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other wearable devices such heertial Measurement Units
(IMUs) have been explored to measure the movements of
the chest surfaces to determine the IBIs and then measure
the HRV [8]. Although some of the aforementioned methods
are less invasive than ECG and PPG-based approaches, all
of them require users to wear dedicated devices, which is
cumbersome and usually expensive for daily usagerefore,

how to monitor the HRV in a non-contact wayas become an
important topic for both academia and industry.

To this end, Radio Frequency(RF) based sensing has
become one of the most promising candidates, because the
presence of a human subject will affect the RF signal prop-
(IBIs) can be further derived for evaluating the HRV metrics gggltlon_u[gt]) [11], c(ia?t IZFbSI?QaIE r((jaected fromt the Eumi?]
of each target. We evaluate the system performance and the ody will be modulated by the 0. y _movemen such as _e
impact of different settings including the distance between human Chest movement caused by respiration and heartbeat, vital
and the device, user orientation, incidental angle and blockage. information of the human subject can be unveiled by analyzing
Experimental results show that mmHRV can measure the HRV  the channel propagation characteristics [11] [14]. While many
accurately with a median IBI estimation error of 28ms (WL gyisting works have validated the feasibility of vital sign
96:16% accuracy). In addition, the Root-Mean-Square-Error LS. - . )
(RMSE) measured in the Non-Line-of-Sight (NLOS) scenarios monltorlng 95'“9 RF signal, most of them can only estimate
is 31:71ms based on the experiments witi1 participants. The the Respiration Rat¢RR) [15] [17] and theHeart Ratg(HR)
performance of the multi-user scenario is slightly degraded [18][22], from which one cannot obtain the HRV without
compared with the single-user case, however, the median error the precise timing of each heartbeat. As a result, accurate RF

AbstractHeart Rate Variability (HRV), which measures the
uctuation of heartbeat intervals, has been considered as an
important indicator for general health evaluation. To alleviate the
user burden and explore the usability for long-term health mon-
itoring, non-contact methods for HRV monitoring have drawn
tremendous attention. In this paper, we present mmHRYV, the rst
contact-free multi-user HRV monitoring system using commer-
cial millimeter-Wave (mmWave) radio. The design of mmHRV
consists of two key components. First, we develop @alibration-
free target detector to identify each user'slocation. Second, a
heartbeat signal extractor is devised, which can optimize the
decomposition of the phase of the channel information modulated
by the chest movement, and thus estimate the heartbeat signal.
The exact time of heartbeats is estimated by nding the peak
location of the heartbeat signal while thelnter-Beat Intervals

of the 3-user case is within52ms for all 3 tested locations.

Index Terms Heart Rate Variability (HRV), heart beat esti-
mation, wireless sensing, millimeter-wave radio.

based HRV monitoring needs to be further investigated.
Technically,accurate HRV estimation is much more dif cult
than HR estimationThe existing HR estimating systems usu-

ally take multiple samples in the time domain to achieve higher
HR estimation accuracy [17] [21], which equals to averaging
Heart Rate Variability(HRV), de ned as the variation of the heartbeats over a certain time window. However, they
the periods between consecutive heartbeats, lier-Beat are not applicable for HRV estimation which needs the exact
Intervals(IBI), is an important indicator of the overall healthtime of each heartbeat and entails the following challenges.
status of an individual [1]. Analysis of the HRV has beefkirst, RF signals re ected by human chests are modulated by
proved to bea powerful tool to assess cardiac health arlobth respiration and heartbeatswhich the distance change
evaluate the state of th&utonomic Nervous SysterfANS) caused by respiration is a magnitude greater than that caused
[2]. High-accuracyHRV monitoring is required in numerousby heartbeats. In signal process terminology, 8ignal-to-
applications such as early diagnose of cardiovascular disedaterference-plus-Noise Rati(B8INR) is very low to recover
stress evaluation, emotions recognition and anxiety treatmesntd separate the heartbeat wave from the compound signal.
etc. [3][7]. Second, the heart pumping motion has to reach the chest wall
Traditional measurements of the HRV are obtained hfirough bones and tissues rst and then be detected by the RF
continuously measuring the IBIs using the electrocardiograsignal. As a result, the bones and tissues of a human body act
(ECG) or photoplethysmogram (PPG) sensors, both of whiels a Iter and thus dampen the signal. Therefore, the heartbeat
are dedicated medical devices ahdve to be physically wave captured by RF signals lacks sharp peaks as those in
contacted with the human skin. However, using ECG ®&CG signals, making it harder to identify IBls. Furthermore,
PPG is uncomfortable for users and sometimes may causerovide a robust system for HRV estimatidtnis necessary
skin allergies. To avoid the direct contact with users’ skirtp determine the number of targets and their locations before

I. INTRODUCTION
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estimating HRV for each human subject, which is non-trivia@rror of SDRR and®:52% average error of the pNN5@hen
as well. users sitlm away from the device.

To address the above challenges, we present mmHRYV, th&'he rest of the paper is organized as follows. We review
rst multi-person HRV estimation system usinGommod- the related works in Section Il. The system overview and
ity Off-The-Shelf (COTS) millimeter-Wave (mmWaveddio. theoretical model are presented in Section lll, followed by the
First, atarget detectoris devised to identify the number oftarget detection in Section IV and the heartbeat extraction and
users and their locations without any prior calibration. NotdRV estimation in Section V. The performance is evaluated
that due to the fast attenuation of the mmWave RF signal Section VI.We discuss the future work in Section VIl and
[23], the strength of the signal decreases as it traversegamclude the paper in Section VIII.
longer distance. To detect human subjects at various distances,
we employ a two-dimension constant false alarm detector
in the range-azimuth plane to estimate the noise level, andContinuous monitoring of HRV is critical for early detection
thus provide an adaptive threshold for target detection. Thed prevention of potentially fatal diseasgompared with
phase information is further used to lter out the static objectfie conventional methodeelying on wearable devices, the
(e.g., walls, furniture)Note that there are usually more tharcontactless method can alleviate users’ burden and reduce
one re ecting point for a single human subject. As a resulthe device cost. Existing approaches for contactless HRV
to determine the number of targets, we further employ estimation can be classi ed into two categories: video-based
non-parametric clustering to identify the range-azimuth bimsethod and RF-based method.
corresponding to each human subject. Video-based: In the past decade, researches have been

After target detection, to estimate the HRV, the heartbeavnducted using the video signal to estimate HRV [28] [30].
wave needs to be extracted from the composite received sighbkse systems focus on the measurement of the small changes
whose phase consists of the whole chest motion includingskin color caused by blood perfusion, so that the exact time
both the respiration and heartbeat movemeNiste that the of each heartbeat can be derived for HRV analysis. However,
respiration movement ranges fraim 12mm with a frequency one of the main drawbacks of these systems is the sensitivity
of 6 30 Breaths Per Minut¢BPM) [24] while the heartbeat to the lighting conditions.The system cannot work in the
movement ranges fron®:2 0:5mm with a frequency of NLOS scenario, and the privacy invasion also hinders the wide
50 120 BPM, both of which are quasi-periodic signalsdeployment of these systems.

Leveraging this property, welevelop aheartbeat wave ex- RF-based:Compared with the video-based method, RF sig-
tractor, which optimizes the decomposition of the compositeals can penetrate nonmetallic obstacles, amddre tolerable
signal to several band-limited signal components. Among th@ environmental conditionsuch as light and temperature,
decomposed signal components, the heartbeat wave will be thaking it a great candidate for non-contact HRV estimation.
one whose amplitude and frequency satis es the requireméddicated radars [31] [39] and Ultra-Wideband (UWB) [40]

of a typical heartbeat signal. Compared with most of tHd2] have been used to measure the distance change between
works [25] [27], where the composite signal is decomposetthe chest and the device to estimate heart rate (HBJvever,
successively, mmHRYV can avoid the error propagation problghpse systems mainly rely on the frequency-domain spectral
by concurrently decomposing the signal components. Thealysis to estimate the HR which may take a couple of
peaks of the estimated heartbeat wave are then recognigedonds, making it impossible to estimate the precise timing
to identify the exact time of each heartbeat. Consequentbf, each heartbeat for calculating the HRV.

the IBIs can be further derived and used for calculating the To achieve robust HRV estimation, a preliminary work [43]
commonly used HRV metrics such as the Root Mean Squdries to eliminate the respiration effect by asking users to
of Successive Differences (RMSSD), the standard deviationtafld their breathsHowever, holding breath will impact the
all the IBIs (SDRR) and the percentage of successive IBIs thedtimation of the HRV and thus the HRV metrics estimated
differ by more tharb0ms (pNN50). in this condition cannot indicate the users’ health condition

To evaluate the performance of mmHRY] participants accurately. To extract the heartbeat wave, the 2nd-derivative of
aging from 20 to 60 are asked to perform extensive exthe distance change (i.e., acceleration) has been considered in
periments under different settings, including different dig+], which is equivalent to a High-Pass Filter (HPHopwever,
tances, orientation and incidental angles. T¥an-Light-of- the residual signal is too noisy for heartbeat extractitm.
Sight (NLOS) scenario and multi-person scenario are alsdentify the exact time of each heartbeat, it is assumed that the
investigated. Experimental results show that mmHRYV achievieartbeat signal is the successive multiple copies of a heartbeat
accurate estimationwith a medium error of abou28ms for template with different time scales. However, as shown in
IBI estimations (w.r.t.96:16% accuracy).The performance [25], using a single template is insufcient. To get a high
slightly degrades for the NLOS and the multi-user scenaria$gtection accuracy, multiple templates are needed, and training
however, theRoot-Mean-Square-ErrRMSE) of the NLOS is required before estimatiorA simple approach based on
and the multi-user case are still withiB2ms and69ms two Band-Pass FilteréBPFs) is employed for separating the
respectively. The HRV metrics are also evaluated, which shoespiration and the heartbeat signal in [26] [27], however, since
a better performance compared with the state-of-art works.uhdesired peaks caused by the interference (e.g., harmonics
is shown that mmHRV can achie\&89ms average error of of respiration) may overlap with the dominant frequency band
mean IBIl, 6:43ms average error of RMSSB;44ms average of the heartbeat, dedicated systems need to be employed to

Il. RELATED WORK
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Fig. 1: Processing ow of mmHRV.

. Fig. 2: FMCW radar system.
remove the false peaks. Ensemble Empirical Mode Decom-

position (EEMD) is applied in [26] to remove the noise anflased on the Inter-Beat Interva@@Bls) derived from the
interference, however, the mode mixing problem as well @gtimated heartbeat signals.

selecting the optimal decomposed Intrinsic Mode Functions

(IMFs) is not easy to solve in real applications. IBls arg Signal Model

assumed to not change much in [27], and the auto-correlation . . . .
is used to remove the false peakiowever, the system can A chirp signal is transmitted by the FMCW radar, where

only perform well when the passing band does not overl e instantaneous transmitting frequency is a periodic linearly-

with the strong interferencelo reduce the interference, thellicreasing signal as shown in Fig. 2, and it can be expressed

Band-Pass Filter BankBPFB) is applied in [44], where the as [20] B
HR is rst estimated and the heartbeat signal is then ltered fo="fc+ =t (1)

: . Te
by using the BPF with a center frequency at HR. However, % ¢ is the chi ) ]f is the chi
large error will occur once the HR is not estimated correctlyy '€'€ Tc 1S the chirp starting frequencylc is the chirp

The above methods try to decompose the composite sighg[2tion andB is the bandwidth. According to Frequency
successively [25] [27], which causes error propagation onddodulation (FM), the transmitted signar (f) can be ex-
the interference is not removed correctly. In our system, R€SSe€d as

. . . Z
avoid the problem, we try to decompose the composite signal _ . t
concurrently leveraging the fact that the chest movement is xT ()= Arexpfj [2 0 fe()d Ig 2
composed of several band-limited signals. The experiment ) B, @
results show the superiority of our method compared with the = Arexpfj [2f ct+ ?Ct 19;

state-of-art works. Besides, all the related works only work . - .
. . whereA+ is the transmitting power. When the electromagnetic
for the single-user case, and the target detection procedur

omitted. In mmHRYV, by properly using the channel informa(gsﬁeﬂgtgja\é? 'nsalrf e(gtegagybzuemxapegggjtait distard(@), the
tion, the estimation of HRV for multi-users can be obtained. 9 R P

. B
I1l. SYSTEM DESIGN AND THEORETICAL MODEL Xr(t) = Arexpfj [2fc(t tg)+ ?(t ta)’1o;  (3)
(o3

A. System Overview whereAr is the amplitude of the receiving signal stands

mmHRYV is a wireless system that can accurately detect thg the round-trip delay and can be denotedtas= @
heartbeat signal of human subjects and estimate their HRMerec is the speed of light.
by purely using the RF signals re ected off the users’ bodies. Mixing the received signal with a replica of the transmitted
The processing ow of mmHRV is shown in Fig. 1. First, asignal and following a low-pass lter, the channel information
Frequency-Modulated Continuous WalE@MCW) radar trans- h(t) can be expressed as
mits the RF signal and captures the re ections of human Bt B
subjects and static objects. In order to detect human subjects h(t) = Aexpfj (2 t+2f ctyg —tg: 4

) ) . . T, T,

at different locationsthe Bartlett beamformeris applied to
get the channel information at different azimuth-range bindlote that the term £-t7 is negligible, especially in short-
Then, we devise darget detectorthat adaptively estimatesrange scenarios. Therefore, th)) can be written as
the noise level at various distances and azimuth angles and ) Bty
thus detects the presence of re ecting objects. The variance h() = Aexpfj (2 T, t+21f cta)g; (6)
of phase is further utilized to distinguish human subjects = ) . i Bt
and static objects. To identify the number of target and theffich is a sinusoidal signal whose frequerfgy, =+ =
locations, a non-parametric clustering algorithm is employeé‘% depends on the target's distance. For each chirp, the
To extract the heartbeat signal from the phase information thgseband signdi(t) is digitized by Analog-to-Digital Con-
is modulated by both respiration and heartbeat, we devise/eiter (ADCY, producingN samples per chip, referred to as

heartbeat signal extractor, which can decompose the phas
9 P P ?IWR1843 chipset employs a 10-bit high-speed successive approximation

Slgnal _|nto several narrow-band S|gnals Concurrently and g'@R) ADC, where the throughput rate is 625 Kilosamples per second (Ksps)
an estimate of heartbeat wave. HRV can be further analyzes.
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wheredg is the distance between the object and the device,
which stays constant in slow time.
Note that the channel information corresponding to the
re ecting object is a periodic signal in fast time, and the
periodicity is related to the distance as shown in Equ. (6)
and Equ. (8). To determine the range information of re ecting
objects, theFast Fourier Transform(FFT) is performed over
the fast time for each chirp, i.e., range-FFT, and the channel
information can be written &% (I; m), wherer is the range tap
Fig. 3: Antenna Deployment. index. The range taps corresponding to the re ecting objects
would observe larger energy compared with that without
re ecting objects.
fast time. The time corresponding to the transmission of chirpsTo further determine the azimuth angles of the re ecting
is referred to as slow time, as shown in Fig. 2. Therefore, tldjects, digital beamforming is performed over all antenna
digitized channel information for the!" ADC sample and elements for each range tap, and the channel information
mt chirp can be expressed as corresponding to rangeand azimuth angle can be expressed

as
4d (T + mTs) - o he (m)= s (Ohg (m)+ (m); ©

whereT; andTs are the time interval in fast time and slomwhere s () is the steering vector towards angle In
time respectivelf. . denotes the wavelength of the chirpmmHRYV, Bartlett beamformer [48] is adopted, where the
In our system, we take advantage of the multiple antennegef cient of thel th antenna is

of the chipset, and use 2 Tx antennas and 4 Rx antennas, as . d; sin

shown in Fig. 3. To increase the azimuth resolution, the chirps si()=exp(j 2 ): (10)

are transmitted in the time-division multiplexing (TDM) mode(m) is the additive white Gaussian noise assumed to be inde-

[47.] l.)y trapsmlttlng sequentially thrqugh two Tx antenna%r‘endent and identically distributed (1.1.D) for different range-
This is equivalent to the 8-element virtual array as shown In

Fig. 3. Therefore, for channé] the channel information can azimuth bms'.h“' (m) = [hra(m)ihra(m):iiihe (M) is
be rewritten as the channel information vector at range tapoverall all

antenna element3herefore, for each sampita in slow time,

h(n;m) = Aexpfj (2f pnT; +

h(;n;m) = Aexpfj (2f pnT; we will have a channel information matrik(r; ), which
. 4d(nTs + mTy) ‘o d sin )a: (7)  contains channel information at different location bins with
c c g ranger and azimuth angle. Fig. 4 (b) shows the amplitude

whered, is the relative distance introduced by virtual antenrf@f the channel information at the range-azimuth plane.
[. is the azimuth angle of the target as shown in Fig. 3.
It is apparent that the phase of the channel informatidh Re ecting Object Detector
changes periodically in slow time due to the periodic motions To |ocate human subjects, we rst need to identify the
of respiration and heartbeat. Fig. 5 (a) shows a typical phaggge-angle bins with re ecting objects. Note that the channel

signal containing vital signs collected by our system. information for the bins without any re ecting object only
contains noise, and thus, the energy of channel information
IV. TARGET DETECTION for the bins with re ecting objects is larger than those without

For practical application, target detection needs to be p&ny re ecting objects, as shown in Equ. (6) and Equ. (8)
formed before vital sign detection, which has been omitted irspectively. However, it is impossible to nd a universal
many works. The target detection is hard to achieve, especigiede ned threshold for target detection. According to the
in the indoor scenario, where there are various objects (efropagation laws of EM wave, for the same re ecting objects,
wall, desk, metal objects, etc.) with strong re ections of EMx shorter distance corresponding to a larger re ecting energy.

waves. In mmHRYV, we utilize the Constant False Alarm Rate (CFAR)
[49] detector, which can estimate the noise level by convolving
A. Range-FFT and Digital Beamforming the CFAR window (shown in Fig. 4 (a)) with the channel

The channel information for the case when there is a sta&pgormanon aJF the _range_-a2|muth_ plane_ (shown in Fig. 4 (b)),
object is and the location bins with re ecting objects are those whose

) energy is above the noise level, as shown in Fig. 4 (c).
h(:n;m)= Aexpfj (2f pnTy + 4do +2 d sin )a: Fig. 4 (d) shows the example_of CFAR _detection in the_ range
c c domain, where the threshold is shown in the dashed line.

8)

2Note that the chirp duration is very small, and the distance change cau€éd Human Subjects Detector

by vital signs is small (<12 mm) [24] [46] with low frequency (<3 Hz), . .
therefore, there is no appreciable change in center frequency and phase durir@lthOUQh Re e_ctl_ng QbJeCt deteCtOC‘_"m Iter Oui[ the empty
chirp time. taps, it cannot distinguish human subjéfctsn static re ecting
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Fig. 4. Example of the re ecting object detector. The ground truth is that there is a human subject sit at 0.5m away from the
device, with azimuth anglé . (a) is the 2D-CFAR window, (b) is the amplitude of channel information in the range-azimuth
plane, (c) is the re ecting result of re ecting object detector, where the black spot corresponding to the re ecting object, and
(d) shows the CFAR threshold and the amplitude of channel information in range domain.
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Fig. 5: Example of the human subject detector. The ground truth is that there are 3 human subjects, one of which sits at 1.5m
away from the device, with azimuth angle, and the other two sit at 1m away from the device with azimuth aB@leand

30 respectively. (a) is phase information corresponding to a human subject, (b) is phase information corresponding to a
static re ecting object, (c) is the result of the human subject detector, where the black spots corresponding to human subjects,
and (d) shows the clustering result for each target.

objects. Note that different from static objects, the distance V. HEARTBEAT EXTRACTION AND HRV ESTIMATION
between human subjects and the device will change over SIOV\Estimating HRV requires accurate estimationlier-Beat

timelgge o rﬂotionsh(e.g., respiLation gn?:.hezzrtbeatzl,_hand ftertQérvals(lBls), therefore, we need to extract the displacement
result in a phase change as shown in Fig. 5 (a). There Oﬁﬂange caused by heartbeats (a.k.a., heartbeat wave) from

to further lter out the static re ecting objects, we leverag he compound displacement change of chest wall and detect
the phase information of the candidate bins selected by Rments in which heartbeats occur

Re ecting object detector.

In speci c, when the EM wave is re ected by a human . .
subject, the phase will change over slow time due to the Heartbeat Extraction Algorithm
modulation of human motions. Therefore, there is a largel) Problem formulation:Recall that the phase information
phase variance for the bins corresponding to human subjecésects the distance change caused by vital signs. For sim-
However, for bins corresponding to the static objects (e.glicity, we directly use the analog form of signals, and the
desk, wall, etc.), the phase variance will be much smallelistance change of the human chest can be written as
as shown in Fig. 5 (a) and Fig. 5 (b). So in mmHRYV, to
lter out the static objects, we check the variance of the phase y = sm®+ st O+ sn(®)+ n(v); 11)

information over slow time, and the bins corresponding t0\@here sm() denotes the distance change caused by body
human subject are those whose phase variance above a cefifion. s (t) andsn(t) denote the distance change caused
threshold. by respiration and heartbeat, respectivelft) is the random
Note that there will be more than one bin corresponding tthase offset introduced by noise, which is independent with
a human subject considering the volume of a human subjettie phase change caused by vital signs.
as shown in Fig. 5 (c). To identity the target number, mmHRV Note that boths; (t) and sy (t) are quasi-periodic signals,
utilizes a non-parametric clustering methddensity-Based where the period can slightly change over time. Besides, we
Spatial Clustering of Applications with Noise (DBSCAId)- assume the body motion introduces few oscillations, i.e., a
gorithm, to cluster the candidate bins without prior knowleddegase-band signal. Thus, the signals related with the human
of cluster number. The clustering result is shown in Fig. 5 (dubject are sparse in the spectral domain and we can recon-
The representative of each cluster is the bin with the bestuct these signals with a few band-limited signals. In speci c,
periodicity. In speci ¢, the bin with the highest peak for theeach componenti, (t) is assumed to be compact around a
rst peak of the auto-correlation is selected, which correspondenter pulsation , which is to be determined along with the
to the bin with the highest SNR of the vital signs [18]. decomposition. Moreover, the decomposition should achieve
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Fig. 6: Example of heartbeat extractor. (a) is the decomposition result in the time domain, (b) is the corresponding spectrum
of each component. In this example, the 1st component corresponds to the body motion, the 2nd component corresponds tc
the respiration and the 3rd component corresponds to the heartbeat. The noise falls into the 4th component and the residual.

the spectrum sparsity and data delity at the same time, whigerforming a change of variable, we can get the updating

is modeled as formula, where P
- 2 y(') iio=k Ui(!)
J . 1) = i;i6=k .
ukzlrJn;I!nkz L1 @y o+ T) ucOlexp(jt Y ) uk(*) 1+2 (1 1?2 (13)
% 2 Note that the center frequenciés; only appears in the
+ y() ue®) bandwidth constraint and thus the subproblem can be written
k=1 2 as
(12) . ] @t 0+ J ' . . 2
where the rst term evaluates the bandwidth of the analytic < argmin O+ ) u®lexp(it ) 2
signal associated with each component, and the second term i ) i i (16)
evaluates the data delityk is the total number of decom-/AAS before, we nd the optimum in Fourier domain, and we
position components, wherdd = fu1(t);:::;uk (g and have Z,
= fl 1;::::1 g are the set for all components and their l'e =argmin (¢ L)Fju()jde 17)
center frequencies, respectivelyis a parameter for balancing o
the bandwidth constraint and data delity. The minimizer of the above quadratic problem is
Once the hyper-parameters are known, the optimization R, Lju (! )j2d!
problem in Equ.(12) can be solved by alternatively updating M= %W (18)
uk(t) and ! until convergence [50]. To updatay, the o UKo
subproblem can be written as Fig. 6 illustrates the decomposition of a typical one-minute
] ) phase signal from the experiment, where the original phase
uc(t) =argmin - @4( () + L) uc®]exp(j! b information has been decomposed. idtoomponents. The rs_t
uk (t) t 2 component re ects the body motion of the human subject,
2 the second component is the respiration motion, and the third
+ y(t) ut) component is the heartbeat wa&nce the noise has different
i=1 2 vibration characteristics as vital signals, it falls into a different

(13) mode as well as in the residual of the decomposition of the
'gnal, as shown in Fig. 6.

By using the P | theorem, the probl be rewrittd ; .
y using the Farseval theorem, the problem can be rewr 2) Algorithm design:It has been proven that the decom-

as position problem can be solved once the hyper-parameters are
uk(!)=arg min - kj! [(1+sgn(' + !)ux(! K3 properly de ned. However, it is hard to prede ne these hyper-
v 2 parameters in real applications for heartbeat wave extraction.
X (14) First, the human motion does not always exist and the human
+oy(t) uit) respiration sometimes will have a strong second harmonic

=1 2 component, making it even harder to determine the component

whereuy (! ) andy(! ) are the Fourier transfer afy (t) and number. Furthermore, the hyper-parametealso in uences
y(t) respectively. After taking integrals over frequency anthe decomposition performance. Before discussing how to
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(b) Normalized heartbeat wave v.s. ECG ground truth (c) IBI estimation of mmHRV v.s. ECG ground truth

Fig. 7: Example of IBI estimation. (a) shows the normalization of the estimated heartbeat wave to increase accuracy in locating
peaks caused by heartbeat, (b) shows the normalized heartbeat signal compared with the ECG sensor, where the ground-trut
from ECG are marked as dashed lines, (c) shows the estimated IBI compared with the ground-truth from ECG sensor.

choose the hyper-parameter, we rst discuss their in uenagbjective function. Therefore, the algorithm will terminate
on the decomposition result. once we get the component corresponding to the heartbeat.
In specic, for the case that is too small, i.e., the The details about the algorithm are shown in Algorithm 1.
bandwidth constraint is too loose, whé&n is too small, the
mixing problem will happen so that two signals may merge .
to a single decomposed component. However, wieis too ©- HRV Estimation
large, some of the decomposed components may consist o®nce the heartbeat wave is extracted, the exact time corre-
noise. For the case that is too large, i.e., the bandwidth sponding to each heartbeat can be identi ed by the peaks of the
constraint is too tight, whel is too small, some target signalsheartbeat wave. To further increase the accuracy, normalization
may be discarded in noise. However, whiénis too large, is performed before peak extraction.
some important parts of the signal may be separated into twdn speci c, the envelope of the heartbeat wave is estimated
or more decomposed components. by taking moving average to the absolute value of the heartbeat
In mmHRYV, to accurately decompose the signal and gedmponent, shown as the dashed line in Fig. 7 (a). We further
the component we are interested, i.e., the heartbeat wave, pgeform a moving average lter to the original heartbeat wave
are trying to adaptively change the component numiKer to reduce the noise. The normalized wave is the ratio between
and for different datasets. Here, we introduce a heuristibe Iltered heartbeat wave and the estimated envelope. IBls
method to changeK and as the iteration proceeds tocan thus be derived by calculating the time duration between
get proper decomposition result. Since the distance chang® adjacent heartbeats. Fig. 7 (b) shows a segment of heart-
caused by heartbeat is much smaller than the distance chabgat wave and its ECG ground-truth, where the dashed lines
caused by respiration and human moticence the component show the exact time of each heartbeat from a commercial ECG
corresponding to the heartbeat is decomposed, the comporsgnisor [52]. The peaks of normalized heartbeat wave match
corresponding to respiration and motion should be decomith the ground-truth, and Fig. 7 (c) shows the estimated IBIs
posed as well, considering the data delity constraint in thand the ECG ground-truth.

3 _ __The HRV features can be further obtained from the IBI
The chest movement caused by heartbeat is 0.2-0.5 mm [51] with

frequency of 50-120 BPM [21]. Whereas, the chest movement caused %?qu_ence' In mmHRV, we use the three_ most Widely used
respiration is 4 12 mm [24] with frequency 6-30 BPM [21]. metrics to evaluate the HRV [2]. One is tHRoot Mean
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Algorithm 1 Heartbeat wave extraction algorithm

8

1: Input y(t)
2: Set min » K K min
3: repeat
4: repeat
5 Initialize U and , ag o,n O
6 repeat
7 n n+l
8: for k=1: K do
o: updateuy (! ) using equ.(15) (a) Hardware
10: update!  using equ.(18)
11: end for
12 until convergence: &, uft u p 2=kufk <
or N >N max
13: if exist 1y 2 [Nmin ; Pmax ] and
Range(IFFT(u k(! ))) <r max then
14 ag 1, break;
15: else ) ]
16: K K +1 (b) LOS setting (c) NLOS setting
17: end if Fig. 8: Experiment setup.
18:  until K >K ax
19: if ag == 1 then
20: break: A. Methodology
21:  else We prototype the mmHRYV system by leveraging a commod-
22: =2 ity mmWave FMCW radar [45] in a typical of ce of size 3.5 m
23:  end if 3.2 m as shown in Fig. 8. By con guring the 2 Tx antennas
24: until > pax and 4 Rx antennas into TDM-MIMO mode as introduced in

Square of Successive Differences (RMSSD), which measu
the successive IBI changes, and can be calculated by

Section 1lI-B, the system can achieve a theoretical azimuth
resolution of15 . The Field of View (FoV) is100 in the

hgyizontal plane with a radius of about 4m [21], which is
suf cient to cover typical rooms. To get the true heartbeat

i signal, an ECG sensor [52] (shown in Fig. 8 (a)) is used
ﬁ 1 et to collect the ground-truth simultaneously with the mmHRV
RMSSD = No 1 (IBIi) IBI(i 1)), (19) during the experiment.
1Bl

i=2

whereN g, is the total number of IBlIs of the measurement;

i

The standard deviation of all the IBls (SDRR) measures t
variation of the IBIs, which can be calculated as

In total, 11 participants (6 males and 5 females) aging from
to 60 are invited to conduct experiments in both LOS and
OS scenario as shown in Fig. 8 (b) and Fig. 8 (c). We
conduct the experiments with a variety of settings including
different distances, incidental angles, orientations and block-

Vv
p N iy IBI ages between the human subject and the radar.
SDRR = N (BI(i ) 1BI)?; (20) To further evaluate the performance of the proposed system,
IBI

i=1

we compare mmHRV with the state-of-the-art HRV estimation
technique using Band-Pass-Filter-Bank (BPFB) [44], where

where IBI is the empirical mean of the IBls of each meaie BPF is used to eliminate respiration interference before
surement. The metric pNNS0 measures the percentagen@hrtbeat wave estimation. The HR is then estimated and the
successive IBI that differ by more th&® milliseconds (ms), heartbeat signal is estimated by using the narrow BPF whose
which can be calculated by passing band contains HR. Finally, the zero-crossing technique
is applied to extract the IBI estimations from the heart rate

signal.

P N i

iey LE(IBI(i) IBIi 1)) > 50msg,

Nigi '

wherelf g is the indicator function.

pNN50 = (21)

B. Overall Performance

Fig. 9 shows the overall IBI estimation accuracy of the pro-
posed mmHRV and BPFB methods. The experiment consists
of 11 participants whilel5 different experiment settings (e.g.,

This section introduces the evaluation details of the prdifferent distances, incidental angle, orientation and blockages)
posed mmHRYV, including practical system implementatioare conducted for each participant. As shown in Fig. 9, BPFB
experiment setup, performance analysis and also the compaelds abou44ms medium error while th@0-percentile error

VI. EXPERIMENT EVALUATION

ison with the state-of-art work.

is about200ms. The proposed mmHRV achieves a medium
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TABLE I: HRV estimation results in terms of mean IBI, RMSSD, SDRR and pNN50 for 11 subjects.

User ID
Metrics Methods
1 2 3 4 5 6 7 8 9 10 11
ECG 899.4 | 789.9 | 723.2 | 854.6 | 6545 | 8229 | 645.2 | 890.1 | 564.9 | 728.1 | 763.8
Value
(ms) mmHRV 906.3 | 790.4 | 725.6 | 848.6 | 652.4 | 828.3 | 644.2 | 888.1 | 574.2 | 722.7 | 762.6

M
e BPFB | 8815 | 784.2 | 7815 | 8421 | 6766 | 821.7 | 6515 | 8784 | 579.1 | 719 | 7735

Eror | MMHRV | 695 | 045 | 247 | 592 | 217 | 54 | 099 | 197 | 933 | 538 | 12
(M) | BPFB | 17.87 | 57 | 5836 | 1244 | 2201| 125 | 631 | 11.66| 14.21 | 9.16 | 9.66

ECG | 3850 | 10.85 | 37.56 | 3149 | 3405 | 35.1 | 16.88 | 27.52| 526 | 2328 | 3116

e | ‘mmHRV | 3352 | 1653 | 39.08 | 35.26 | 2029 | 39.72 | 1814 | 2606 | 27.8 | 3052 | 3492
RMSSD BPFB | 59.34 | 54.26 | 53.83 | 52.94 | 7857 | 65.63 | 95.00 | 45.56 | 140.36 | 50.61 | 47.92
Eror | MMHRV | 508 | 568 | 152 | 377 | 1376 | 462 | 1.26 | 146 | 2253 | 7.25 | 376

(ms) | BprB | 20.75 | 43.41 | 16.27 | 2145 | 4453 | 3052 | 78.21| 1804 | 1351 | 3634 | 16.76

ECG | 56.28 | 22.91 | 50.54 | 3535 | 3361 | 4855 | 23.24 | 32.66 | 12.25 | 3583 | 50.87

\gﬁql‘;)e mmHRV | 4322 | 27.25 | 533 | 4588 | 3354 | 4853 | 2549 | 37.43 | 38.66 | 37.15 | 45,51
SDRR BPFB | 7101 | 47.28 | 11029 | 58.92 | 69.68 | 5511 | 67.61 | 50.44 | 118.41| 47.92 | 63.94
Eror | MMHRV | 13.07| 434 | 276 | 1053| 007 | 002 | 224 | 478 | 2642 | 131 | 536
(Ms) | BprB | 14.72 | 24.37 | 59.74 | 2357 | 36.07 | 6.55 | 44.37 | 17.78 | 106.16 | 12,09 | 13.07

ECG 11.54 0 9.15 4.32 1.14 6.29 0.55 3.76 0 0.61 4.49
Value
(%u) mmHRV 8.46 1.33 7.93 5.76 2.2 6.99 2.17 2.26 4.83 6.71 6.41
pnn50 BPFB 19.4 18.54 14.57 20 14.2 22.92 18.13 | 12.59 | 10.24 12.8 12.42

Error | MMHRV | 308 | 1.33 | 122 | 144 | 105 | 07 | 162 | 15 | 483 | 609 | 1.92
(ms) | pprB 786 | 1854 | 542 | 1568 | 13.06| 16.62 | 17.58| 8.83 | 1024 | 12.19| 7.93

B 200 1 " Fig. 10 (a), the participants are asked to face towards the

glso 08 - device and sit in four different locations ranging fr&9cm

5 L 06 to 200cm. The empiricalCumulative Distribution Function

%100 G o4 (CDF) of the absolute IBI estimation error is shown in

2 5 s Fig. 10 (b), while Fig. 10 (c) lists thRoot Mean Square Error

§ . (RMSE) of the absolute IBI estimation error versus distance.
mmHRV ~ BPFB 0 20 40 60 80 100120140 160180200 Fig. 10 (b) shows that the medium errors of mmHRV are

Methods Absolute IBI error (ms)

22ms,22ms,30ms and33ms corresponding to the distance of
@ (®) 50cm, 100cm,150cm and200cm. Similarly, when the human
Fig. 9: Over all performance of the IBI estimation error. subject moves away from the device gradually, the RMSE of
the IBI estimation error increases frod%:06ms t068:974ms
as shown in Fig. 10 (c). It is clear that the IBI estimation
error of about28ms, with the80ms of the90-percentile accuracy degrades with the increment of distance, which is
error, which outperforms the BPFB abdi%. To thoroughly due to the attenuation property of the mmWave signals, as a
evaluate the HRV estimation accuracy, Table. | shows thenger propagation distance results in a loBanal-to-Noise-
estimated HRV features in terms of mean IBl, RMSSD, SDRRatio (SNR).
and pNN50 ofl 1 participants, where the distance between user i i
and device is aboutm. It is shown that mmHRV can achieve |1 Ne medium error of BPFB increase froAdms to60ms
3:89ms average error of mean IB3;43ms average error of With the _dlstance increasing froB0cm to200cm. In all the
RMSSD, 6:44ms average error of SDRR a@c52% average four settings, mmHRV shows better performance than the

error of the pNN50. Correspondingly, the average estimati§§nchmark BPFB in both CDF and RMSE. This is because
error of BPFB is15:33ms of mean IBI41:94ms of RMSSD, that mmHRV directly extracts the heartbeat signal from the

32:59ms of SDRR and2:17%of the pNN50 estimations. composite signal by optimizing the decomposition, so that
the error propagation from breathing as well as random body

) motion elimination can be avoided. Besides, the accurate

C. Impact of Distance heart rate estimation is necessary for BPFB method, which

In this section, we explore the impact of the distandeowever is vulnerable to noise and interference from other
between the human subject and the device. As shown signal components.
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(b) CDF of absolute IBI estimation error (c) RMSE of absolute IBI estimation error

Fig. 10: Experiment setup and the absolute IBI estimation results versus distance.
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Fig. 11: Experiment setup and the absolute IBI estimation results versus orientation.

D. Impact of Orientation degrades with the increment ofin both CDF and RMSE.

Considering the real case that the user may not strictT)lﬂis is because the effective re ection area decreases when
face towards the device, this section studies the impact 1§ human subject deviates from the device fromto 30 .
users’ orientation on IBI estimation accuracy. As shown iffloreover, according to the array signal processing theorem,
Fig. 11 (a), four normal orientations including front, back, leff’® beam width will also increase with the increment of
and right are investigated. For all the orientations, the humi}f incident angle, which reduces the directionality of the
subject sitslm away from the device and Fig. 11 (b) and&c€ving signal. As a r.esult, the SNR of the received signal
Fig. 11 (c) show the IBI estimation accuracy in terms of CDf€Creases when the incident angle rises féorto 30 , thus re- -
and RMSE, respectively. sulting in larger IBI estimation errors. However, mmHRYV still

As shown in Fig. 11 (b) and Fig. 11 (c), the median absoluf¢/tPerforms BPFB of an average abd4544ms in RMSE,

IBI estimating error of mmHRV ar@1ms, 22ms, 25ms and which bene ts from its optimization in signal decomposition
28ms corresponding to the front, right, left and back settind@.r heartbeat signal extraction as introduced in Section. VI-C.
BPFB ShOWS larger IBI errors withOms,42ms,43ms,55ms E LOS vs NLOS

correspondingly. Averagely, mmHRV outperforms BPFB of ) o
about18:883ms in terms of RMSE as shown in Fig. 11 (c). This section evaluates the estimating performance when the
However, for both methods, the front setting shows tha!S€r and the device are blocked by a wood panel as shown in
best performance while the back one yields the largest |B'f|g. 13 (a). The_ distance b_etween the participant and the de_V|ce
estimation error. This is due to the physiological structure & Set aslm while the user is asked to face towards the device.

a human body, where the vibration caused by the heartbeaf\fs Shown in Fig. 13 (b), the medium estimating error of IBI
larger in the front chest than in the back. of mmHRV increases fron2ms to24ms if the blockage

happens. Correspondingly, the medium error of IBl of BPFB
increases fromiOms to48ms when the blockage occurs (see
Fig. 13 (b)). Theperformance degradation in the blockage

In this section, we investigate the impact of incident angketting is because that the EM signal further attenuates when
denoted by in Fig. 12 (a). Speci cally, the incident angleit penetrates the wood panel, thus rendering the decrements of

is setas 2f0 ;15 ;30 g while the distance between theSNR in the received signal. However, the HRV estimation still
user and device is xed atm. The IBI estimation errors arecan work in NLOS scenario, and Fig. 13 (c) shows that the
shown by the CDF and RMSE in Fig. 12 (b) and Fig. 12 (cRMSE of the IBI estimation error degrades only about 2.1ms
respectively. As expected, for both methods, the performarmed 5ms for mmHRV and BPFB respectively.

E. Impact of Incident Angle
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Fig. 12: Experiment setup and the absolute IBI estimation results versus incident angle.

l — B ==
08 ,,I::*: i
Blockage o ,;Z;"* Bloc condition| BPFB | mmHRV
Oo.6 K
D 100 cm 3 i,/* (ms) (ms)
504 o
02+ ] LOS 48:878 29.850
’ —#—mmHRV-LOS - ® -BPFB-LOS
Ddevic —*—mmHRV-NLOS - % -BPFB-NLOS
/ Oo 20 40 60 80 100 120 140 160 180 200 NLOS 53:736 31.716
Absolute IBI estimation error (ms)

(a) Experiment setup (b) CDF of absolute IBI estimation error (c) RMSE of absolute IBI estimation error

Fig. 13: Experiment setup and the absolute IBI estimation results versus blockage.

’g — which indicates great robustness of mmHRV over different

E.200+ Male .

S — Female subjects.

5

£ 150 .

2 H. Multiple-User Case

€ . . . . .

Z 100 1 In this section, we investigate the accuracy of mmHRYV in a

; multiple-user scenario. As shown in Fig. 15 (a) and Fig. 15 (b),

@ s50) ] the participant in the middle i4:5 meters away from the

é é device with incident angl® , while the other2 users in the

g left and right arelm away from the device at incidental angle
#l #2 #3 #4 #5 #6 #T #8 #9 #10 #11 30 . Fig. 15 (c) and Fig. 15 (d) depicts the mean and RMSE

User ID of the absolute IBI estimation error for mmHRV. The target

detection result is shown in Fig. 5 (d). Overall, mmHRV can
work robustly for the3-user setup, where the mean of the IBI
error is less thald1:83ms for all the3 locations, as shown in
Fig. 15 (c). The RMSE of the absolute IBI estimation error
is within 70ms for all the locations. We can see that mmHRV
To validate the robustness of mmHRV over different userachieve higher accuracy in the middle location than that of
Fig. 14 summaries the absolute 1Bl estimation error distribgither the left or the right location. This is because that the
tion for all the11 users of different settings (including differentparticipant at the middle location enjoys the larger re ection
distance, incident angles, orientations and blockage scenar@a and thus achieves higher SNR in the received signal
Fig. 14 shows the error distribution of each user, where tleerrespondingly. This result coincides with the experiment
rst 6 users are males denoted by the blue box and theblastesult as shown in Section. VI-C and Section. VI-E. However,
users are females denoted by the red box. Evidently, mmHR\e accuracy decreases compared with the single-user scenario
demonstrates different IBI estimation errors for different usefar all the3 locations. The main reason is that mmHRYV utilizes
in which the medium error varies froft3:5ms to37ms. This the digital beamforming, and thus the re ections from other
can be caused by several reasons such as different body shapesgle, although suppressed by digital beamforming, act as
and heartbeat strengths over different users. It is shown tleatra interference compared with the single-user case.
the 75-percentile error of all the uses are smaller t@ams,

Fig. 14: Impact of user heterogeneity.

G. Impact of User Heterogeneity
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VII. [5]

mmHRV takes an important step towards contactless vital
sign monitoring. With the miniaturization of antennas and
chips, mmWave is expected to be widely available on hom€!
routers, smartphones, vehicles, e.t.c., and mmHRV enables
ubiquitous and pervasive vital sign monitoring by reusing a
mmWave device wherever it is already available. Note that
mmHRV is designed for the common clinical setting with
people stay stationary. For more general use case, handling
the large body motion and enabling the vital sign monitorind8l
when the human body is in motion is an immediate nex
step. Besides, given the HRV results already achieved, it is of
interest to study wireless health evaluation problems such
as stress evaluation, emotion recognition, and sleep qual!
evaluation.

D 1SCUSSION ANDFUTURE WORK

(11]

VIIl. CONCLUSION [12]

In this paper, we devise mmHRYV, a contact-free muIti-us:ers]
HRV estimating system built upon a commercial mmWa
radio. To identify the number of users and their locations, a
target detector is rst designed to locate each user witholdf]
any prior calibration. The heartbeat wave of each user is then
estimated by optimizing the decomposition of the compositgs
phase information consisting respiration, heartbeats and ran-
dom body motion. The exact time of heartbeats is extract 1%]
from the estimated heartbeat wave to further evaluate the
IBls and HRV metrics. Extensive experiments are conducted,
where 11 participants aging fron20 to 60 are asked to sit [17]
at different locations (distance, incidental angle, orientation,
and NLOS scenario) for HRV evaluation. Experimental resulfss)
show that mmHRYV achieves median error o8 ms for the

IBI estimation, outperforming the state-of-art work. [19]
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