1254 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 2000

Algorithm-Based Low-Power/High-Speed
Reed-Solomon Decoder Design

Arun RaghupathyMember, IEEEand K. J. R. Liy Senior Member, IEEE

Abstract—With the spread of Reed-Solomon (RS) codes to in XDSL (Digital Subscriber Line) services to protect the data
portable wireless applications, low-power RS decoder design from impulse noise [4]. RS codes are good candidates for use
has become important. This paper discusses how the Berlekamp i, yireless communication systems as a part of a concatenated

Massey Decoding algorithm can be modified and mapped to . . .
obtain a low-power architecture. In addition, architecture level coding system, along with convolutional codes [3], [6].

modifications that speed-up the syndrome and error computations AN (n, k) primitive RS code defined in the Galois field
are proposed. Then the VLSI architecture and design of the pro- GF(g = 2™) has code words of length = 2™ — 1, where
posed low-power/high-speed decoder is presented. The proposedy, is a positive integer and is the number of information
design is compared with a normal design that does not use thesesymbols in the codeword. This RS code has minimum distance

algorithm/architecture modifications. The power reduction when Ao — L+1andh i redundant bols. Th
compared to the normal design is estimated. The results indicate ®min = 7~ + 1 and has, — & redundant symbols. The gener-

. . n—k—1 1
a power reduction of about 40% or a speed-up of 1.34. ator polynomial () of the code ig/(«) = [/, (z —a’*),

. . wherec« is a primitive element irGE(2™) andb is an integer
Index Terms—Berlekamp Massey algorithm, Channel coding, tant. This implies that th i fi f
decoding, error-correction coding, Forney’'s method, high-speed constant. “THiS IMPles at mese= & CONSECUlve POWErS o

integrated circuits, low power systems, parallel algorithms, par- < are roots of every codeword polynomial. This property has
allel architectures, Reed-Solomon codes, very-large-scale integra-been used to develop many efficient decoding algorithms for

tion, . RS decoding.
Lete =[ep e1 --- e,—1] denote the error vector. Note that
I. INTRODUCTION e; = 0if no error occured at position Also, e¢; # 0 denotes

the actual value of the error introduced by the channel at posi-

E RROR-CONTROL codes are used widely in communicgjon ;. Assume further that errors have occured at positions
tion systems to combat channel noise. These codes pfo=. ;, ;, ... i,. The symbolsy; of the possibly corrupted
tect data from errors by introducing redundancy selectively {ord received from the channel can be written in terms of the
the transmitted data. Error-control codes are also used in storgggeword symbols; and the error symbols; asv; = ¢; + ¢;
systems to protect the data from errors thatare introduced durigg; — ¢, 1, .. . (n — 1). Then the decoding problem is to find
the process of reading the data. the error values; and the error locations = i1, 4o, ..., i,.

Error-control codes can be classified into convolutional anghe received polynomial(z) can be formed from the received
block codes. Reed—Solomon (RS) codes are linear block codggnpols as)(z) = vo + v1z - - - +vn_1 2" L. The error locator

Primitive RS codes are also cyclic. RS codes belong to the cl nomial A(z) is defined as\(z) = ['_,(1 — zat). The
of nonbinary Bose—Chaudhuri-Hocquenheim (BCH) codes. §ndromes are defined & = Zn—l ai(b_+j)vi = v(attY)
codes are among the most widely used block codes because ?6?35 =0,1,...,(2t — 1) and writz'u:a?] in polynomial form as

are capable of correcting burst errors as well as random errag) = Zztfl S;27. Thekey equatiorcan then be written as
In addition, efficient decoding algorithms have been develope =0

for RS codes.) o . A(z)S(x) = T'(x) mod z?* 1)
A concatenated coding scheme consisting of a convolutional
inner code (i.e., applied last, removed first) and an RS outer cqglgere I'(z) is the error magnitude polynomial with

(i.e., applied first, removed last) has been accepted as astan%@r(x)) < t. The solution of this equation plays a
for space communications [1]. In audio compact discs [2], a pfﬁfvotal role in the decoding process.

of cross-interleaved RS codes are used to protect against erofige|ow, we briefly review and summarize the various RS

that occur due to imperfectio_ng in the read process. RS CQ%%%oding algorithms. The RS decoding algorithms can be
are used in the U.S Cellular Digital Packet Data (CDPD) serviggsssified as shown in Fig. 1. On the left side of Fig. 1
[3] to protect user data. RS codes are being considered for ygeine algorithms that involve syndrome computation are
shown. We will discuss these algorithms first. Once the
Manuscript received October 1998; revised July 2000. This work is supportgyndrome has been computed, the next step is to solve the
in part by the NSF NYI Award MIP9457397 and the ONR Grant N00014-9%ey equation to obtain the error locator polynomial. Peterson
10566. This paper was recommended by Associate Editor Y. Leblebici. d uti hi bl hich |
A. Raghupathy was with the Electrical Engineering Department and InstitL[tZ] prop(;)se q a so Létlc(;nbto this pro_ ede .'Cl was ar:er
for Systems_Research, University ofMe_iryIand, College Park, MD 20742 USAnproved and extende y Gorenstein and Zierler [8] Their
He is now with Qualcomm, Inc., San Diego, CA 92121 USA. , approach was to write a set of equations involving the un-
K. J. R. Liu is with the Electrical Engineering Department and Institute fo& | | ial ffici d the k
Systems Research, University of Maryland, College Park, MD 20742 USA. KNOwn error locator polynomial coetficients and the known

Publisher Item Identifier S 1057-7130(00)09921-3. syndromes, and then, solve the system of equations for the

1057-7130/00$10.00 © 2000 IEEE

RAGHUPATHY AND LIU: ALGORITHM-BASED LOW-POWER/HIGH-SPEED REED-SOLOMON DECODER DESIGN 1255

| Encoded Data l

Calculate
Syndromes
v y
Find Error
Y Y
Locator
Berlekamp Polynomial Peterson-Gorenstein Transformed
Massey Alg. Zierler Algorithm Find Berlekamp
Euclid’s Alg. Error Locator Massey Alg.
and
Error Magnitude
‘ y Polynomial v y
Y L J Transformed
Recursive Find error Berlekamp’s Euclid’s GCD Time Domain Berlekamp
Extension of E Magnitude poly. Algorithm Algorithm Recursive Alg.
Extension
Y
Y A 4
Y Chien Search Chien Search v
error location error location Transf(;)rmed
Inverse FT + * Forney’s method
error vaues
Solve equations | | Forney’s method
for error values | | for error values
v ¥ v y

error locator using direct matrix inversion techniques. Theseme additional information [12] during the iterative process.
matrix inversions become computationally inefficient foAlternately, ['(x) can be directly computed using the key
large ». It can be mentioned that for smal (for example equation afterA(xz) has been computed.

in compact disc systems), closed form expressions for theDecoder implementations that use the syndrome are gener-
error locations and error values in terms of the syndromally based on one of the above algorithms. Liu [16] proposed a
can be obtained. An efficient technique for finding the errdRS decoder design that used Massey’s shift register synthesis,
locator was first proposed by Berlekamp [9]. Massey [1Gbllowed by recursive extension of the error transform and, fi-
interpreted this algorithm in terms of linear feedback shiftally, an inverse FT to get the error vector. Slkedal. [17] and
register (LFSR) synthesis (this algorithm is referred to in tHBemassieuwset al.[18] based their decoder designs on Euclid’'s
literature as the Berlekamp Massey algorithm). Sugiyanadgorithm to find the error locator polynomial. Then the error
[11], [12] recognized that the key equation could also keansform was recursively extended and, finally, an inverse FT
solved by applying Euclid's greatest common divisor (GCD)as performed to get the error values. Shao and Reed [19], Tong
algorithm to obtain the error locator polynomial efficiently]20], Whitakeret al.[1], and Berlekamget al.[21, Ch. 10] used
Once the error locator polynomial has been obtained, tBeiclid’s algorithm in their decoders to find the error locator
error values can be computed in the time or frequenand the error magnitude polynomials. Then, Chien search was
domains. In the frequency domain, the error transform ised in conjunction with Forney’s algorithm to calculate the
found by recursively extending [13], [12] the syndromesrror values. The implementation of Euclid’s GCD algorithm
and the error vector is then found by applying an inversgas generally based on the systolic array proposed by Brent
Fourier transform (FT). In the time domain, the roots oénd Kung [22]. The computational complexity of the syndrome
the error-locator polynomial are found by a Chien seardiased approach that uses either the Berlekamp algorithm or Eu-
[14]. Then, the error values may be found either by solvingid’s method followed by the Chien search(®nt).

the linear set of equations directly or by using a technique Another approach [23], [12] shown on the right side of Fig. 1,
called Forney’s method [15]. Forney’s method also requiresoids the computation of the syndrome. Here, the algorithm
computation ofl’(x). Berlekamp’s algorithm can be used tqeither the Berlekamp—Massey or the Berlekamp algorithm) is
computel'(z) by using a parallel set of iterationE(x) can transformed so that all its variables are in the time domain.
also be obtained from Euclid’s algorithm by maintainin@his is achieved by taking the Inverse FT of all sequences in

Fig. 1. Overview of RS decoding techniques.

1256 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 2000

the original algorithm. Hence, this algorithm is sometimes re- S ; ; i
| . yndrome | Berlekamp 1 Error '
ferred to as transform decoding without transforms. Shatan Computation| | | Algorithm | | |Computation| |
al. [24] designed a versatile decoder based on this technique ' @) ' '
that can decode any RS code o¥&¥(2°). The decoder was
; ' . ' ; ﬁ—.—'—' A2
based on a transformed version of the Berlekamp Massey algo- Jodifed | | | Modifed | | Mot | 2] 2
rithm and time domain recursive extension. The disadvantage Computation| | | Algorithm | | Computatiory
is that the computational complexity d3(n?). Therefore, this (v)

technique can be used only for small blocklengths. Choomchua) o
. Fcl)%/. 2. Block diagram for (a) normal decoder and (b) modified decoder.
and Arambepola [25] proposed an architecture based on a re

ganized form of the computation in [23] that reduces the com- o]
putational complexity. However, the storage requirements gfreduce the power consumption is to use these transformations

O(n). Hsu and Wang [26] proposed some modifications to [24 €xpose parallelism and enable pipelining in the computation.
that reduced the storage requirement®te?). While the order ~ Over the lastdecade, we have seen continued scaling down of
of the computational complexity in [25] and [26] is reduced t§@vice feature size. This has improved the performance of VLSI
O(nt), the actual complexity remains larger than for the Syrqi_e3|gns in terms of speed. Also, algorithms of increased com-

drome-based Berlekamp algorithm. plexity can be implemented on a single chip. In addition, the
In Section |1, we summarize our approach to low-power/higaréa required to implement a given algorithm has shrunk dra-
speed RS decoding. In Section I, we discuss how thBatically because of the increased transistor density. It has been

Berlekamp algorithm can be modified to enable a low-pows&tdgested in [30] that low-power operation can be obtained by
VLSI architecture/design. We first discuss modifications tB0difying the algorithm to enable a parallel implementation. In

the errors-only Berlekamp algorithm in Section II-A. wedther words, we utilize the increase in available transistor count
later extend these modifications to the errors-and-erasufé@verly to obtain power reduction. The idea can be explained
Berlekamp algorithm in Section I1II-B. In Section IV, Wepnefly as foIIpwg.The power dissipation in a well-designed dig-

discuss the VLSI architecture of an RS decoder includinjdl CMOS circuit can be modeled as [38]

specifically, archltepture level t_gchnlques for the syn_drome Pra-Cg V2 - @

and error computations. In addition, we compare architecture © dd = Je
level power estimates for the normal and modified desigrwh
We also specify under what conditions power reduction can be
expected. In Section V, we discuss the VLSI chip design of the
normal and modified d.ecoders. We also discuss the synthg&@e effective load capacitance:
and layout results which show that the power consumptlonvd

supply voltage;
can be reduced by 40%. Finally, in Section VI, we presentflk opgfa)':ing clgck frequency.
concluding remarks. N '

Similarly, the delay of the CMOS device can be approximated
[30] as

II. THE ALGORITHM/ARCHITECTUREBASED APPROACH Cr. % Vaa Cr % Vaa
Th ~ —= = : 3

Until recently, the two key parameters in VLSI design were P 1 e(Vaa — V2)? ®)
area and speed. Power consumption was a consideration onllqy
. X : where
in order to reduce packaging and cooling costs for the chip.
With the proliferation of portable devices, power consumption . a device parameter:
has become a primary design parameter. This is because powc?/r. thresholdpvolta e of, the transistor
consumption determines the battery lifetime in portable sys-_’ 9 y

. . . Fig. 2 shows the normal and modified designs. For the mo-
tems. Algorithm/architecture-level transformations can poten- L . .
. : o .-ment, let us assume that such a formulation is possible. We will
tially have the greatest impact. This is because, at the algorith : . .
: . L . e show later how transformations can be applied to obtain such a
level, maximum design flexibility is available. In addition, de . . .
i o . A formulation. The modified design can operate at a slower speed
vice- and circuit-level techniques can be applied independent. C o
X : . - While maintaining throughput. If, for example, the critical path
of these algorithm/architecture-level techniques to obtain fur- L . ,
. . .. delays for the normal and modified designs @rand7”, re-
ther power savings. We therefore focus on algorithm/architec-

ture-level techniques to obtain low-power RS decoding. spectively, g_t a supply voltage &f. Then, the supply voltage
Various algorithm/architecture-level transformationOf the modified design can be reducedifbto reduce power
9 : . whereV”’ is chosen such that” = 27). The ratio of power
[27]-[31] have been proposed in the literature. The transfor- T g . .
. i . . consumption in the modified desigh, to the normal design
mations proposed include algebraic transformations [28] (su .
S LT) '~ can be written based on (2) as
as associativity, distributivity, etc.), loop-unrolling/look ahea
transformations [32] that try to break the recursive loops, Py Cy (V\? /2
retiming [27], folding/unfolding [33] transformations, and Py = On <) a
strength reduction [34]. These transformations can be used to ‘ ‘
obtain area-efficient high-speed or low-power designs [3hereC); andC)y are the effective capacitances of the normal

[35]—-[37], depending on the design goal. One of the approachasl modified designs.

ere
average probability that the total node capacitance is
switched (also referred to as the activity factor);

C; capacitance along the critical path;

v (4)

RAGHUPATHY AND LIU: ALGORITHM-BASED LOW-POWER/HIGH-SPEED REED-SOLOMON DECODER DESIGN 1257

In this paper, we consider an RS decoding algorithm [39] TABLE |
that starts with the computation of the syndrome. Then, the UPDATING f\éfﬂ)ﬁ(ggRﬁm L FOR THE
error locator and error magnitude polynomials are computed
using Berlekamp’s algorithm. Finally, the error locations are Condition M,(z) f(L._1)
found using Chien’s search, and the error values are computed S 1 Az

: , . N b1 52 - r =Ly
using Forney’s algorithm. The syndrome computation involves [A; 0]
evaluating the received polynomialz) atz = o®t’;j = 1 Az
0,1,...,n — k — 1. The Chien search involves locating the b1 + b2 [o xr] Ly

errors by evaluating\(z) atz = a=%0 < i < n — 1 and
comparing the result with zero. The Forney’s algorithm com-
putes the error values by evaluating:) and['(z) at the error oa.
locations. Architecture-level techniques can be used to create [A (z)
additional parallelism in the syndrome and error-value compu- {B(r) (a;)}
tations as we will show later. The computation of the error lo-

cator and error magnitude polynomial is more involved and crab-

ating additional parallelism is more difficult. We will discuss al- I (z)
gorithm level techniques that modify the Berlekamp algorithm [A(T) (x)}
to achieve low-power operation. It should be pointed out that

the Berlekamp algorithm and Euclid’s algorithm have the sarfe L+ = f+(L»—1) (refer to Table I)
computational complexity. We choose to use the Berlekamp &-€nd for

gorithm because it possesses some properties that enable th8agUtPUtA(z) = ACY(2),T(w) = T (x).
plication of a look-ahead [32] like transformation.

= M,(z) [gg_i;g” (refer to Table I)

=M, (x) [El((:_i))((iﬂ (refer to Table I)

We want to look at updating A%*=2(z), B*=2)(z))
to (A@M(x), B®%)(g)) without going through
(AGR=1(z), BE*=L(z)). In this way, we want to halve the

As mentioned briefly in the previous section, the error-correaumber of iterations. Of course, this modified iteration will
tion problem involves finding the location of the errors and thebbe more complicated than a single iteration of the original
corresponding values. In particular, we can cortegt, —1/2] algorithm. In general, the modified iteration takes time
errors using a code that has a minimum distafigg. Theloca- 77 > 7. In order to get an improved algorithm in terms
tion of erasures are known to the decoder. Correcting erasurgsspeed/power, it is enough # < 2T. In particular, the
therefore, involves only finding the erasure values. In generatpdified algorithm must expose additional parallelism so
any pattern op erasures and errors can be corrected providedhat the above holds. Ideally, we would like to ha¥é as
2v + p <= dmin — 1. The Berlekamp algorithm can be used t@lose toZ" as possible in order to maximize the improvement
solve both problems. in speed or power. We observe that the update matrix for

We first consider techniques to modify the Berlekamp alg¢T ") (), A7) (x)) is the same as that faiA™) (z), B (x))
rithm for low-power operation in the context of error correctionsee Steps 5a and 5b in Algorithm 1). This implies that any
in Section IlI-A. Then, we extend our approach to solve the eransformation that we derive fdiA(x), B(x)) will apply to
rors-and-erasures correction problem in Section IlI-B. We athe polynomial pairl'(x), A(x)). We note therefore that the

I1l. L ow-POWER BERLEKAMP ALGORITHM

sume that the number of redundant symboils is givenby: = critical variables to consider when modifying the Berlekamp
2t so that we can correct up tcerror patterns. algorithm areA(z), B(z), and L.

We make several observations about the variables involved in
A. Errors-Only Decoding the Berlekamp algorithm that will enable the transformation to

- . . be performed efficiently. Note thdt,. > L,._; onlyif A,. #0
The original Berlekamp algorithm is reproduced here. When d2L._, < r — 1. This implies thatL, can increase only

expressed in this form, we can observe some of its properuaens ; . .)
S : . once in any two iterations. We can prove this property by con-

that will aid in the development of our algorithm modifications,_~. . 2
. . . fradiction. Let us assume that.,; > L, > L,_;. This im-

Note that the Berlekamp algorithm (Algorithm 1, describe lies thata, £ 0,21 < ro11 .o I Also
below) computes both the error locator polynomidlr) and P ! el = T Tl '

. . : Aryy # 0,20, < (r+1)—-1.UsingL, = »—L,_;in
the error magnitude polynomi&l(x) in parallel (see steps 5a + ’ .

) < (r — . - — 1.
and 5b of Algorithm 1). 2L, < (r+1)—1,weget2L,_; > r — 1. Since we cannot

have2l.,_; > r—1and2l,_; < r—1, we have obtained a con-
tradiction that completes the proof. Also, observe tB&P (z)

Berlekamp Algorithm: Algorithm 1 is updated only whet.,. increases. Otherv_viséi(") () is just

0. Initialize: A©(z) = 1,BO(z) = 1,10 = shifted. Note that the paftA(z), L,.) defines a linear feed-

0, A(O)(a:) — ' Lo=0 back shift register [12] of minimum size that generates the se-
1.for » = 1to 2+ guenceSy, S1,...,5-_1. In other words

2. AT = Zf‘;al A§7*_1)S7,_1_j L.
3. if A, #0thentl = 0Oelsebl =1 S, = — ZAJ('T)SFJ (5)
4. if2L,. 1 <=(r—1)theni2 =0elseb2 =1 =1

1258 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 2000

> 8,=0 (Casel) TABLE I
Az1=0 2Ly < 2k-1 (CaseII) UPDATING A(x), B(x) AND L FOR THE BM ALGORITHM WHERE
3,20 G(x) =1— AL Bo_12 AND G1(2) = —Bop_12% — Agy_ 1
L L 2Ly > 2k-1 (Case INI)
Condition M, (z) fi(Lak—2) gr(car—2)
—— 2Ly < 2k-2 (CaseIV) 1 0
Ay 0 b1 b0 [0 z2] Log—2 Olgk—_2
> 2L > 2k-2 (Case V) T
b1 50 52 L o’ 2% — L b3t
Fig. 3. Different updating cases when odd and even iterations are consider: 52—’01 0 - H2k-2 2k 12k
together.
— 1 —(52k$2
b1 50 b2 0 a2 Lok Oigk—2
fori =L, L.+1,...,r—1.
Let A, be the discrepancy at iteration In what follows, R [zi(j”l) _A%’c-lx] 2% — 1= Log_s | AL 60
we refer tor = 2k — 1 as the odd iteration and = 2k as k-1
the even iteration. We want to design the modified algorithr 37 5o 1 Gl(z) L o
.. .) . 0 2 2%k—2 2k—2
so that the critical variables at the end of the even iteratiol

of the original algorithm match the variables after thth

iteration of the modified algorithm. Define a new variable~r., , , -1 . . .
— . . X A Sop—1—; (since we want to avoid computin
Sop,. = Ef;alA]@k Q)SQk_l_j as the discrepancy predlctetizﬂz0 s 21 puting

(3k-1) " :
for the even iteration. Note from Algorithm 1 thég;, = Agy, :\ Eci)()QkY\ée) approsch}Qt’tlg[)DrObbm by writing the update in
if Ay 1 = O (since, in this casa®v—2)(z) = Ak-1)(gy). EMS0 () an () as

We will derive the modified algorithm by starting with (2K) (N Ak—1)(. _ (2k—1)
(AC*=2)(z), B@*=2)(g)) and Lox_o and considering the AT (@) =4 (@) = AgwB (@)
effect of two consecutive iterations of the original algorithm. = (A(2k_2)($) — Agp_12BE? (37))
Various cases that need to be considered are shown in Fig. 3. + leA(Qk—Q)(x) (6)
For cases |, I, and Ill, sincé\,;,_; = 0, we have for the
odd iteration A* = (z) = A®* D (g), Ly 1 = Lop2and wherelU; = —Ay A5 | in an unknown. We know from
BED(z) = 2BE(z). This implies thabo, = Asi. the original algorithm thatB*=2)(z) can be written as
For case |, since\y, = &y, = 0, we also getA\(®*)(z) = B@2) () = A Lp2-2-mA(m-1)(1) wherem < 2k — 1
A(Qk_l)(?)vB(%k)(i) = «B®*Y(z) andLox = Lowx—1 for g the last iteration for whictL,, > L,,_1. We will use the
the even iteration. property that(A®*)(z), Ly,) must represent the minimum
For case Il, we havefy, # 0 (Az = 6ax) and |ength shift register for the sequensg, Sy, ..., Sor_1. This
2Lo—1 < 2k — 1. This implies that\(**)(z) = Ak~ () — implies that> 2 A®¥ g, . = 0. Based on this identity,
(2k—1) _ (2k—2) _ 2 p(2k—2) J=0"%j J !
AgrrB (@) = A (x) banz”B (). we can solve fol; as follows:
B (z) = AZAPD(z) = AZFAP=I(z) and
Loy =2k — Loj_1 = 2k — Laj_». Lay (o)
For case lll, we havéz;, # 0 (Az, = 62,) and2Lap—1 > ZAJ» Sor—1-j
2k — 1 so thatA®*)(z) = AC*— () — AgeBC*V(z) = 3=0
A= (1) 5,02 BE=2) (1) BER (5} = zBER-1)(z) — Lok ‘ Lok
a:QB(Q’“—(Q))(a:) andLoy, = LQIE_)l = LQk(_Q). Therefore, tgle)final = ZA§2k_2) Sok—1—j — Dot AL) Z AE»""”Sm—j
updates for cases I, Il and Ill can be written as shown in Rows J=0 J=0
1, 2, and 3, respectively, of Table II. Lz, (2k—2)
For cases IV and V,Ay, # 0 so that & # +0 ZAj Sorx_2_;
Ag. For both these cases, in the odd iteration we get J=0
AC=D () = AC*D(z) — Ag_12B®*2(z). For = 6ok — Do 18, Ym + UrAgg 1 =0)
case |V, since&Lqy,_o > 2k — 2, for the odd iteration we get . 1
B@D () = AL ACHD(g)andLy_y = 2k—1—Loyg_,. Where vy, = >0 AE’"’)Sm_j. This implies U; =
On the other hand, for case V, for the odd iteration we getAs,’ ,(6ax — Az 1A y,,). The update for\(x) can be
B(Qk_l)(x) = xB(Qk_Q)(.I) andlap_1 = Loj_o. written aSA(Qk)(aZ) = A(Qk_Q)(ai) — Agk,le(Qk_Q)(a:) —

We will use the idea of Massey’s synthesis (as explained ik, | (62 — Aok—1 A7,)zAZ =2 (3). Note that we need
[12]) to find an update from\?*—1)(z) to A®*)(z) for cases to maintain the variablé\ -1, from one iteration to the other
IV and V using the syndromes and variables that can be coin-the modified algorithm. Observe that the tef;!~,.)
puted atr = 2k — 2. We first consider case IV. In this caseneeds to be updated only at iteratian for L, > L,,,_;. We
it is impossible for2Lq, 1 < 2k — 1 (as explained before). will discuss the details of this update after we discuss case V.
Therefore,B¥)(z) = xBE*D(z) = ALl xAC—2(z) For case V, we hav@Lsy_o > 2k — 2 = Lo, =
and Loy, = Lop—1 = 2k — 1 — Loj_». The update equation Loy = 2Loi—1 > 2k — 1 (the last inequality follows
for A*=U(z) can be written as\(®*)(z) = A®*~D(z) — because botLy;_» and2k — 2 are even). This means that
Aoz B (z). The problem with this update is that in theB?*) = zB@*1 = 32BZk=2) and Ly, = Log_s. TO
modified algorithm there is no direct way to compute,, = obtain the update equation fox(?*)(z), we proceed as in

RAGHUPATHY AND LIU: ALGORITHM-BASED LOW-POWER/HIGH-SPEED REED-SOLOMON DECODER DESIGN

case IV. The update equation faf?*—1)(z) can be written as
AR () = AR (1)~ Az BP* 1) (). We can rewrite this
equation as\®*) (z) = (A®*=2)(z) — Agp_12B®*=2(z)) +
Uyz® B@*=2)(z), wherelUs = —Ag,ALL | in an unknown.
Again, we useB*=2)(z) = AZtgp2=2-m A= () along
with the requirement thazfig Ag?k)SQk_l_j = 0 to obtain

Lo o
E A](' I
i=0

&2 2k—2
S I

=0
Lag L

— Dot A Y DAY,
=0

Loy,
+ UQA;ll Z A](rn—l) Srn—l—j

i=0

= S — Dopm1 A ym + U2 A A, = 0. (8)
This implies Uz = —(8ax — Agx—1A1ym). The update
for A(z) can be written asA®*)(z) = AG2(z) —

Dop_12BP=2 () — (6ap — Do 1 ATy)x2 B2 (1),

Again, we observe that the terfi\!v,,) appears. We de-

fine a variableas that holds at the end of iteratioh the

value A lv,,, wherem is the last iteration of the original

algorithm at whichL,,, > L,,_;. Thereforeas; needs to be

updated at iteratiort: if L changes in either the even or odd

iteration (i.e., in cases Il and IV). In case |¥, changes in
the odd iteration. This means that; 2k — 1 — Lop_o
andm = 2k — 1. The new value of\,,, can be written as
Efi‘g? AEQk*Q)SQk_Q_j = Aogy_1. Similarly, the new value
of ~,, can be written asti’;{z A§2k_2)52k_1_j = op.

1259

The only difference between the Berlekamp Massey synthesis
and the Berlekamp algorithm is that the former computes only
A(z), while the latter compute&(z) andT'(z) in parallel (see
steps 5a and 5b of Algorithm 1).

Up to this point, we have discussed the computation(of)
without referring ta(). In Step 5b{I'(z), A(x)) are updated
with the same matrix}M,.(z) (see step 5b of Algorithm 1).
Therefore, we can apply the modifications discussed above to
step 5b of Algorithm 1 as well to obtain step 9b of Algorithm
2 (described below).

The modified Berlekamp algorithm can be compactly written
as follows:

Low-Power Berlekamp Algorithm: Algorithm 2

0. Initialize A (z) = 1, BO(z) = 1,TO(z) = 0, AV (z) =
_1, Lo =0,a0 = 59

l.fork=1tot

2. Dopoy = Z]Liﬁl A§'2k_2)52k—2_j

3. b= EfﬁBl A§2k72)52k—1—j

ek = Zfiﬁl A]('Qk_Q)SQk—j

Por—1 = bap — Dop_1cop—2

if 625 # 0then b0 = 0 elsebd = 1 fi

7. if Agp_1 #0thenbl = Oelsebl = 1fi

8. if 2Lgp_o <= (2k —2) thend2 =0 elseb2 = 1 fi
9a.

8

o 0k«

(20) (g (2k—2)(
[2(2’“)(3:)} = My (z) {2(2,“_2)((33} (refer to Table II)

F(?k—?) T

[11:1((22:))((?)} = My (z) |:A(2k—2)gx)):| (refer to Table II)

In case Il, L changes in the even iteration. This means0. Ly, = fi(Lax_2) (refer Table II)

thaLt m :2k2]f' The new vaIueLofAm g’?nQ be written as
EjiB’QA](» 7)52k—1—j = Eji}fQA](» 7)52k—1—j =

b2k—1. Similarly, the new value ofy,, can be written as
Lop_» v— Lop_o v—
220 Ag(?k 1)52k—j 220 A]('Qk 2)52k—j = 1721. Note

11. oo = gulaor_2) (refer to Table I1)
12.end for
13. Output:A(z) = A (), T'(z) = I (z).

that we need to computey;. (which can be interpreted as a

2-step predictor for the discrepancy) at each iteration of t

modified algorithm.

. Extension to Errors-and-Erasures Decoding

In this section, we further develop the algorithm modifica-

We also note that in order to differentiate between the fitens for situations in which we want to correct a combination

cases as shown in Fig. 3, we do not need to test beth, and
Loy, (i.e., we do not need to check bdtho;,_» < 2k —2and
20051 < 2k —1).Incases |, lland lll L1 = Lo;_» and
this makes the two tests equivalent. This is becalsg_; <
2k — 1 = 2o o < 2k—1 = 2o 2 < 2k—-1 =
20952 < 2k — 2 (since2Lsy_o is even,2Ly, o cannot equal
2k — 1). A|SO, 2Lop_o < 2k — 2 = 2Lop_o = 2Lop_1 <

of errors and erasures that are present in the received word. An
erasure at a particular position in the received word indicates
that the received symbol at that position is incorrect. Erasure in-
formation is usually available when possible errors are detected
in other parts of the system (for example, by the demodulator or
by the inner decoder in a concatenated coding scheme). In error
correction, both the error values and error locations need to be

2k — 2 = 2Lo1 < 2k — 1. In cases IV and V, we needfound. In erasure correction, on the other hand, only the erasure
to test only2L4,_» < 2k — 2. This suggests that we can dovalues are to be found (erasure locations are known at the input
away with the tes®l,;, 1 < 2k — 1 and perform only the test to the decoder). Let us assume that theresagerors and era-

2L2k,2 < 2k — 2.

All of the above is summarized in Algorithm 2 and Table lican be corrected #+p < din — 1. Letw;, i = 0,1, ..

Notice that the number of iterations has been reduced\ide

sures in the received word. In genernalerrors andp erasures
.,n—1
denote the received vectet,the error values ang the erasure

will exploit this fact to obtain a high-speed/low-power implevalues. Also, let;, I = 1, 2,. .., denote the error locations and

mentation.

Ji, 1 = 1,2,..., p denote the erasure locations. Note that the

1260 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 2000

TABLE Il then we can obtain atr = = 2tT®(z) =
UPDATING A(z), B(z) AND L FOR THEBM ALGORITHM U(x)A(z)S(z) mod z2t. We propose to use iterations
Condition (@) ML(@)) r = 1,2, P to compute this initi:_;tlization. If we assume
1 A that U(z) is pre-calculated along with the syndromes, then
= 75 ~Az 1 Az e . .
b1 b2 b3 [A—l 0] [A_l 0] r—L.1+p W(x) and S(z) are available at the start of the algorithm
— - = atr = 1. We initialize A (z) = B©(z) = U(z). For
(b1 + 4208 [0 —xrl‘] [Al‘l —O'x] L iterationsr = 1,2,...,p, we define the update matrix
i so that AC)(z) and B")(z) are unchanged. Also, we
B 10 1 Az I set AV (z) = z"! r = 1,2,...,p. We notice that
01 0 x -1)
A, =0, r = 12,...,pand thatA, = —A, over

GF(2™). This means that we can compute one coefficient of

error values and the erasure values are nonzero only at the ekfé¢ () in each iteration. In theth iteration, we can obtain
locations and erasure locations, respectively. Deffreeich that ') (z) = Z;;é F](»”)a:j, r = 1,2,...,p by using the update
o] matrix M 1(x) (Row 3 of Table Ill). Also, at the end of theth
o = {0 If ¢ is an erasure location iteration, we setd”)(z) = I'(P)(z) — z*~. This completes
‘ v; otherwise the initialization according to (15) and (16). The complete

The syndromesS; can be computed as algorithm is given in Algorithm 3.

n—1 . .
T Berlekamp Algorithm Errors and Erasures: Algorithm 3
R LN R _
Sj= viat,j =012 -1 ©) 0. Initialize: A©(x) = W(x),BO(z) = W(z),[© =
/=0 0,A9 =z 1 Lo=p

. . & 2t—1 - Sp—
Define the syndrome polynomial &x) = SIS and 1.forA7 - 110 2¢ ACDg
the erasure polynomial using the known erasure locations Zs Ar=200"A r—l-j

W(z) = [[7_, (1 — za¥t). The key equation can be written as 3- if & # 0 thenbl = 0 elsebl =1
4. if2L,._1 <=(r+p—1)thenb2=0elseb2 =1

A(z)¥U(x)S(z) = I'(x) mod z?* (10) 5. ifr<=pthent3 =0elseb3 =1

where T'(z) is the error magnitude polynomial with

, - ') (r—1)
deg(I'(x)) < p + v. Equivalently, we can write A(z) | A (z)
g(l'(z)) <p q y B | = M, (z) BO-D(z) (refer Table 111

A(z)S(z) = I'(x) mod z?* (11) 6b
whereA(z) = A(x)¥(z). It has been shown (e.g., see [23],
[12], [21, Ch. B]) that if we initialize the Berlekamp Massey [
algorithm asA(”)(z) = B%)(z) = ¥(z) and useS(z) to com-
puteA, then at the end dit — p iterations, we geh(?") (¢)= 7. L,.= fr(L,_1) (refer Table 111)
A(x). In addition, if we want to computE(z) in parallel we 8. if » = pthen AT (z) =T (z) — g7t
need to find an appropriate initialization and updatelfo? () 9.end for
and A (z). We can show that if we define 10. Outputi (z) = A (z), T(z) = T (z).

11:1((:))((?)} =M1,(z) [11;((1,_?)((?)} (refer Table 111)

T (z) = §(z)A" () mod " (12) _ _ _
In order that we be able to modify Algorithm 3 (in the same
and way that Algorithm 1 was modified to obtain Algorithm 2), we
TV — S B o . needp to be even. This will allow us to reduce the firstt-
AN(x) = S(x)B (x) — mod z (13) erations in Algorithm 3 intg/2 iterations. We have originally
then similar to the proof in [12]@;(,,)(3:)’ A0 () can be up- assumed_ that the n_umber 01_‘ redundant symbol_sk is even.
dated as Under this assumpnon we WI!| show how to man_|pulate the era-
sures so that their number is always even (without changing
)] re=NEy| 1 o the error and erasure correcting capability of the decoder). Let
A (z) i\ AU (g) rEep L us consider a situation in which the number of errors and era-
(14) sures are within the error-correction capability of the code (i.e.,
2v+ p < 2¢). Ifin addition, the number of erasurgsn a code-
with thematnXM,(.T) defined as in Table |. This means that ifvvord is odd’ therkr + 0 < 2t. For the sake of argument' let us
we can initialize at- = p assume that we can convert one of the erasures into an error, we
- - still have2(v + 1) 4+ p — 1 < 2t (the codeword remains cor-
F(f’)(a:) = ¥(2)5(z) mod 2" (15) rectable). ,glternaztely, we can add one more erasure to the code-
and word. Again, we havér+(p+1) < 2t. In both these cases, we
have made the effective number of erasures even. Note that if the
AP () = U(2)S(x) — 27~ mod z* (16) input codeword is such thav + p > 2¢, the above procedure

RAGHUPATHY AND LIU: ALGORITHM-BASED LOW-POWER/HIGH-SPEED REED-SOLOMON DECODER DESIGN

1261

TABLE IV
UPDATING A(x), B(x) AND L FOR THEBM ALGORITHM WHERE G(x) = 1 — Al | Boi 1@ AND G1(2) = —fos_12% — A1
Condition M. (z) M1;(x) Fi(Lok—2) gr(ak—2)
b1 b0 b3 [(1) 192] [(1) 9?2] Loy—o Qop—2
wwms| [5] | [8] | wee | G
b1 B0 b2 b3 [(1) _5;'522] [(1) _6;'512] Lok—2 Qg2
ww | [L520 57] | [,] [aero| 22
b1 b2 b3 [(1] Gigf)] [(l) Gi(za:)] Lo Qgk—2
G2 I O) I I

can introduce additional errors/erasures in uncorrectable codéb.
words. We can detect such a case during the decoding process £ () ()
and flag it so that no changes are made to the codeword as it)| _
gl g Wi i [A(Qk)(a:)} = M1;(z) [A(Qk_z,)(x)} (refer Table II)

passes through the decoder.

2k=2)¢,

We note that for iterations > p/2 in Algorithm 3, the mod-

ifications are the same as when we derived Algorithm 2. Thel
modifications are shown in the first five rows of Table IV, Int2-
order to computd(®)(x) and A (z) in the first p iterations,
we define the update matrix so that?*)(z) = 2?1k =

& Lo = Jx(Log—2) (refer Table II)

aor = gr{aok—z) (refer Table 1)

if 2k = pthen A (z) =T (2) — 277, qgp = moy i
14. end for

. _ 2 _ 2
1,2,...,p/2. In addition, we recognize that we can obtain col5- OutputA(z) = A®(x), I(z) = D@ (x).
efficients of thd(x) polynomial asAsy, 1 = Fg’,?_Q andéqy, =

r'Y k=12
2k—1> — &y

coefficients of the polynomial'”)(z). Additionally, czz

0k =1,2,...

,p/2. In each iteration, we compute 2 We note that these modified algorithms can be used to decode

= shortened and punctured RS codes without any further change.

,p/2 which ensures thats;,_1 = b2i. There- This is because we can conceptually treat all the dropped sym-

fore, Row 6 of Table IV performs the correct update of thbols as erased positions [2] and use the same decoding algo-
polynomialsT'(z) and A(z). At iteration k& = p/2, we set rithms. Also, the errors-and-erasures decoder algorithm can be
AW () = I'P(2) — 2~ and ensure that,, is initialized used for encoding [2]. In this case, thenessage symbols along

correctly for the iterations that compute the error locator polyvith » — k erased symbols are fed into the decoder. The erasures

nomial (i.e., fork > p/2).

are “corrected” by the decoder so that the output of the decoder
is then symbol codeword corresponding to thenessage sym-
bols.

Low-Power Berlekamp Algorithm- Errors and Erasures:

Algorithm 4

Oa. Initialize A (z) =
0,Az) =271, Ly =0
Ob. if p = 0then ag = Sy elseqy = O fi
l.fork=1to¢

2. Agpy = E;ﬁﬁl A§'2k_2)52k727j

S — EL'H A

2k j=0 4Y 2k—1—j
Mok = E;ial AJ('Qk_Q)SM—j
Por—1 = b2 — Aop 100k 2

if 625 # 0then b0 = 0 elseb0 = 1 fi
if Aop_1 #0thendl = 0elsebl = 1fi
if 2Log_o <= (2k — 2) then b2 = O elseb2 = 1 fi
if 2k < pthent3 = 0 elseb3 = 1 fi

1,BO(z) = 1,TO(x)

BO®X®NOO M W

Oa.

[AWMw}:MM@[M%2mw

B(?k) (J}) B(Qk—Q) (.Z‘) :| (rEEfeI’ Table ||)

IV. VLSI A RCHITECTURE

In the previous section, we discussed algorithm-level trans-
formations for the Berlekamp algorithm. A variety of architec-
tures can be developed based on these algorithms. In this sec-
tion, we discuss how this algorithm transformation translates
into one specific VLSI architecture for the errors-only decoding
problem. A similar architecture can also be developed for the er-
rors-and-erasures case. In addition, we also discuss architecture
level transformations for the syndrome and error computations
in errors-only decoding.

A. Architecture for Syndrome Computation
The syndrome computation is given by

n—1
S;j =Y @ity j=01,...,(26-1). (17)

=0

1262 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 2000

< Hme CLK Ao\
e V . 7 -(n-]
Vs Va2Vn-1 - ~ S; |k lal Ak A(ﬁtk)=A(0t(" 0
at the
z Al—> REG 1 — ittl:t;fnstam kth instant
k=1,2,..,n
Ta(bﬂ)
i - , |cix) D S
Fig. 4. An architecture for the normal syndrome computation. l Ay
at the
. A REG2 ®—) kth instant
< tme | CLK22
V5 Va3Vl :
REG T
lCLK lott At(xkt
X at the
REGt @ kth instant
time b M
a?®+) |cLKn
Vl... Vn-2 O SJ JE—
+ ig. 6. An architecture for the normal error computation.
& REG X Fig.6. A hi for th I i
% o) Note that we need to computé), A’(a™%) andl'(a~*) for
204 1 =20,1,...,n — 1in order to compute all the;. In any field

of characteristic 2
Fig. 5. An architecture for the modified syndrome computation.

t
Ny =) kit =" Agat! (21)
k=0

This equation can be computed using Horner’s rule as k:odd

. b+j o N = and therefore(a—*) A’/ («—*) can be obtained as part of the com-
57 = (0 (na @™ Fong)a™ o)a™ o (18) putation for?\((a—i)). '(I'his)is because\(z) = Acyen(z2) +
An architecture that computes is shown in Fig. 4. Let us as- TAcdd(x?), WhereAcyen(x) and Aqqa(x) are the polynomials
sume that the register is cleared before we start the computafiefined by the even coefficients and the odd coefficients(af),
and that the sequeneg_;,v,_, . . . , v is fed into the input in respectively. In addition, the circuit computes*['(«~") (this
that order. At clock cycld, the previous accumulated value ifvoids the need for the initialization of(x) = z~* in Algo-
multiplied with «(**+7) and added te,,_;. At the end ofr clock rithm 2). We can write the error computation in these terms as

cycles, we obtair$; in the register. Usingt such cells, we can . i
) . 0 if Ala™)#0
computeS;;j =0,1,...,2¢ — 1 in parallel. e; = o= T(a—") . L (22)
In order to enable a parallel computation which can be com- T aC-Dig—iA (a—7) if Ala™) =0

leted in approximately./2 clock cycles, we can rewrite (17 . . - .
P PP / 4 ()An architecture for the evaluation @f(z) at«—* is shown in

as Fig. 6. Initially, the coefficients of the\(x) polynomial are
Ln/2] , /21 ' loaded into the registers. After the initialization is complete, the
Si= > ™y Pt N @My (19) multiplexer passes the value that is fed back. The value ittithe
1=0 1=0 register is multiplied byy?, so that theth register holds\; o*?

when n is odd. The limits of both the sub-summations wilPt thekth clock cycle. The contents of the registers are added up
change to:/2 — 1 whenn is even. Note from (19) that the firstt0 obtainA(a~ =) for & = 1,2,...,n. A similar architec-
and second sub-summations consist of even and odd symbBi& can be used to evaludtéa—"~*)). This implies that we
respectively. Both these sub-summations can be computed ugiaf) €valuate, . at thekth cycle. In other words, in cycles
Horner's rule (similar to (18)). An architecture for this compuWe can compute all the required error values.
tation is shown in Fig. 5. At the end of,/2] + 1 clocks (when If & parallel architecture is used to compute and ca;41,
n is odd), we can obtain the two sub-summations. Finally, ti{gen all the required error values can be computedjf2| + 1
odd sub-summation result is multiplied by*’ and added to cycles. This modified architecture is illustrated in Fig. 7. In this
the even sub-summation. This means that the modified archiS€; the outputs of the registers, .. . , 2¢—3 are used to com-
tecture can complete the computation in approximately half tR¥t€A(a " ~?*)) and the outputs of the registexst, . .., 2t —
number of clock cycles as the normal syndrome computatior?.ggmpmef\(a—("_(?k“))) fork=0,1,...,[n/2] whennis
odd.

B. Architecture for Error Computation) .
. C. Architecture for the Berlekamp Algorithm
The error value computation based on Forney’s method can

be written as The original Berlekamp and its modified version have
] ‘ been discussed in detail in Section IIl. In this section, we

o {0’ Lo AT #£0 (20) discuss architectures for both Algorithm 1 and Algorithm 2.

! _%’ if Ala™")=0. An architecture for performing the computation described

RAGHUPATHY AND LIU: ALGORITHM-BASED LOW-POWER/HIGH-SPEED REED-SOLOMON DECODER DESIGN 1263

Ao
2k
Mo (-
‘l’cu(/z l’ o2 é) A(gm() =A(o (®-20))
at the
A I;IEG 1) kth instant
I_ A BHD l
LK 2 D (2k+1) -(n-(2k+1))
ol {o Ao)=A()
>(—>| REG2 %) at the
kth instant
r 2(2K)
A2(1
tcuqz 2 SP)
A fo
REG 3 ®—)‘
F 2(2k+1)
Koo
\IICLK/Z 4 C D
> F—> REG 4 ®)
A |
cLK? ¢ o2
REG 2t-3 ®
A @D

J{/cuuz ll i

=
S [

Fig. 7. An architecture for the modified error computation.

REG 21-2 ®
T k=0,1,

in Algorithm 1 is shown in Fig. 8. The registers shown in At the beginning of iteratiom, A,. and L,._, are available.

the diagram hold the polynomial$(x), A(z),'(x), B(x)

Note thatA; is initialized to S;. These variables are used

and A(z). The exact manner in which they hold the varioutdo compute the variables in the update matfiX.(x) as

coefficients will become clear shortly. The register holds
the algorithm iteration counter and mirrors the variable
Algorithm 1. At the start of the-th iteration, registeiA holds
(AS™Y, ATV, AFTY) i positions p[o], pl1], ..., plt],
respectively. In the next + 1 cIocks,Ag”); I =0,1,....t
are computed in sequence and shifted into positigh The

well as other decision variables such & and 42. Since
the update matrix(/,.(x) containsz in its second column,
we conclude that a shifted version @&(x) (i.e., zB(z))
is also required. In order to enable an update Bfz)
in a serial manner, a new positiop[—1] is introduced.
RegisterB holds in positiong[—1], p[0], ..., p[t] the values

I register holds the serial iteration counter that increments &8 ™", B~ ... B~V at the start of iteration. The
every clock and synchronizes the various serial operations. Thesults are shifted into registé at positionp[t]. Depending

[counter has arange froh=0,1,...,t+2(i.e.,l isamodulo
t + 3 counter) and- in incremented wheh = ¢ + 2. A,.41 is
accumulated serially at the same time thét—)(z) is serially

on whether the shifted version d(x) is required or not,
the contents of eithep[—1] or p[0] is used in the update.
['(z) and A(z) are updated in a similar manner since the

updated to\" (). In particular, the partially accumulated resultipdate matrixM,.(x) is the same as that fok(z) and B(x).
;,;10 Ag,”)s,,_l,,z =1,2,...,t+1isavailable when the serial A simliar architecture can be developed corresponding to

iteration counter has the valde The contents and updates othe modified algorithm (i.e., Algorithm 2). This architecture is

registerS are defined in order to enable the computation
A4 initerationr whenA 1) () is updated to\(" (z). Reg-
ister S is initialized so that it holdsSs, Ss, ..., S2:—1, S, S1

ghown in Fig. 9. As before, the inner products £o1;, 1, 2542
and 7242 are computed as(?**=2)(z) is being updated to
AC¥)(z). The algorithm iteration countdr in this case counts

in positions p[0],p[1],...,p[2t — 1], respectively. For from k = 1,2,....%. In this case, the serial iteration counter

1=1,2,...,(t+ 1), the positiong[t — 1], p[t], . . ., p[2¢t — 1]

increments from 0 to+ 3 (i.e.,l is a modulo + 4 counter). We

are right rotated by one position each time and the postiofgte the presence afin the first column of the update matrix

p[0], ..., p[t — 2] are kept unchanged, whils,.,; is computed.
When! = ¢ + 2, positionsp[0], p[1], - . ., p[2¢ — 1] of register
S are left rotated by one position so tha2t — 1] holds
S1’+1 mod 2t

M, (z). This indicates that a shifted version 6f?*~2)(x) is
required. This means that we need to add one positjerl]

to the A register (just as we did for thé register in the
architecture for the original algorithm). The second column

1264 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 2000

=12 t+1
A Acoumutate [01[7]pt11| «72]pe-13 ! T o [B
p 1% ";_P = ____P - YY) -
! Ay for = et "] reg.
1 =1,2..t+1
plO]| 1]} ...fple-1] pl |l A
reg.
Compute
@) pl-1] pl0) p[1]{ «»e | DIl B
Generate Al ’Bl reg.
variables
and rl(r)’A(;)
dec}f,lrons =0,1..t pl0]| pl1][eee [Pl |- T
iteration r 1cg.
reg.
| r 1
[counter counter
Compute 1=0,1..t+1,t+2
Ly —I Lr1 ‘I
7

Fig. 8. An architecture for the Original Berlekamp algorithm.

of My(x) contains bothx and x?. This suggests that we D. Extension of Architecture to Handle Errors and Erasures
need two shifted versions aB*=2)(z) (i.e., B~ (x)
and 22 B®*=2)(z)). We add two positiong[—1] and p[—2]
to the B register. In particular, at the start of thgh itera-

When erasures are present in addition to errors, the symbols
of the received word that are erasures are flagged. We refer to
) . N - - these flags as erasure indicaters i = 0,1, ...,n— 1. The bi-
tion the A register holds(0, AG* ™%, A2, . A2y nary variablesr; indicates the presence or absence of an erasure
inpositions p[—1], p[0], p[1], ..., p[f] respectively. As the (je o, = 1 indicates the presence of an erasure and= 0
serial iteration countef increments from 0 tot,AEQk) are the absence of an erasure at locatipn
computed in sequence. THe register at the start ofth iter- \we know from Section 111-B that the erasure locator polyno-
ation holds0,0, B>, B ... B**? in positions mial needs to be computed to provide the appropriate initial-
p[—2],p[~1],p[0], p[1], . . ., p[t] respectively.B(x),T'(x) and ization for Algorithm 3. Fig. 10 shows an architecture that com-
A(x) are updated in a similar manner, whileincrements puytes the erasure locator polynomial from the erasure indicators.
from 0 to ¢. Aoxi1,62142 and nar42 are accumulated, and This computation is performed in parallel with the computation
while [increments from 1 ta + 1. The registerS must be of the syndrome (see Fig. 4. Note that the only modification re-
organized to provide the appropriate data forthg 11, 62x+2 quired in the syndrome computation is that whep = 1, v;
and nox42 accumulators. At the beginning of iteration 1js set to zero. The registels correspond to the coefficients of
register S holds (53, 54,..., S2t—150, 51, 52) in positions the erasure locator polynomidi(x). Register¥, is initialized
p[0], p[1], ..., p[2t—1] and(Ss, S4) in positionsp[2], p[2¢+1], to oneand the other registeks’s are set to zero. Kr,, _;_; = 1
respectively. Fof = 1,2,...,t+1, positionsp[0], ..., p[t —2] the erasure locator coefficients need to be updated based on
are kept unchanged, while positiong — 1], p[t], . .., p[2t — 1]
are rotated and position§2t], p[2¢ + 1] are right shifted using (Yo + W1z + - - + ,2”)(1 + za" ") mod 271
the value out op[2¢ — 1]. When! = ¢ + 2 or ¢ + 3, positions =W+ (U] + Voo 1z + (Uy + U™ 1 Ha?
p[0],...,p[2t — 1] are left rotated so that[2t — 1] holds Fo (U, \ij_lan—l—l)l,p' (23)
Sok+2mod 2t- Whenl = ¢ + 3, p[2t] andp[2¢ + 1] are loaded
with the values being shifted intp[0] and p[1], respectively. Therefore, the updated coefficients are given By .., =
This ensures appropriate operation of the architecture in Fig. @V, + ¥5._;a”17!). Note thata®~1=% 1 =0,1,...,n — 1is

In summary, Fig. 8 describes an architecture for the origingénerated and stored in the register shown on the right side of
errors-only algorithm (i.e., Algorithm 1), while Fig. 9 describe&ig. 10. Depending on whether,,_;_; = 1 orer,,_;_; = 0
an architecture for the modified errors-only algorithm (i.e., Althe coefficients are modified or left unmodified as indicated by
gorithm 2). the multiplexer circuitry. Aften clocks, we get the coefficients

RAGHUPATHY AND LIU: ALGORITHM-BASED LOW-POWER/HIGH-SPEED REED-SOLOMON DECODER DESIGN

1265

=1,2..t+1

.m ...|p[t-l]l f|p[t-1]|:
I=t+

TEE L A

‘I ‘feg,

b1 pron 1] rr‘eg

Areg.

—@4——— Accumulate
A2k+l, 82k+2,0—|
Oy |—
or
Mok |1 1 =12..t+1"]
Compute
—vl Y P
A12k) B(2k)
Generate
required Fl(zk,) &?k)
variables
for =0,1..,t
iteration k
. [k | |
| counter counter
Compute 1=0,1..,t+1,t43
=y J—i_l“ﬂ"‘
Compute
Ol o2
o2k 1

Fig. 9. An architecture for the modified Berlekamp algorithm.

Vo

4?—@—?*0
Tje—
Lo Reg Y

u-l

' I
Reg.

Initialize with o™

0‘n-l-]

at the
1 th instant
1=0,1,...,n-1

s

Reg.Yp

€h.q ’e];l_z R -

time

Fig. 10. An architecture for the normal erasure locator computation.

of the erasure locator polynomi&(x). An erasure counter is

also maintained to count the number of errors in the codeword.

to one and the other registels’s are set to zero. Since we
have two erasure indicators that are input at one time, we have
four cases corresponding to the four binary combinations of
er,—1- ander,_;_(y_1). Case A corresponds to the com-
binationer,, 1 2er,_;_(2;—1y = 00. In this case, the registers

¥, need not be changed. Case B corresponds to the combination
er,_1- = 0ander,_;_ (1) = 1. In this case, we need to
modify the registers based on

(Wo+ Wiz + -+ WU,27) (1 + xa"717(2171)> mod z”*?
=W¥o+ (\Ifl + ‘Ifoanflf(m*l)) x
(\pQ + \plan—l—(ﬂ—l)) 224
(xpp + xpp_la"—l—@l—l)) g

+ (24)

In case C, which corresponds ter,, 1 o
er,_1_(z—1) = 0, we need to update based on

1 and

(To + Tz + -+ + U,2”)(1 4+ za" 72 mod 21
— \IIO + (\Ijl + \Ijoan—l—Ql)x + (\Ifg + \Iflan_l_Ql).TQ

. n—1-20_.p
An architecture for the modified erasure locator computation ot (Y + Y)z (25)
is shown in Fig. 11. This allows the erasure locator computa-
tion to be completed irjn/2| + 1 clocks so that this com- For case C, the update for the coefficiedit;i > 0 is

putation can be done in parallel with the modified syndromgiven by ¥; yew = W, + ;1 (o™ 17 4 o 1-(20) 4
computation. We assume that, again, regidtgris initialized ¥; ,a?»~1=(=1_|n case D, which corresponds to

1266 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 2000

Yo

[Reg.\|l1

_u%

®
s
&

Reg. v, ’%
Reg.\|13

G

Reg.

+J‘7
an-1~(21—1)

— Initialize with o =1

0
l %«— JRISITE) o
~

Reg.

Initialize with o™

a-2

an-l-2l

Reg.
at the T . n-1
I th instant Initialize with ot
1 =01,..|n/3

j 0 [z, -Of

G

}

Reg.l.|lp

B

Fig. 11. An architecture for the modified erasure locator computation.

] €h,.q €Ly3 | ... €T

0

er, 1-xer,_1—(2i—1) = 11, we need to update the registerpre-modify some of the erasure indicators (in particutarand

based on

(o + Uz + -+ U,2”)(1 + za" 172
X (1 + xa"‘l_(21_1)> mod 1!

— Uy + [\Ifl 10, (an—l—Ql +an,—1—(21—1)):| =

+ [@2 + U, (an7172l L an717(2171))

+ \IIOQQ("’D’(‘“’D} 22

+ -+ (\ij + \ij—l (an—l—Ql + an—l—(QI—l))

+ \PPQQ(n—l)—(M—l)) .

For case D, the update for the coefficiewt;
given by U e = U + Uy (o172 4 onm1=(@-1)) 4

erg). If, at the start of iteratioh = |n /2], the erasure counter

is odd ancer; = erg, then we seér; = 0 anderg = 1. On the
other hand, if the erasure counter is evenand# erg, then we
seter; = 1 anderg = 1. In all other cases, the original values
of er; anderg are retained. This ensures that the erasure locator
polynomial always has an even degree.

E. Architecture Level Power Estimates

In Sections IV-A through IV-C, we have described
VLSI architectures for the normal and modified algorithm.
The original syndrome computation takes approximately
clocks, while the modified version takes only approximately
n/2. Similarly, the error computation takes clocks, while
the modified version takes approximately/2 clocks. The
original Berlekemp architecture takes(t + 3) clocks, while
the modified version takes(¢t + 4). Let us assume that
each of the modules are implemented as state machines

U, _o02(n—1)—(=1) The architecture corresponding to thisvith pipelining between the modules. This indicates that our
update is shown in Fig. 11. As we mentioned earlier, we cafgorithm and architectural modifications can be put into the

obtain the coefficients o¥; after |n/2] + 1 clocks.

framework, as shown in Fig. 2. Fig. 12(a) and (b) show the

Algorithm 4 works only wherp is even. We explained in pipeline stages and the number of clock cycles used by each
Section IlI-B how the number of erasures can be made evarodule of the original architecture and modified architecture,
without loss in performance (within the code’s error-correctingespectively. We also observe that the architectures described
capability) as long as the — % is even. The computation of thein the previous sub-sections are independentt gind the
erasure locator polynomial has to take care of this. We haveddtical paths are independent of We will investigate under

RAGHUPATHY AND LIU: ALGORITHM-BASED LOW-POWER/HIGH-SPEED REED-SOLOMON DECODER DESIGN 1267

Time in clock cycles

_
Syndrome Berlekamp Error
Received 2
Word 1 n 2t°+6t n
Received 2
Word n 2t +6t n
Received P
Word n 2t°+6t n
(@
Time in clock cycles
—_—
Syndrome Berlekamp Error
Received 2
Word 1 n/2 t 3t n/2
Received 2
Word 2 n/2 t ¥3t n/2
Received 2
Word 3 n/2 43t n/2

(b)
Fig. 12. Timing of the Pipeline Stages.

what conditions we can expect a low-power implementatiol

Let us assume that the normal circuit can work at a maximu
clock speed off and the modified one at a maximum clock
speed off’. We can operate the modified design in two mode:

high speed and low power. In the high-speed mode, the mor Yoo

fied design is operated at the same supply voltage as the nort

design. The throughput will b2 x f’/f times the throughput i
n_

of the normal design. So a speedup can be expected as It .
asf’ > f/2.In the low-power mode, the throughput is main-
tained constant and the voltage of the modified design is scal wr
down. This means that the clock rate of the low-power desi¢
can be slowed down t@/2. If the critical paths of the normal s
and modified designs at the maximum voltdgeareT = 1/f
andZ” = 1/ f’, respectively, then the voltage can be reduced =
V' (at this voltage the critical path delay in the modified desig™
becomed™ = 2T). The ratio of capacitances can be estimate

as the ratio of active aredsl) of the designs. Therefore, the
ratio of the power consumption in the modified design to th
normal design can be written based on (2) as wld vald

mn_d resi OHD

Fig. 13. VLSI layout of the original design.

Py Ax (V\? f/2
CrI

Py Ay f .
both designs, then we need to generate the odd and output se-
quences on-chip at the input of the modified decoder. Also, we

We can obtain accurate estimatesfofl”, Ay; andAx by ac- need to multiplex the two error values into a single sequence at
tually synthesizing a VLSI layout of both these designs artle output of the modified decoder. In particular, at the input,
performing SPICE simulations of the critical paths. We alswe need just twan bit registers and am bit 2 to 1 multiplixer
note that at the same supply voltage, our modified design Hasorking at a clock ratef) to direct the odd and even inputs into
a smaller latency when compared with the normal design. time correct registers. Similarly, at the output, we needrwlait
particular, at the voltag®’, the latency of the modifed designregisters and am bit 2 to 1 multiplexer (working at a clock rate
is T"/2T times the latency of the normal design. This can bg) that chooses the appropriate register to direct to output. We
important in applications in which decoding delay is critical. note that the additional circuit complexity required for this is
Note that the two decoders shown in Fig. 2 generate the ervary small. In our designs, we assume that the modified design
word as output. This means that for both designs we needattcepts two inputs in parallel and generates two outputs in par-
maintain the received word in a buffer and finally add the errailel. In the next section, we will describe some of the consider-
word to the received word to get the corrected word. Note thations involved in the VLSI design of the normal and modified
if we want the exact same input and output data interface farchitectures.

1268 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 2000

ear_val eer_val e wal
even_2 even_d odd 0 ime_0me 4 imo_2 resei OGN

chock
ino_d
ina_{k
ims_2
err_wal
odd_d
err_val
odd 0
erm_val
even_1
or_bit
EVEN
err_bil err_vwal om_val err_val ine .l mo_lino 5 VDD
odd ol 3 oodd 1 odd 3
Fig. 14. VLSI layout of the modified design.
TABLE V The complete algorithm was simulated in C and the test vec-
SUMMARY OF THE NORMAL AND MODIFIED DESIGNS tors were generated for the circuit. The architecture was then
Parameter Normal Modified described using Verilog HDL and the functionality was verified.
No. of Transistors 26070 50639 Then a timing driven synthesis was performed using Cadence’s
Active Area 3.52mm x 3.52mm | 5.05mm x 5.05mm Synergy synthesis tool. A 0.8-CMOS standard cell library was
SPICE Critical Path T = 5.2n8 Tq = 74505 used with the synthesis tool to obtain a flat gate level netlist. The
Tlmmg"_/? 5.0v functionality of the netlist was again verified against the C sim-
SPTI:n}fngr‘lft,w_a;P (:fh N/A T, ..=2x52ns ulations. Finally, Cadence’s Silicon Ensemble place and route
Symbol Rate at V = 5v | 192Msymbols/s 360Msymbols/s tool was used to produce a channel-less layout. Routing was

performed using three levels of metal. A SPICE netlist of the
critical path transistors was extracted along with routing capac-
V. VLS| DESIGN itances.
The above design process was completed for the normal and

Based on the normal and modified architectures developediodified designs. The layout of the normal and modified de-
the previous section, we designed two separate decoders feigms are shown in Figs. 13 and 14, respectively. The corre-
(63,57) RS code that can correct up to three errors. A binasponding areas ardy = 3.52mm x 3.52 mm andAy, =
representation fof3F(64) was chosen to minimize the com-5.05 mm x 5.05 mm. Table V summarizes the results. Fig. 15
plexity (in terms of the number of transistors) of the GF multishows how the critical path delays vary with voltage. The critical
plier and GF inverter. Elements 6fF'(64) were written in terms path delays were extracted from SPICE simulations. At a supply
of a concatenation of tw&:F(8) elements (see [21, Ch. 10].voltage ofV = 5V, the critical path delays of the normal and
Based on this representation, the multiplication otét(64) modified designs ar& = 5.2 andT” = 7.75 ns. The voltage
can be written in terms of multiplications ov&t'(8). The in- V' corresponds to the supply voltage at which the modified de-
verse ovelGF(64) can again be written in terms of multiplica-sign is slowed down t@” = 2 x 5.2 ns. From Fig. 15, we
tions overGF (64) andGF(8) as well as inversions ov€¥F'(8) obtainV’ = 3.6 V for the modified design. This shows that
(see [21, Ch. 10]. This allowed for an optimal choice of binarthe power consumption can be reduced by about 40%. Alter-
representation fofzF(8) that leads to low complexity multi- nately, a speed-up by a factor of 1.34 can be obtained. In par-
pliers and inverters ovéiE'(64). Multipliers and inverters were ticular, the modified design in the high-speed mode can support
constructed as combinational circuits [21, Ch. 10], [40]. a throughput of up to 192 Msymbols/s. Note that if a slower

RAGHUPATHY AND LIU: ALGORITHM-BASED LOW-POWER/HIGH-SPEED REED-SOLOMON DECODER DESIGN

1269

14 ! T T ! ?

13

-
N

-
pre

e
o

Critical Path Delay (ns)
©

Modified Desigh

T'=7.75n
7 O e St T T T T T I I A I I PP
6 e e T I I ISP
T=5.2ns
5__,f,_”',,_,';._.'.Tf.‘.fi.'.'.',.‘.'.f‘,I;L—..‘.'.‘A',Tl:,_".T.‘A_.LT,'H—.ZTITff.‘f.l?.'.T.’.‘..’.‘..'..‘.'.TITf."..] AAAA i
!V’=3.GV
4 1 1 [1 1 1] 1 1
3 3.2 34 3.6 3.8 4 4.2 4.4 4.6 4.8 5
Supply Voltage (V)

Fig. 15. Plot showing the variation of the critical paths of the normal and modified designs with supply voltage.

throughput is required, then either slower serial GF operatorg4]
can be implemented or the GF operators may be re-used to d%]
multiple operations [41] in both the normal and modified de-
signs.

[6]

VI NCLUSION
ConcLusio 71

In this paper, we have developed a low-power/high-speed
Berlekamp algorithm that enables low-power/high-speed oper-g]
ations. We showed that similar modifications can be derived for
both the errors-only decoding as well as the errors-and-erasure$
decoding. Our algorithm-level approaches expose additionag)
parallelism that enable us to design a low-power RS decoder.
Architecture level approaches were proposed for the syndron{é”
and error computations. An architecture was proposed for
the Berlekamp algorithm that takes advantage of the algdiZ2]
rithm-level transformations. The impact of the algorithm and[13
architecture level approach was evaluated by designing two
decoders for a63,57) RS code- one based on the normal[14]
algorithm and the other based on the low-power algorithm.
Results showed that a speedup of 1.34 or power saving of 409
can be obtained. This validates our claim that algorithm level
transformations, when intelligently applied, can have a stron

impact on the power consumption of a design. [17]

REFERENCES [18]

[1] S. Whitaker, J. Canaris, and K. Cameron, “Reed solomon VLSI codec

for advanced televisionJEEE Trans. Circuits Syst. Video Techneobl. [19]
1, pp. 230-236, June 1991.

[2] S. B. Wicker, Error Control Systems for Digital Communication and
Storage Englewood Cliffs, NJ: Prentice-Hall, 1995. [20]

[3] T. S. RappaportWireless Communications New York: IEEE Press,
1996.

K. Maxwell, “Asymmetric digital subscriber line,;/IEEE Commun.
Mag., vol. 34, pp. 100-107, Oct. 1996.

J. B. Cain and D. N. McGregor, “A recommended error control archi-
tecture for atm networks with wireless linkslEEE J. Select. Areas
Commun,.vol. 15, pp. 16-27, Jan. 1997.

R. D. Cideciyan and E. Eleftheriou, “Concatenated reed-solomon/con-
volutional coding scheme for data transmission in CDMA-based cellular
systems,IEEE Trans. Communvol. 45, pp. 1291-1303, Oct. 1997.

W. W. Peterson, “Encoding and error-correction procedures for the
Bose-Chaudhuri codesfRE Trans. Inform. Theoryvol. IT-6, pp.
459-470, Sept. 1960.

D. Gorenstein and N. Zierler, “A class of error-correcting codeg’in
symbols,”J. Soc. Ind. Applied Mathemvol. 9, pp. 207-214, June 1961.

] E.R.BerlekampAlgebraic Coding Theory New York: McGraw-Hill,

1968.

J. L. Massey, “Shift register synthesis and BCH codin§EE Trans.
Inform. Theoryvol. IT-15, pp. 122-127, Jan. 1969.

Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method
for solving key equation for decoding goppa coddaform. Contro|

vol. 27, pp. 87-99, 1975.

R. E. BlahutAlgebraic Methods for Signal Processing and Error Con-
trol Coding New York: Springer-Verlag, 1992.

] ——, “Transform techniques for error control codel3M J. Res. and

Devel, vol. 23, pp. 299-315, May 1979.

R. T. Chien, “Cyclic decoding procedure for the Bose-Chaudhuri-Hoc-
guenghem codeslEEE Trans. Inform. Theoryol. IT-10, pp. 357-363,
Oct. 1964.

G. D. Forney Jr., “On decoding BCH codedPEE Trans. Inform.
Theory vol. IT-11, pp. 549-557, Oct. 1965.

] K.Y. Liu, “Architecture for VLSI design of Reed-Solomon decoders,”

IEEE Trans. Computvol. C-33, pp. 178-189, Feb. 1984.

H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yuen, and I. S. Reed, “A
VLSI design of a pipeline reed-solomon decod&#EE Trans. Comput.

vol. C-34, pp. 393-402, May 1985.

N. Demassieux, F. Jutand, and M. Muller, “A 10 MHz (255, 233)
Reed-Solomon decoder,” ifProc. IEEE 1988 Custom Integrated
Circuits Conf, 1988, pp. 17.6.1-17.6.4.

H. M. Shao and I. S. Reed, “On the VLSI design of a pipeline Reed-
Solomon decoder using systolic arraysEE Trans. Computvol. 37,

pp. 1273-1280, Oct. 1988.

P. Tong, “A 40 MHz encoder-decoder chip generated by a reed-solution
code compiler,” irProc. Custom Integrated Circuits ConBoston, MA,
May 1990, pp. 13.5.1-13.5.4.

1270

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 11, NOVEMBER 2000

S. B. Wicker and V. K. Bhargav&Reed-Solomon Codes and Applica- [40] T. C. Bartee and D. I. Schneider, “Computation with finite fields”

tions New York: IEEE Press, 1994. form. Contro| vol. 6, pp. 79-98, Mar. 1963.

R. P. Brentand H. T. Kung, “Systolic VLSI arrays for polynomial GCD [41] Y. Im and O.-S. Kwon, “An advanced vlisi architecture of rs decoders
computation,”|EEE Trans. Comput.vol. C-33, pp. 731-736, Aug. for advanced tv,” irProc. IEEE Int. Conf. Communicationgol. 3, June
1984. 1997, pp. 1346-1350.

R. E. Blahut, “A universal reed-solomon decoddBM J. Res. and
Devel, vol. 28, pp. 150-158, Mar. 1984.

Y. R. Shayan, T. Le-Ngoc, and V. K. Bhargava, “A versatile time domain
Reed-Solomon decoderEEE J. Select. Areas Communol. 8, pp.
1535-1542, Oct. 1990.

S. Choomchuay and B. Arambepola, “Time domain algorithms ar
architectures for reed-solomon decodin@foc. Inst. Elect. Eng. I,
Commun., Speech and Vigol. 140, pp. 189-196, June 1993.

J.-M. Hsu and C.-L. Wang, “An area-efficient pipelined VLSI architec:
ture for decoding of Reed-Solomon codes based on a time-domain al
rithm,” IEEE Trans. Circuits Syst. Video Technalol. 7, pp. 864-871,
Dec. 1997. mentation of low-power high-performance VLSI

C. Leiserson and J. Saxe, “Optimizing synchronous systein$/LSI i signal processing systems.

and Comput. Systvol. 1, no. 1, pp. 41-67, 1983. Currently he is a Senior Engineer in the ASIC De-
M. Potkonjak and J. Rabaey, “Optimizing resource utilization usingartment, Qualcomm, Inc., San Diego, CA, where he is involved in the devel-
transformations,”|EEE Trans. Computer-Aided Desigwol. 13, pp. opment of modem ASICs for third-generation (3G) CDMA systems.
277-292, Mar. 1994.

K. K. Parhi, “High-level algorithm and arhitecture transformations for

DSP synthesis,J. VLSI Signal Processingol. 9, pp. 121-143, Jan.
1995.

A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consum|
tion in digital CMOS circuits,”Proc. |IEEE vol. 83, pp. 498-523, Apr.
1995.

K. Liu, A.-Y. Wu, A. Raghupathy, and J. Chen, “Algorithm-based low:
power and high-performance multimedia signal processigt IEEE
vol. 86, pp. 11551202, June 1998.

Arun Raghupathy (S'95-M'99) received the

B.Tech. degree in electronics and communications
engineering from the Indian Institute of Technology,
Madras, India, in 1993, the M.S. and Ph.D. degrees
in electrical engineering from the University of

Maryland at College Park in 1995 and 1998,
respectively. His Ph.D. research focused on the
development of techniques that enable the imple-

K. J. R. Liu (S'86—M'90-SM'93) received the B.S.
degree from National Taiwan University in 1983 and
the Ph.D. degree from the University of California,
Los Angeles, in 1990, both in electrical engineering.
Since 1990, he has been with Electrical and
Computer Engineering Department and Institute
for Systems Research, University of Maryland at
K. K. Parhiand D. Messerschmitt, “Pipeline interleaving and parallelis College Park, where he is a Professor. During his
in recursive digital filters—Part I: Pipeling using scattered look-ahe sabbatical leave in 1996-1997, he was Visiting
and decomposition,/EEE Trans. Acoust., Speech, Signal Processin l Associate Professor at Stanford University, Stanford,
vol. 37, pp. 1099-1117, July 1989. CA. His research interests span broad aspects of
K. K. Parhi, C. Y. Wang, and A. P. Brown, “Synthesis of control circuitssignal processing, image/video processing, and communications, in which he
in folded pipelined DSP architectore$ZEE J. Solid-State Circuifwol. has published over 200 papers.
27, pp. 2943, Jan. 1992. Dr. Liu was an Associate Editor of IEEE RENSACTIONS ON SIGNAL
N. Shanbhag and M. Goel, “Low-power adaptive filter architectures arffROCESSING a Guest Editor of special issues on Multimedia Signal Processing
their application to 51.84 mb/s atmlar§ignal Processingvol. 45, pp. of the RROCEEDINGS OF THHEEE, a Guest Editor of a Special Issue on Signal
1276-1290, May 1997. Processing for Wireless Communications of |IEEBUENAL ON SELECTED
A.-Y. Wu, K. Liu, Z. Zhang, K. Nakajima, A. Raghupathy, and S.-C.AREAS INCOMMUNICATIONS, and a Guest Editor of special issue on Multimedia
Liu, “Algorithm-based low power DSP design: Methodology and verCommunications over Networks of IEEENAL PROCESSING MAGAZINE He
ification,” in VLSI Signal Processing VIIIT. Nishitani and K. Parhi, currently serves as the Chair of Multimedia Signal Processing Technical
Eds. New York: IEEE Press, 1995, pp. 277-286. Committee of IEEE Signal Processing Society, and a Guest Editor of a Special
A.-Y. Wu, K. J. R. Liu, Z. Zhang, K. Nakajima, and A. Raghupathy,ssue on Multimedia Over IP of IEEERENSACTIONS ON MULTIMEDIA, an
“Low-power design methodology for DSP systems using multirate ajditor of theJournal of VLSI Signal Processing Systewrrsd the Series Editor
proach,” inProc. IEEE Int. Symp. Circuits and Systeray 1996, pp. of Marcel Dekker series on signal processing and communications. He is
292-295. the recipient of numerous awards, some of which include the 1994 National
A. Raghupathy, “Low Power and High Speed Algorithms and VLSEBcience Foundation Young Investigator Award, the IEEE Signal Processing
Architectures for Error Control Coding and Adaptive Video Scaling,'Society’s 1993 Senior Award (Best Paper Award), the IEEE Benelux Joint

Ph.D. dissertation, Univ. of Maryland, College Park, MD, 1998. Chapter on Vehicular Technology and Communications 1999 Award (Best
N. H. E. Weste and K. EshraghiaRrinciples of CMOS VLSI De- Paper Award from IEEE VTC’'99, Amsterdam), the 1994 George Corcoran
sign Reading, MA: Addison-Wesley, 1993. Award for outstanding contributions to electrical engineering education and

A. Raghupathy and K. J. R. Liu, “Low power/high speed design of the 1995-1996 Outstanding Systems Engineering Faculty Award in recognition
Reed Solomon decoder,” Proc. IEEE Int. Symp. Circuits and Systemsof outstanding contributions in interdisciplinary research, both from the
June 1997. University of Maryland, College Park.

