Solomon codes, very-large-scale integra-
tion, .

I. INTRODUCTION

ERROR-CONTROL codes are used widely in communica-
tion systems to combat channel noise. These codes pro-

tect data from errors by introducing redundancy selectively in
the transmitted data. Error-control codes are also used in storage
systems to protect the data from errors that are introduced during
the process of reading the data.

Error-control codes can be classified into convolutional and
block codes. Reed–Solomon (RS) codes are linear block codes.
Primitive RS codes are also cyclic. RS codes belong to the class
of nonbinary Bose–Chaudhuri–Hocquenheim (BCH) codes. RS
codes are among the most widely used block codes because they
are capable of correcting burst errors as well as random errors.
In addition, efficient decoding algorithms have been developed
for RS codes.

A concatenated coding scheme consisting of a convolutional
inner code (i.e., applied last, removed first) and an RS outer code
(i.e., applied first, removed last) has been accepted as a standard
for space communications [1]. In audio compact discs [2], a pair
of cross-interleaved RS codes are used to protect against errors
that occur due to imperfections in the read process. RS codes
are used in the U.S Cellular Digital Packet Data (CDPD) service
[3] to protect user data. RS codes are being considered for use
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in xDSL (Digital Subscriber Line) services to protect the data
from impulse noise [4]. RS codes are good candidates for use
in wireless communication systems as a part of a concatenated
coding system, along with convolutional codes [5], [6].

An primitive RS code defined in the Galois field
has code words of length , where

is a positive integer and is the number of information
symbols in the codeword. This RS code has minimum distance

and has redundant symbols. The gener-
ator polynomial of the code is ,
where is a primitive element in and is an integer
constant. This implies that these consecutive powers of

are roots of every codeword polynomial. This property has
been used to develop many efficient decoding algorithms for
RS decoding.

Let denote the error vector. Note that
if no error occured at position. Also, denotes

the actual value of the error introduced by the channel at posi-
tion . Assume further that errors have occured at positions

. The symbols of the possibly corrupted
word received from the channel can be written in terms of the
codeword symbols and the error symbols as
for . Then the decoding problem is to find
the error values and the error locations .
The received polynomial can be formed from the received
symbols as . The error locator
polynomial is defined as . The
syndromes are defined as
for and written in polynomial form as

. Thekey equationcan then be written as

(1)

where is the error magnitude polynomial with
. The solution of this equation plays a

pivotal role in the decoding process.
Below, we briefly review and summarize the various RS

decoding algorithms. The RS decoding algorithms can be
classified as shown in Fig. 1. On the left side of Fig. 1,
all the algorithms that involve syndrome computation are
shown. We will discuss these algorithms first. Once the
syndrome has been computed, the next step is to solve the
key equation to obtain the error locator polynomial. Peterson
[7] proposed a solution to this problem which was later
improved and extended by Gorenstein and Zierler [8]. Their
approach was to write a set of equations involving the un-
known error locator polynomial coefficients and the known
syndromes, and then, solve the system of equations for the
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Fig. 1. Overview of RS decoding techniques.

error locator using direct matrix inversion techniques. These
matrix inversions become computationally inefficient for
large . It can be mentioned that for small (for example
in compact disc systems), closed form expressions for the
error locations and error values in terms of the syndromes
can be obtained. An efficient technique for finding the error
locator was first proposed by Berlekamp [9]. Massey [10]
interpreted this algorithm in terms of linear feedback shift
register (LFSR) synthesis (this algorithm is referred to in the
literature as the Berlekamp Massey algorithm). Sugiyama
[11], [12] recognized that the key equation could also be
solved by applying Euclid’s greatest common divisor (GCD)
algorithm to obtain the error locator polynomial efficiently.
Once the error locator polynomial has been obtained, the
error values can be computed in the time or frequency
domains. In the frequency domain, the error transform is
found by recursively extending [13], [12] the syndromes
and the error vector is then found by applying an inverse
Fourier transform (FT). In the time domain, the roots of
the error-locator polynomial are found by a Chien search
[14]. Then, the error values may be found either by solving
the linear set of equations directly or by using a technique
called Forney’s method [15]. Forney’s method also requires
computation of . Berlekamp’s algorithm can be used to
compute by using a parallel set of iterations. can
also be obtained from Euclid’s algorithm by maintaining

some additional information [12] during the iterative process.
Alternately, can be directly computed using the key
equation after has been computed.

Decoder implementations that use the syndrome are gener-
ally based on one of the above algorithms. Liu [16] proposed a
RS decoder design that used Massey’s shift register synthesis,
followed by recursive extension of the error transform and, fi-
nally, an inverse FT to get the error vector. Shaoet al. [17] and
Demassieuxet al. [18] based their decoder designs on Euclid’s
algorithm to find the error locator polynomial. Then the error
transform was recursively extended and, finally, an inverse FT
was performed to get the error values. Shao and Reed [19], Tong
[20], Whitakeret al. [1], and Berlekampet al. [21, Ch. 10] used
Euclid’s algorithm in their decoders to find the error locator
and the error magnitude polynomials. Then, Chien search was
used in conjunction with Forney’s algorithm to calculate the
error values. The implementation of Euclid’s GCD algorithm
was generally based on the systolic array proposed by Brent
and Kung [22]. The computational complexity of the syndrome
based approach that uses either the Berlekamp algorithm or Eu-
clid’s method followed by the Chien search is .

Another approach [23], [12] shown on the right side of Fig. 1,
avoids the computation of the syndrome. Here, the algorithm
(either the Berlekamp–Massey or the Berlekamp algorithm) is
transformed so that all its variables are in the time domain.
This is achieved by taking the Inverse FT of all sequences in
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the original algorithm. Hence, this algorithm is sometimes re-
ferred to as transform decoding without transforms. Shayanet
al. [24] designed a versatile decoder based on this technique
that can decode any RS code over . The decoder was
based on a transformed version of the Berlekamp Massey algo-
rithm and time domain recursive extension. The disadvantage
is that the computational complexity is . Therefore, this
technique can be used only for small blocklengths. Choomchuay
and Arambepola [25] proposed an architecture based on a reor-
ganized form of the computation in [23] that reduces the com-
putational complexity. However, the storage requirements are

. Hsu and Wang [26] proposed some modifications to [25]
that reduced the storage requirements to . While the order
of the computational complexity in [25] and [26] is reduced to

, the actual complexity remains larger than for the syn-
drome-based Berlekamp algorithm.

In Section II, we summarize our approach to low-power/high-
speed RS decoding. In Section III, we discuss how the
Berlekamp algorithm can be modified to enable a low-power
VLSI architecture/design. We first discuss modifications to
the errors-only Berlekamp algorithm in Section III-A. We
later extend these modifications to the errors-and-erasures
Berlekamp algorithm in Section III-B. In Section IV, we
discuss the VLSI architecture of an RS decoder including,
specifically, architecture level techniques for the syndrome
and error computations. In addition, we compare architecture
level power estimates for the normal and modified designs.
We also specify under what conditions power reduction can be
expected. In Section V, we discuss the VLSI chip design of the
normal and modified decoders. We also discuss the synthesis
and layout results which show that the power consumption
can be reduced by 40%. Finally, in Section VI, we present
concluding remarks.

II. THE ALGORITHM/ARCHITECTURE-BASED APPROACH

Until recently, the two key parameters in VLSI design were
area and speed. Power consumption was a consideration only
in order to reduce packaging and cooling costs for the chip.
With the proliferation of portable devices, power consumption
has become a primary design parameter. This is because power
consumption determines the battery lifetime in portable sys-
tems. Algorithm/architecture-level transformations can poten-
tially have the greatest impact. This is because, at the algorithm
level, maximum design flexibility is available. In addition, de-
vice- and circuit-level techniques can be applied independent
of these algorithm/architecture-level techniques to obtain fur-
ther power savings. We therefore focus on algorithm/architec-
ture-level techniques to obtain low-power RS decoding.

Various algorithm/architecture-level transformations
[27]–[31] have been proposed in the literature. The transfor-
mations proposed include algebraic transformations [28] (such
as associativity, distributivity, etc.), loop-unrolling/look ahead
transformations [32] that try to break the recursive loops,
retiming [27], folding/unfolding [33] transformations, and
strength reduction [34]. These transformations can be used to
obtain area-efficient high-speed or low-power designs [31],
[35]–[37], depending on the design goal. One of the approaches

Fig. 2. Block diagram for (a) normal decoder and (b) modified decoder.

to reduce the power consumption is to use these transformations
to expose parallelism and enable pipelining in the computation.

Over the last decade, we have seen continued scaling down of
device feature size. This has improved the performance of VLSI
designs in terms of speed. Also, algorithms of increased com-
plexity can be implemented on a single chip. In addition, the
area required to implement a given algorithm has shrunk dra-
matically because of the increased transistor density. It has been
suggested in [30] that low-power operation can be obtained by
modifying the algorithm to enable a parallel implementation. In
other words, we utilize the increase in available transistor count
cleverly to obtain power reduction. The idea can be explained
briefly as follows. The power dissipation in a well-designed dig-
ital CMOS circuit can be modeled as [38]

(2)

where
average probability that the total node capacitance is
switched (also referred to as the activity factor);
effective load capacitance;
supply voltage;
operating clock frequency.

Similarly, the delay of the CMOS device can be approximated
[30] as

(3)

where
capacitance along the critical path;
a device parameter;
threshold voltage of the transistor.

Fig. 2 shows the normal and modified designs. For the mo-
ment, let us assume that such a formulation is possible. We will
show later how transformations can be applied to obtain such a
formulation. The modified design can operate at a slower speed
while maintaining throughput. If, for example, the critical path
delays for the normal and modified designs areand , re-
spectively, at a supply voltage of. Then, the supply voltage
of the modified design can be reduced to to reduce power
(where is chosen such that ). The ratio of power
consumption in the modified design to the normal design

can be written based on (2) as

(4)

where and are the effective capacitances of the normal
and modified designs.
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In this paper, we consider an RS decoding algorithm [39]
that starts with the computation of the syndrome. Then, the
error locator and error magnitude polynomials are computed
using Berlekamp’s algorithm. Finally, the error locations are
found using Chien’s search, and the error values are computed
using Forney’s algorithm. The syndrome computation involves
evaluating the received polynomial at

. The Chien search involves locating the
errors by evaluating at and
comparing the result with zero. The Forney’s algorithm com-
putes the error values by evaluating and at the error
locations. Architecture-level techniques can be used to create
additional parallelism in the syndrome and error-value compu-
tations as we will show later. The computation of the error lo-
cator and error magnitude polynomial is more involved and cre-
ating additional parallelism is more difficult. We will discuss al-
gorithm level techniques that modify the Berlekamp algorithm
to achieve low-power operation. It should be pointed out that
the Berlekamp algorithm and Euclid’s algorithm have the same
computational complexity. We choose to use the Berlekamp al-
gorithm because it possesses some properties that enable the ap-
plication of a look-ahead [32] like transformation.

III. L OW-POWER BERLEKAMP ALGORITHM

As mentioned briefly in the previous section, the error-correc-
tion problem involves finding the location of the errors and their
corresponding values. In particular, we can correct
errors using a code that has a minimum distance. The loca-
tion of erasures are known to the decoder. Correcting erasures,
therefore, involves only finding the erasure values. In general,
any pattern of erasures and errors can be corrected provided

. The Berlekamp algorithm can be used to
solve both problems.

We first consider techniques to modify the Berlekamp algo-
rithm for low-power operation in the context of error correction,
in Section III-A. Then, we extend our approach to solve the er-
rors-and-erasures correction problem in Section III-B. We as-
sume that the number of redundant symbols is given by

so that we can correct up toerror patterns.

A. Errors-Only Decoding

The original Berlekamp algorithm is reproduced here. When
expressed in this form, we can observe some of its properties
that will aid in the development of our algorithm modifications.
Note that the Berlekamp algorithm (Algorithm 1, described
below) computes both the error locator polynomial and
the error magnitude polynomial in parallel (see steps 5a
and 5b of Algorithm 1).

Berlekamp Algorithm: Algorithm 1
0. Initialize:

1. for to
2.
3. if then else
4. if then else

TABLE I
UPDATING �(x); B(x) AND L FOR THE

BM ALGORITHM

5a.

(refer to Table I)

5b.

(refer to Table I)

6. (refer to Table I)
7. end for
8. Output: .

We want to look at updating
to without going through

. In this way, we want to halve the
number of iterations. Of course, this modified iteration will
be more complicated than a single iteration of the original
algorithm. In general, the modified iteration takes time

. In order to get an improved algorithm in terms
of speed/power, it is enough if . In particular, the
modified algorithm must expose additional parallelism so
that the above holds. Ideally, we would like to have as
close to as possible in order to maximize the improvement
in speed or power. We observe that the update matrix for

is the same as that for
(see Steps 5a and 5b in Algorithm 1). This implies that any
transformation that we derive for will apply to
the polynomial pair . We note therefore that the
critical variables to consider when modifying the Berlekamp
algorithm are , , and .

We make several observations about the variables involved in
the Berlekamp algorithm that will enable the transformation to
be performed efficiently. Note that only if
and . This implies that can increase only
once in any two iterations. We can prove this property by con-
tradiction. Let us assume that . This im-
plies that . Also,

. Using in
, we get . Since we cannot

have and , we have obtained a con-
tradiction that completes the proof. Also, observe that
is updated only when increases. Otherwise, is just
shifted. Note that the pair defines a linear feed-
back shift register [12] of minimum size that generates the se-
quence . In other words

(5)
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Fig. 3. Different updating cases when odd and even iterations are considered
together.

for .
Let be the discrepancy at iteration. In what follows,

we refer to as the odd iteration and as
the even iteration. We want to design the modified algorithm
so that the critical variables at the end of the even iteration
of the original algorithm match the variables after theth
iteration of the modified algorithm. Define a new variable

as the discrepancy predicted
for the even iteration. Note from Algorithm 1 that
if (since, in this case ).
We will derive the modified algorithm by starting with

and and considering the
effect of two consecutive iterations of the original algorithm.

Various cases that need to be considered are shown in Fig. 3.
For cases I, II, and III, since , we have for the
odd iteration, and

. This implies that .
For case I, since , we also get

and for
the even iteration.

For case II, we have and
. This implies that

and
.

For case III, we have and
so that

and . Therefore, the final
updates for cases I, II and III can be written as shown in Rows
1, 2, and 3, respectively, of Table II.

For cases IV and V, so that
. For both these cases, in the odd iteration we get

. For
case IV, since , for the odd iteration we get

and .
On the other hand, for case V, for the odd iteration we get

and .
We will use the idea of Massey’s synthesis (as explained in

[12]) to find an update from to for cases
IV and V using the syndromes and variables that can be com-
puted at . We first consider case IV. In this case,
it is impossible for (as explained before).
Therefore,
and . The update equation
for can be written as

. The problem with this update is that in the
modified algorithm there is no direct way to compute

TABLE II
UPDATING �(x); B(x) AND L FOR THE BM ALGORITHM WHERE

G(x) = 1�� � x AND G1(x) = �� x �� x

(since we want to avoid computing
). We approach the problem by writing the update in

terms of and as

(6)

where in an unknown. We know from
the original algorithm that can be written as

, where
is the last iteration for which . We will use the
property that must represent the minimum
length shift register for the sequence . This
implies that . Based on this identity,
we can solve for as follows:

(7)

where . This implies
. The update for can be

written as
. Note that we need

to maintain the variable from one iteration to the other
in the modified algorithm. Observe that the term
needs to be updated only at iteration for . We
will discuss the details of this update after we discuss case V.

For case V, we have
(the last inequality follows

because both and are even). This means that
and . To

obtain the update equation for , we proceed as in
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case IV. The update equation for can be written as
. We can rewrite this

equation as
, where in an unknown.

Again, we use along
with the requirement that to obtain

(8)

This implies . The update
for can be written as

.
Again, we observe that the term appears. We de-
fine a variable that holds at the end of iteration the
value , where is the last iteration of the original
algorithm at which . Therefore, needs to be
updated at iteration if changes in either the even or odd
iteration (i.e., in cases II and IV). In case IV, changes in
the odd iteration. This means that
and . The new value of can be written as

. Similarly, the new value

of can be written as .
In case II, changes in the even iteration. This means
that . The new value of can be written as

. Similarly, the new value of can be written as
. Note

that we need to compute (which can be interpreted as a
2-step predictor for the discrepancy) at each iteration of the
modified algorithm.

We also note that in order to differentiate between the five
cases as shown in Fig. 3, we do not need to test both and

(i.e., we do not need to check both and
). In cases I, II and III, and

this makes the two tests equivalent. This is because

(since is even, cannot equal
). Also,

. In cases IV and V, we need
to test only . This suggests that we can do
away with the test and perform only the test

.
All of the above is summarized in Algorithm 2 and Table II.

Notice that the number of iterations has been reduced to. We
will exploit this fact to obtain a high-speed/low-power imple-
mentation.

The only difference between the Berlekamp Massey synthesis
and the Berlekamp algorithm is that the former computes only

, while the latter computes and in parallel (see
steps 5a and 5b of Algorithm 1).

Up to this point, we have discussed the computation of
without referring to . In Step 5b, are updated
with the same matrix (see step 5b of Algorithm 1).
Therefore, we can apply the modifications discussed above to
step 5b of Algorithm 1 as well to obtain step 9b of Algorithm
2 (described below).

The modified Berlekamp algorithm can be compactly written
as follows:

Low-Power Berlekamp Algorithm: Algorithm 2
0. Initialize

1. for to
2.

3.

4.
5.
6. if then else fi
7. if then else fi
8. if then else fi
9a.

(refer to Table II)

9b.

(refer to Table II)

10. (refer Table II)
11. (refer to Table II)
12. end for
13. Output: .

B. Extension to Errors-and-Erasures Decoding

In this section, we further develop the algorithm modifica-
tions for situations in which we want to correct a combination
of errors and erasures that are present in the received word. An
erasure at a particular position in the received word indicates
that the received symbol at that position is incorrect. Erasure in-
formation is usually available when possible errors are detected
in other parts of the system (for example, by the demodulator or
by the inner decoder in a concatenated coding scheme). In error
correction, both the error values and error locations need to be
found. In erasure correction, on the other hand, only the erasure
values are to be found (erasure locations are known at the input
to the decoder). Let us assume that there areerrors and era-
sures in the received word. In general,errors and erasures
can be corrected if . Let
denote the received vector,the error values and the erasure
values. Also, let denote the error locations and

denote the erasure locations. Note that the
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TABLE III
UPDATING �(x); B(x) AND L FOR THEBM ALGORITHM

error values and the erasure values are nonzero only at the error
locations and erasure locations, respectively. Definesuch that

if is an erasure location
otherwise

The syndromes can be computed as

(9)

Define the syndrome polynomial as and
the erasure polynomial using the known erasure locations as

. The key equation can be written as

(10)

where is the error magnitude polynomial with
. Equivalently, we can write

(11)

where . It has been shown (e.g., see [23],
[12], [21, Ch. 5]) that if we initialize the Berlekamp Massey
algorithm as and use to com-
pute then at the end of iterations, we get

. In addition, if we want to compute in parallel we
need to find an appropriate initialization and update for
and . We can show that if we define

(12)

and

(13)

then similar to the proof in [12], can be up-
dated as

(14)

with the matrix defined as in Table I. This means that if
we can initialize at

(15)

and

(16)

then we can obtain at
. We propose to use iterations

to compute this initialization. If we assume
that is pre-calculated along with the syndromes, then

and are available at the start of the algorithm
at . We initialize . For
iterations , we define the update matrix
so that and are unchanged. Also, we
set . We notice that

and that over
. This means that we can compute one coefficient of
in each iteration. In the th iteration, we can obtain

by using the update
matrix (Row 3 of Table III). Also, at the end of theth
iteration, we set . This completes
the initialization according to (15) and (16). The complete
algorithm is given in Algorithm 3.

Berlekamp Algorithm Errors and Erasures: Algorithm 3
0. Initialize:

1. for to
2.
3. if then else
4. if then else
5. if then else
6a.

(refer Table III)

6b.

(refer Table III)

7. (refer Table III)
8. if then
9. end for
10. Output: .

In order that we be able to modify Algorithm 3 (in the same
way that Algorithm 1 was modified to obtain Algorithm 2), we
need to be even. This will allow us to reduce the firstit-
erations in Algorithm 3 into iterations. We have originally
assumed that the number of redundant symbols is even.
Under this assumption we will show how to manipulate the era-
sures so that their number is always even (without changing
the error and erasure correcting capability of the decoder). Let
us consider a situation in which the number of errors and era-
sures are within the error-correction capability of the code (i.e.,

). If in addition, the number of erasuresin a code-
word is odd, then . For the sake of argument, let us
assume that we can convert one of the erasures into an error, we
still have (the codeword remains cor-
rectable). Alternately, we can add one more erasure to the code-
word. Again, we have . In both these cases, we
have made the effective number of erasures even. Note that if the
input codeword is such that , the above procedure
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TABLE IV
UPDATING�(x); B(x) AND L FOR THEBM ALGORITHM WHEREG(x) = 1�� � x AND G1(x) = �� x �� x

can introduce additional errors/erasures in uncorrectable code-
words. We can detect such a case during the decoding process
and flag it so that no changes are made to the codeword as it
passes through the decoder.

We note that for iterations in Algorithm 3, the mod-
ifications are the same as when we derived Algorithm 2. These
modifications are shown in the first five rows of Table IV. In
order to compute and in the first iterations,
we define the update matrix so that

. In addition, we recognize that we can obtain co-
efficients of the polynomial as and

. In each iteration, we compute 2
coefficients of the polynomial . Additionally,

which ensures that . There-
fore, Row 6 of Table IV performs the correct update of the
polynomials and . At iteration , we set

and ensure that is initialized
correctly for the iterations that compute the error locator poly-
nomial (i.e., for ).

Low-Power Berlekamp Algorithm- Errors and Erasures:
Algorithm 4
0a. Initialize

0b. if then else fi
1. for to
2.

3.

4.
5.
6. if then else fi
7. if then else fi
8. if then else fi
9. if then else fi
10a.

(refer Table II)

10b.

(refer Table II)

11. (refer Table II)
12. (refer Table II)
13. if then fi
14. end for
15. Output: .

We note that these modified algorithms can be used to decode
shortened and punctured RS codes without any further change.
This is because we can conceptually treat all the dropped sym-
bols as erased positions [2] and use the same decoding algo-
rithms. Also, the errors-and-erasures decoder algorithm can be
used for encoding [2]. In this case, themessage symbols along
with erased symbols are fed into the decoder. The erasures
are “corrected” by the decoder so that the output of the decoder
is the symbol codeword corresponding to themessage sym-
bols.

IV. VLSI A RCHITECTURE

In the previous section, we discussed algorithm-level trans-
formations for the Berlekamp algorithm. A variety of architec-
tures can be developed based on these algorithms. In this sec-
tion, we discuss how this algorithm transformation translates
into one specific VLSI architecture for the errors-only decoding
problem. A similar architecture can also be developed for the er-
rors-and-erasures case. In addition, we also discuss architecture
level transformations for the syndrome and error computations
in errors-only decoding.

A. Architecture for Syndrome Computation

The syndrome computation is given by

(17)



1262 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 2000

Fig. 4. An architecture for the normal syndrome computation.

Fig. 5. An architecture for the modified syndrome computation.

This equation can be computed using Horner’s rule as

(18)

An architecture that computes is shown in Fig. 4. Let us as-
sume that the register is cleared before we start the computation
and that the sequence is fed into the input in
that order. At clock cycle, the previous accumulated value is
multiplied with and added to . At the end of clock
cycles, we obtain in the register. Using such cells, we can
compute in parallel.

In order to enable a parallel computation which can be com-
pleted in approximately clock cycles, we can rewrite (17)
as

(19)

when is odd. The limits of both the sub-summations will
change to when is even. Note from (19) that the first
and second sub-summations consist of even and odd symbols,
respectively. Both these sub-summations can be computed using
Horner’s rule (similar to (18)). An architecture for this compu-
tation is shown in Fig. 5. At the end of clocks (when

is odd), we can obtain the two sub-summations. Finally, the
odd sub-summation result is multiplied by and added to
the even sub-summation. This means that the modified archi-
tecture can complete the computation in approximately half the
number of clock cycles as the normal syndrome computation.

B. Architecture for Error Computation

The error value computation based on Forney’s method can
be written as

if

if
(20)

Fig. 6. An architecture for the normal error computation.

Note that we need to compute and for
in order to compute all the . In any field

of characteristic 2

(21)

and therefore, can be obtained as part of the com-
putation for . This is because

, where and are the polynomials
formed by the even coefficients and the odd coefficients of ,
respectively. In addition, the circuit computes (this
avoids the need for the initialization of in Algo-
rithm 2). We can write the error computation in these terms as

if

if
(22)

An architecture for the evaluation of at is shown in
Fig. 6. Initially, the coefficients of the polynomial are
loaded into the registers. After the initialization is complete, the
multiplexer passes the value that is fed back. The value in theth
register is multiplied by , so that theth register holds
at the th clock cycle. The contents of the registers are added up
to obtain for . A similar architec-
ture can be used to evaluate . This implies that we
can evaluate at the th cycle. In other words, in cycles
we can compute all the required error values.

If a parallel architecture is used to compute and ,
then all the required error values can be computed in
cycles. This modified architecture is illustrated in Fig. 7. In this
case, the outputs of the registers are used to com-
pute and the outputs of the registers

compute for when is
odd.

C. Architecture for the Berlekamp Algorithm

The original Berlekamp and its modified version have
been discussed in detail in Section III. In this section, we
discuss architectures for both Algorithm 1 and Algorithm 2.
An architecture for performing the computation described
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Fig. 7. An architecture for the modified error computation.

in Algorithm 1 is shown in Fig. 8. The registers shown in
the diagram hold the polynomials
and . The exact manner in which they hold the various
coefficients will become clear shortly. The register holds
the algorithm iteration counter and mirrors the variablein
Algorithm 1. At the start of the th iteration, register holds

in positions ,
respectively. In the next clocks,
are computed in sequence and shifted into position. The

register holds the serial iteration counter that increments at
every clock and synchronizes the various serial operations. The
counter has a range from (i.e., is a modulo

counter) and in incremented when . is
accumulated serially at the same time that is serially
updated to . In particular, the partially accumulated result

is available when the serial
iteration counter has the value. The contents and updates of
register are defined in order to enable the computation of

in iteration when is updated to . Reg-
ister is initialized so that it holds
in positions , respectively. For

, the positions
are right rotated by one position each time and the postions

are kept unchanged, while is computed.
When , positions of register

are left rotated by one position so that holds
.

At the beginning of iteration and are available.
Note that is initialized to . These variables are used
to compute the variables in the update matrix as
well as other decision variables such as and . Since
the update matrix contains in its second column,
we conclude that a shifted version of (i.e., )
is also required. In order to enable an update for
in a serial manner, a new position is introduced.
Register holds in positions the values

at the start of iteration . The
results are shifted into register at position . Depending
on whether the shifted version of is required or not,
the contents of either or is used in the update.

and are updated in a similar manner since the
update matrix is the same as that for and .

A simliar architecture can be developed corresponding to
the modified algorithm (i.e., Algorithm 2). This architecture is
shown in Fig. 9. As before, the inner products for
and are computed as is being updated to

. The algorithm iteration counter in this case counts
from . In this case, the serial iteration counter
increments from 0 to (i.e., is a modulo counter). We
note the presence of in the first column of the update matrix

. This indicates that a shifted version of is
required. This means that we need to add one position
to the register (just as we did for the register in the
architecture for the original algorithm). The second column
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Fig. 8. An architecture for the Original Berlekamp algorithm.

of contains both and . This suggests that we
need two shifted versions of (i.e.,
and ). We add two positions and
to the register. In particular, at the start of theth itera-
tion the register holds
in positions respectively. As the
serial iteration counter increments from 0 to are
computed in sequence. The register at the start ofth iter-
ation holds in positions

respectively. and
are updated in a similar manner, whileincrements

from 0 to . and are accumulated, and
while increments from 1 to . The register must be
organized to provide the appropriate data for the
and accumulators. At the beginning of iteration 1,
register holds in positions

and in positions ,
respectively. For , positions
are kept unchanged, while positions
are rotated and positions are right shifted using
the value out of . When or , positions

are left rotated so that holds
. When and are loaded

with the values being shifted into and , respectively.
This ensures appropriate operation of the architecture in Fig. 9.

In summary, Fig. 8 describes an architecture for the original
errors-only algorithm (i.e., Algorithm 1), while Fig. 9 describes
an architecture for the modified errors-only algorithm (i.e., Al-
gorithm 2).

D. Extension of Architecture to Handle Errors and Erasures

When erasures are present in addition to errors, the symbols
of the received word that are erasures are flagged. We refer to
these flags as erasure indicators . The bi-
nary variable indicates the presence or absence of an erasure
(i.e., indicates the presence of an erasure and
the absence of an erasure at location).

We know from Section III-B that the erasure locator polyno-
mial needs to be computed to provide the appropriate initial-
ization for Algorithm 3. Fig. 10 shows an architecture that com-
putes the erasure locator polynomial from the erasure indicators.
This computation is performed in parallel with the computation
of the syndrome (see Fig. 4. Note that the only modification re-
quired in the syndrome computation is that when
is set to zero. The registers correspond to the coefficients of
the erasure locator polynomial . Register is initialized
to oneand the other registers’s are set to zero. If
the erasure locator coefficients need to be updated based on

(23)

Therefore, the updated coefficients are given by
. Note that is

generated and stored in the register shown on the right side of
Fig. 10. Depending on whether or
the coefficients are modified or left unmodified as indicated by
the multiplexer circuitry. After clocks, we get the coefficients
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Fig. 9. An architecture for the modified Berlekamp algorithm.

Fig. 10. An architecture for the normal erasure locator computation.

of the erasure locator polynomial . An erasure counter is
also maintained to count the number of errors in the codeword.

An architecture for the modified erasure locator computation
is shown in Fig. 11. This allows the erasure locator computa-
tion to be completed in clocks so that this com-
putation can be done in parallel with the modified syndrome
computation. We assume that, again, registeris initialized

to one and the other registers ’s are set to zero. Since we
have two erasure indicators that are input at one time, we have
four cases corresponding to the four binary combinations of

and . Case A corresponds to the com-
bination . In this case, the registers

need not be changed. Case B corresponds to the combination
and . In this case, we need to

modify the registers based on

(24)

In case C, which corresponds to and
, we need to update based on

(25)

For case C, the update for the coefficient is
given by

. In case D, which corresponds to
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Fig. 11. An architecture for the modified erasure locator computation.

, we need to update the registers
based on

(26)

For case D, the update for the coefficient is
given by

. The architecture corresponding to this
update is shown in Fig. 11. As we mentioned earlier, we can
obtain the coefficients of after clocks.

Algorithm 4 works only when is even. We explained in
Section III-B how the number of erasures can be made even
without loss in performance (within the code’s error-correcting
capability) as long as the is even. The computation of the
erasure locator polynomial has to take care of this. We have to

pre-modify some of the erasure indicators (in particular,and
). If, at the start of iteration , the erasure counter

is odd and , then we set and . On the
other hand, if the erasure counter is even and , then we
set and . In all other cases, the original values
of and are retained. This ensures that the erasure locator
polynomial always has an even degree.

E. Architecture Level Power Estimates

In Sections IV-A through IV-C, we have described
VLSI architectures for the normal and modified algorithm.
The original syndrome computation takes approximately
clocks, while the modified version takes only approximately

. Similarly, the error computation takes clocks, while
the modified version takes approximately clocks. The
original Berlekemp architecture takes clocks, while
the modified version takes . Let us assume that
each of the modules are implemented as state machines
with pipelining between the modules. This indicates that our
algorithm and architectural modifications can be put into the
framework, as shown in Fig. 2. Fig. 12(a) and (b) show the
pipeline stages and the number of clock cycles used by each
module of the original architecture and modified architecture,
respectively. We also observe that the architectures described
in the previous sub-sections are independent ofand the
critical paths are independent of. We will investigate under
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(a)

(b)

Fig. 12. Timing of the Pipeline Stages.

what conditions we can expect a low-power implementation.

Let us assume that the normal circuit can work at a maximum
clock speed of and the modified one at a maximum clock
speed of . We can operate the modified design in two modes:
high speed and low power. In the high-speed mode, the modi-
fied design is operated at the same supply voltage as the normal
design. The throughput will be times the throughput
of the normal design. So a speedup can be expected as long
as . In the low-power mode, the throughput is main-
tained constant and the voltage of the modified design is scaled
down. This means that the clock rate of the low-power design
can be slowed down to . If the critical paths of the normal
and modified designs at the maximum voltageare
and , respectively, then the voltage can be reduced to

(at this voltage the critical path delay in the modified design
becomes ). The ratio of capacitances can be estimated
as the ratio of active areas of the designs. Therefore, the
ratio of the power consumption in the modified design to the
normal design can be written based on (2) as

(27)

We can obtain accurate estimates for and by ac-
tually synthesizing a VLSI layout of both these designs and
performing SPICE simulations of the critical paths. We also
note that at the same supply voltage, our modified design has
a smaller latency when compared with the normal design. In
particular, at the voltage , the latency of the modifed design
is times the latency of the normal design. This can be
important in applications in which decoding delay is critical.

Note that the two decoders shown in Fig. 2 generate the error
word as output. This means that for both designs we need to
maintain the received word in a buffer and finally add the error
word to the received word to get the corrected word. Note that
if we want the exact same input and output data interface for

Fig. 13. VLSI layout of the original design.

both designs, then we need to generate the odd and output se-
quences on-chip at the input of the modified decoder. Also, we
need to multiplex the two error values into a single sequence at
the output of the modified decoder. In particular, at the input,
we need just two bit registers and an bit 2 to 1 multiplixer
(working at a clock rate ) to direct the odd and even inputs into
the correct registers. Similarly, at the output, we need twobit
registers and an bit 2 to 1 multiplexer (working at a clock rate

) that chooses the appropriate register to direct to output. We
note that the additional circuit complexity required for this is
very small. In our designs, we assume that the modified design
accepts two inputs in parallel and generates two outputs in par-
allel. In the next section, we will describe some of the consider-
ations involved in the VLSI design of the normal and modified
architectures.
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Fig. 14. VLSI layout of the modified design.

TABLE V
SUMMARY OF THE NORMAL AND MODIFIED DESIGNS

V. VLSI DESIGN

Based on the normal and modified architectures developed in
the previous section, we designed two separate decoders for a

RS code that can correct up to three errors. A binary
representation for was chosen to minimize the com-
plexity (in terms of the number of transistors) of the GF multi-
plier and GF inverter. Elements of were written in terms
of a concatenation of two elements (see [21, Ch. 10].
Based on this representation, the multiplication over
can be written in terms of multiplications over . The in-
verse over can again be written in terms of multiplica-
tions over and as well as inversions over
(see [21, Ch. 10]. This allowed for an optimal choice of binary
representation for that leads to low complexity multi-
pliers and inverters over . Multipliers and inverters were
constructed as combinational circuits [21, Ch. 10], [40].

The complete algorithm was simulated in C and the test vec-
tors were generated for the circuit. The architecture was then
described using Verilog HDL and the functionality was verified.
Then a timing driven synthesis was performed using Cadence’s
Synergy synthesis tool. A 0.8-CMOS standard cell library was
used with the synthesis tool to obtain a flat gate level netlist. The
functionality of the netlist was again verified against the C sim-
ulations. Finally, Cadence’s Silicon Ensemble place and route
tool was used to produce a channel-less layout. Routing was
performed using three levels of metal. A SPICE netlist of the
critical path transistors was extracted along with routing capac-
itances.

The above design process was completed for the normal and
modified designs. The layout of the normal and modified de-
signs are shown in Figs. 13 and 14, respectively. The corre-
sponding areas are mm mm and

mm mm. Table V summarizes the results. Fig. 15
shows how the critical path delays vary with voltage. The critical
path delays were extracted from SPICE simulations. At a supply
voltage of V, the critical path delays of the normal and
modified designs are and ns. The voltage

corresponds to the supply voltage at which the modified de-
sign is slowed down to ns. From Fig. 15, we
obtain V for the modified design. This shows that
the power consumption can be reduced by about 40%. Alter-
nately, a speed-up by a factor of 1.34 can be obtained. In par-
ticular, the modified design in the high-speed mode can support
a throughput of up to 192 Msymbols/s. Note that if a slower
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Fig. 15. Plot showing the variation of the critical paths of the normal and modified designs with supply voltage.

throughput is required, then either slower serial GF operators
can be implemented or the GF operators may be re-used to do
multiple operations [41] in both the normal and modified de-
signs.

VI. CONCLUSION

In this paper, we have developed a low-power/high-speed
Berlekamp algorithm that enables low-power/high-speed oper-
ations. We showed that similar modifications can be derived for
both the errors-only decoding as well as the errors-and-erasures
decoding. Our algorithm-level approaches expose additional
parallelism that enable us to design a low-power RS decoder.
Architecture level approaches were proposed for the syndrome
and error computations. An architecture was proposed for
the Berlekamp algorithm that takes advantage of the algo-
rithm-level transformations. The impact of the algorithm and
architecture level approach was evaluated by designing two
decoders for a RS code- one based on the normal
algorithm and the other based on the low-power algorithm.
Results showed that a speedup of 1.34 or power saving of 40%
can be obtained. This validates our claim that algorithm level
transformations, when intelligently applied, can have a strong
impact on the power consumption of a design.

REFERENCES

[1] S. Whitaker, J. Canaris, and K. Cameron, “Reed solomon VLSI codec
for advanced television,”IEEE Trans. Circuits Syst. Video Technol., vol.
1, pp. 230–236, June 1991.

[2] S. B. Wicker,Error Control Systems for Digital Communication and
Storage. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[3] T. S. Rappaport,Wireless Communications. New York: IEEE Press,
1996.

[4] K. Maxwell, “Asymmetric digital subscriber line,”IEEE Commun.
Mag., vol. 34, pp. 100–107, Oct. 1996.

[5] J. B. Cain and D. N. McGregor, “A recommended error control archi-
tecture for atm networks with wireless links,”IEEE J. Select. Areas
Commun., vol. 15, pp. 16–27, Jan. 1997.

[6] R. D. Cideciyan and E. Eleftheriou, “Concatenated reed-solomon/con-
volutional coding scheme for data transmission in CDMA-based cellular
systems,”IEEE Trans. Commun., vol. 45, pp. 1291–1303, Oct. 1997.

[7] W. W. Peterson, “Encoding and error-correction procedures for the
Bose-Chaudhuri codes,”IRE Trans. Inform. Theory, vol. IT-6, pp.
459–470, Sept. 1960.

[8] D. Gorenstein and N. Zierler, “A class of error-correcting codes inp

symbols,”J. Soc. Ind. Applied Mathem., vol. 9, pp. 207–214, June 1961.
[9] E. R. Berlekamp,Algebraic Coding Theory. New York: McGraw-Hill,

1968.
[10] J. L. Massey, “Shift register synthesis and BCH coding,”IEEE Trans.

Inform. Theory, vol. IT-15, pp. 122–127, Jan. 1969.
[11] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method

for solving key equation for decoding goppa codes,”Inform. Control,
vol. 27, pp. 87–99, 1975.

[12] R. E. Blahut,Algebraic Methods for Signal Processing and Error Con-
trol Coding. New York: Springer-Verlag, 1992.

[13] , “Transform techniques for error control codes,”IBM J. Res. and
Devel., vol. 23, pp. 299–315, May 1979.

[14] R. T. Chien, “Cyclic decoding procedure for the Bose-Chaudhuri-Hoc-
quenghem codes,”IEEE Trans. Inform. Theory, vol. IT-10, pp. 357–363,
Oct. 1964.

[15] G. D. Forney Jr., “On decoding BCH codes,”IEEE Trans. Inform.
Theory, vol. IT-11, pp. 549–557, Oct. 1965.

[16] K. Y. Liu, “Architecture for VLSI design of Reed-Solomon decoders,”
IEEE Trans. Comput., vol. C-33, pp. 178–189, Feb. 1984.

[17] H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yuen, and I. S. Reed, “A
VLSI design of a pipeline reed-solomon decoder,”IEEE Trans. Comput.,
vol. C-34, pp. 393–402, May 1985.

[18] N. Demassieux, F. Jutand, and M. Muller, “A 10 MHz (255, 233)
Reed-Solomon decoder,” inProc. IEEE 1988 Custom Integrated
Circuits Conf., 1988, pp. 17.6.1–17.6.4.

[19] H. M. Shao and I. S. Reed, “On the VLSI design of a pipeline Reed-
Solomon decoder using systolic arrays,”IEEE Trans. Comput., vol. 37,
pp. 1273–1280, Oct. 1988.

[20] P. Tong, “A 40 MHz encoder-decoder chip generated by a reed-solution
code compiler,” inProc. Custom Integrated Circuits Conf., Boston, MA,
May 1990, pp. 13.5.1–13.5.4.



1270 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 2000

[21] S. B. Wicker and V. K. Bhargava,Reed-Solomon Codes and Applica-
tions. New York: IEEE Press, 1994.

[22] R. P. Brent and H. T. Kung, “Systolic VLSI arrays for polynomial GCD
computation,” IEEE Trans. Comput., vol. C-33, pp. 731–736, Aug.
1984.

[23] R. E. Blahut, “A universal reed-solomon decoder,”IBM J. Res. and
Devel., vol. 28, pp. 150–158, Mar. 1984.

[24] Y. R. Shayan, T. Le-Ngoc, and V. K. Bhargava, “A versatile time domain
Reed-Solomon decoder,”IEEE J. Select. Areas Commun., vol. 8, pp.
1535–1542, Oct. 1990.

[25] S. Choomchuay and B. Arambepola, “Time domain algorithms and
architectures for reed-solomon decoding,”Proc. Inst. Elect. Eng. I,
Commun., Speech and Vis., vol. 140, pp. 189–196, June 1993.

[26] J.-M. Hsu and C.-L. Wang, “An area-efficient pipelined VLSI architec-
ture for decoding of Reed-Solomon codes based on a time-domain algo-
rithm,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 864–871,
Dec. 1997.

[27] C. Leiserson and J. Saxe, “Optimizing synchronous systems,”J. VLSI
and Comput. Syst., vol. 1, no. 1, pp. 41–67, 1983.

[28] M. Potkonjak and J. Rabaey, “Optimizing resource utilization using
transformations,”IEEE Trans. Computer-Aided Design, vol. 13, pp.
277–292, Mar. 1994.

[29] K. K. Parhi, “High-level algorithm and arhitecture transformations for
DSP synthesis,”J. VLSI Signal Processing, vol. 9, pp. 121–143, Jan.
1995.

[30] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consump-
tion in digital CMOS circuits,”Proc. IEEE, vol. 83, pp. 498–523, Apr.
1995.

[31] K. Liu, A.-Y. Wu, A. Raghupathy, and J. Chen, “Algorithm-based low-
power and high-performance multimedia signal processing,”Proc IEEE,
vol. 86, pp. 1155–1202, June 1998.

[32] K. K. Parhi and D. Messerschmitt, “Pipeline interleaving and parallelism
in recursive digital filters—Part I: Pipeling using scattered look-ahead
and decomposition,”IEEE Trans. Acoust., Speech, Signal Processing,
vol. 37, pp. 1099–1117, July 1989.

[33] K. K. Parhi, C. Y. Wang, and A. P. Brown, “Synthesis of control circuits
in folded pipelined DSP architectores,”IEEE J. Solid-State Circuits, vol.
27, pp. 29–43, Jan. 1992.

[34] N. Shanbhag and M. Goel, “Low-power adaptive filter architectures and
their application to 51.84 mb/s atmlan,”Signal Processing, vol. 45, pp.
1276–1290, May 1997.

[35] A.-Y. Wu, K. Liu, Z. Zhang, K. Nakajima, A. Raghupathy, and S.-C.
Liu, “Algorithm-based low power DSP design: Methodology and ver-
ification,” in VLSI Signal Processing VIII, T. Nishitani and K. Parhi,
Eds. New York: IEEE Press, 1995, pp. 277–286.

[36] A.-Y. Wu, K. J. R. Liu, Z. Zhang, K. Nakajima, and A. Raghupathy,
“Low-power design methodology for DSP systems using multirate ap-
proach,” inProc. IEEE Int. Symp. Circuits and Systems, May 1996, pp.
292–295.

[37] A. Raghupathy, “Low Power and High Speed Algorithms and VLSI
Architectures for Error Control Coding and Adaptive Video Scaling,”
Ph.D. dissertation, Univ. of Maryland, College Park, MD, 1998.

[38] N. H. E. Weste and K. Eshraghian,Principles of CMOS VLSI De-
sign. Reading, MA: Addison-Wesley, 1993.

[39] A. Raghupathy and K. J. R. Liu, “Low power/high speed design of a
Reed Solomon decoder,” inProc. IEEE Int. Symp. Circuits and Systems,
June 1997.

[40] T. C. Bartee and D. I. Schneider, “Computation with finite fields,”In-
form. Control, vol. 6, pp. 79–98, Mar. 1963.

[41] Y. Im and O.-S. Kwon, “An advanced vlsi architecture of rs decoders
for advanced tv,” inProc. IEEE Int. Conf. Communications, vol. 3, June
1997, pp. 1346–1350.

Arun Raghupathy (S’95–M’99) received the
B.Tech. degree in electronics and communications
engineering from the Indian Institute of Technology,
Madras, India, in 1993, the M.S. and Ph.D. degrees
in electrical engineering from the University of
Maryland at College Park in 1995 and 1998,
respectively. His Ph.D. research focused on the
development of techniques that enable the imple-
mentation of low-power high-performance VLSI
signal processing systems.

Currently he is a Senior Engineer in the ASIC De-
partment, Qualcomm, Inc., San Diego, CA, where he is involved in the devel-
opment of modem ASICs for third-generation (3G) CDMA systems.

K. J. R. Liu (S’86–M’90–SM’93) received the B.S.
degree from National Taiwan University in 1983 and
the Ph.D. degree from the University of California,
Los Angeles, in 1990, both in electrical engineering.

Since 1990, he has been with Electrical and
Computer Engineering Department and Institute
for Systems Research, University of Maryland at
College Park, where he is a Professor. During his
sabbatical leave in 1996-1997, he was Visiting
Associate Professor at Stanford University, Stanford,
CA. His research interests span broad aspects of

signal processing, image/video processing, and communications, in which he
has published over 200 papers.

Dr. Liu was an Associate Editor of IEEE TRANSACTIONS ON SIGNAL

PROCESSING, a Guest Editor of special issues on Multimedia Signal Processing
of the PROCEEDINGS OF THEIEEE, a Guest Editor of a Special Issue on Signal
Processing for Wireless Communications of IEEE JOURNAL ON SELECTED

AREAS INCOMMUNICATIONS, and a Guest Editor of special issue on Multimedia
Communications over Networks of IEEESIGNAL PROCESSING MAGAZINE. He
currently serves as the Chair of Multimedia Signal Processing Technical
Committee of IEEE Signal Processing Society, and a Guest Editor of a Special
Issue on Multimedia Over IP of IEEE TRANSACTIONS ON MULTIMEDIA , an
Editor of theJournal of VLSI Signal Processing Systems, and the Series Editor
of Marcel Dekker series on signal processing and communications. He is
the recipient of numerous awards, some of which include the 1994 National
Science Foundation Young Investigator Award, the IEEE Signal Processing
Society’s 1993 Senior Award (Best Paper Award), the IEEE Benelux Joint
Chapter on Vehicular Technology and Communications 1999 Award (Best
Paper Award from IEEE VTC’99, Amsterdam), the 1994 George Corcoran
Award for outstanding contributions to electrical engineering education and
the 1995-1996 Outstanding Systems Engineering Faculty Award in recognition
of outstanding contributions in interdisciplinary research, both from the
University of Maryland, College Park.


