Dynamic Join-Exit Amortization and Scheduling
for Time-Efficient Group Key Agreement

Yinian Mao, Yan Sun, Min Wu and K.). Ray Liu
Department of Electrical and Computer Engineering
University of Maryland, College Park
Email: {ymao, ysun, minwu, kjrliu} @eng.umd.edu

Abstract—In this paper, we propose a time-efficient contrib-
utory key agreement framework for secure communications in
dynamic groups. The proposed scheme employs a special join-
tree/exit-tree topology in the logical key tree and effectively
exploits the efficiency of amortized operations, We derive the
optimal parameters and design an activation algorithm for the
join and exit trees. We also show that the asymptolic average
time cost per user join and leave event is O(log (log n)), where n
is the group size. Our experiment results on both simulated user
activities and the real MBone data have shown that the proposed
scheme outperforms the existing tree-based schemes.

I. INTRODUCTION

The recent development in multicast communications has
led to the deployment of many group-oriented applications [1],
such as video conferencing, network games and data-cotlection
in semsor networks [2]. In many group communication sys-
tems, communication security is an indispensable component
[3]. One important aspect of group communication security is
access contrel [4], which can be achieved by encrypting the
communication content using a secret key known to all group
members 5] {6]. Such a key is usnaily referred to as the group
key {7] 181 [9].

To address the access control issue in group communi-
cations, many group key management protocols have been
proposed [4] [7] [8] [10]-[22]. These schemes can be classified
into two categories, centralized schemes [10] [7] [11], where a
central key server is responsible for generating and distributing
keys to all group members, and coniributory schemes [12]-
{14], where each group member contributes his/her own share
to the group key. There are also key management schemes that
emphasize the underlying communications technology, such as
the Internet [18] [5] or wireless networks [15].

To establish and update a group key in a large dynamic
group often require a considerable amount of effort. Consider a
group of n users, Upon each user’s join, the group key needs to
be updated to prevent the joining user from accessing the past
communications. Similarly, upon each user’s departure, the
group key needs to be updated to prevent the leaving user from
accessing the future communications. The communication and
computation overhead associated with key update is related
to the group size n. When the group is large and the join
and leave events are frequent, the key updates will incur a
significant overhead for the entire group.

0-7803-8355-9/04/$20.00 ©2004 IEEE.

The scalability of a group key agreement in large and
dynamic groups is one¢ of the main concerns in the design of
group key management protocols [23]. A number of existing
works have addressed this problem both from theoretical
points of view {24] [25], and from construction perspectives
I8, [16]1-[22], [26]. Previous literatures have also shown that,
in group key management schemes, a logical key tree can
be employed to organize the keys belonging to the group
users [7] [13]. The usage of a logical key tree reduces the
communications complexity associated with join and leave
events to ©(logn), where n is the group size.

Since the two-party Diffie-Hellman (DH) protocol [27]
was published in 1976, many contributory key agreements
that extend the two-party DH to group scenarios have been
proposed [13] [14] [28] [29]. In some applications, contrib-
utory key agreements are particularly attractive due to three
reasons. First, it does not require the existence of a secure
communication channel. Second, it does not put all trust in a
third party (a key server) that generates and distributes keys
for group members. Third, it does not need the establishment
of a key server, which could be infeasible in some practical
situations [13]. While the communication and computation
complexity of contributory key agreements have drawn ex-
tensive attention [13] [14] [24] [25], the discussion on the
time-efficiency issues of contributory schemes remains limited.
Furthermore, cryptographic primitives of a contributory key
agreement, such as modular multiplication and exponentiation
[301, are computationally more expensive than their centralized
counterparts [5], which poses a time-efficiency challenge to
contributory key agreements.

In this paper, we investigate time efficiency issues of con-
tributory key agreements. We first analyze the importance of
time efficiency in contributory key agreements and propose
two performance metrics for tree-based contributory schemes.
To improve the time efficiency, we design a novel key tree
topology with join and exit subtrees. Together with this key
tree topology, we propose a set of algorithms to handle user
join and leave events. We then integrate all the algorithms
into a Pynamic Subtree Group Key Agreement. The proposed
scheme employs amortization and scheduling techniques o
improve the time efficiency in large dynamic groups. Our
analytical results show that the proposed scheme achieves an
asymptotic average time of O{log (log »)) for a join event, and
also ©(log (log n)) for a leave event when group dynamics are

2617

mailto:kjrliu}@eng.umd.edu

known a priori. In addition to the improved time efficiency, our
scheme has low commurications and computation complexity.

The rest of this paper is organized as follows. Section H
reviews tree-based contributory key agreement and proposes
two performance metrics for time efficiency. Section Il dis-
cusses the join and exit tree topology and algorithms used in
our scheme. In Section IV, we integrate these algorithms into a
unifted protocol. We present the simulation results in Section
V and discuss several other performance aspects in Section
VI, Finally, the conclusions are drawn in Section VII.

II. BACKGROUND AND PERFORMANCE METRICS

In this section, we discuss the time efficiency issues of
contributory key agreement and review 3 class of tree-based
contributory key agreements. The performance meirics that
measure the time efficiency are also formulated.

A. Time-Efficiency Issues in Contributory Key Agreements

Time efficiency of contributory key agreements describes
the processing time of key updating due to users’ join and
departure. After sending the join request, a join user has
to wait until group keys are updated before being able to
participate in the gronp communication. Since both computing
cryptographic primitives and exchanging messages for a key
update are time-involving, this waiting time is not negligible.
Similarly, in the case of user depariure, the amount of time
needed to recompute a new group key refiects the latency
in user revocation. In applications with large group size and
highty dynamic membership, the time efficiency of the key
management is an important quality-of-service concern,

Many contributory key agreements aim at extending the
two-party DH protocol to the group scenario, such as [13],
[14], [281, [29]. These schemes evaluate their time perfor-
mance by the number of rounds needed to perform the proto-
col. In general, the number of rounds cannot always accurately
reflect the time cost, especially when different rounds represent
different operations. For example, in GDH.2 [29], one modular
exponentiation is performed in the first round, while » modular
exponentiations are performed in the n-th round. In this work,
we will focus on the tree-based contributory schemes using
DH, each round of which is to perform a two-party DH. In
this scenario, we can use round as the basic time unit.

B. Key Establishment and Update in Tree-based Contributory
Schemes '

In this part, we briefly review rekeying operations for join
and leave events in tree-based contributory key agreements
[13], [14], [20], which can use two-party DH protocol as a
basic module. These schemes satisfy the security requirements
for group key distribution, namely, group key secrecy, forward
secrecy, backward secrecy and key independence as defined in
(13] and 18].

In a tree-based key agreement, three types of keys are
organized in a logical key tree, as illustrated in Fig.1(a). The
leaf nodes in a key tree represent the private keys held by
group members. The root of the tree corresponds to the group

0-7803-8355-9/04/520.00 ©2004 TEEE.

(a) a key tree

(b) user join
Fig. 1. Notations for a key tree

key, which is held by all members in the group. All other
inner nodes represent subgroup keys, each of which is held by
the group members that are descendants of the corresponding
inner node. We adopt the notations from {13] as follows:

i-th group member
v-th node at level [in a key tree

K,y | the key associated with the node (I, »)
g exponentiation base
P modular base

To establish a group key, the keys in the key tree are
computed in a bottom-up fashion. Users are first grouped into
pairs and each pair performs a two-party DH to form a sub-
group. These sub-groups will again pair up with each other
and perform the two-party DH to form larger sub-groups.
Continuing in this way, the final group key can be obtained. As
an example shown in Fig.1{a), there are four members in the
group. Denoting each member’s privaie key as r;, the group
key Ky is computed in 2 rounds as

Koo =g@"™ mod py(gm™+ mod p) o4 4,

In a vser join event, the new user will first be paired with
an insertion node (which may represent a group of users) to
perform a two-party DH. Then all the keys on the path from
the insertion node to the tree root are updated recursively. An
example is shown in Fig.1(b).

Upon a user’s departure, the leaving user’s node and its
parent node will be deleted from the key tree. Its sibling node
will assume the position of its parent node. Then all the keys
on the path from the leaving user’s grandparent node to the
tree root are recalculated from the bottom to the top.

C. Time Complexity Performance Metrics

In this part we define two time complexity performance
metrics.

1) Average User Join/Leave Time Metric: The user join
time is defined as the number of rounds to process key updates
for a user join event. The average user join time, denoted by
ATC)gin, is calculated as

L Rjot'n
oin Nja{n 7
where Rjoin i8 the total number of DH rounds performed for
Njsir join events.

ATC; (1

2618

{a) join and exit tree

(b) join wee onty

Fig. 2. Join Exit Tree Topology

Similarly, the user leave time is defined as the number of
rounds to process key updates for a user leave event. The
average- user leave time, denoted by ATCi.qpe. 18 calculated

as

R
ATC!ecwe = _Ieﬂc;’

leave
where Ryeawe is the total number of DH rounds performed for
Nieave leave events.

2) User Join/Leave Latency Metric: We define user join
latency as the number of DH rounds needed for a joining user
to acquire a group key, and user leave latency as the number
of DH rounds needed to calculate a new group key that is
unknown to the leaving user. The average user join and leave
latency are denoted as ALjoin and ALjeqq., respectively.

In many existing key agreements [7], [13], {14], [28], [29],
the user join time and latency are always the same. So does
the user leave time and latency. In this paper, we present a
contributory key agreement that aims at reducing average user
join/leave time, while achieving a user join/leave latency that
is even lower than the corresponding user join/leave time.

@)

II1. JOIN-EX1T TREE: THE TOPOLOGY AND ALGORITHMS

In this section, we present a logical key tree topology that
consists of three parts: join free, exit tree, and main tree, as
shown in Fig.2(a). Similar to the key trees shown in [13] and
[14], our proposed key tree is a binary tree. We define join
tree capacity and exit free capacity as the maximum aumber
of users that can be held in the join and exit tree, respectively.
Using the join-exit tree structure, we discuss how to choose the
join and exit tree capacity dynamically such that the average
user join and leave time are minimized.

The join tree and exit tree are designed to be considerably
smaller than the main tree. The joining users will first be
added to the join tree. Later on, when the join tree reaches its
capacity, all users in the join tree will be relocated together
into the main tree. In addition, when users’ departure time is
known, users that are likely to leave in the near future will be
moved in batch from the main tree to the exit tree. The join-
exit tree design rationale resembles that of memory hierarchy
in computer design [31]. The join iree and exit tree are similar
to the cache, and the main tree is similar to the main memory.

The join-gxit tree topology can be reduced to a simpler
form. For example, when there is no user in the exit tree,

0-7803-8355-9/04/$20.00 ©2004 TEEE.

TABLE I
JOIN-EXIT TREE NOTATIONS

mimber of users in main iree
Cy join tree capacity

Cg exit iree capacity
ATC0in average join time cost(in rounds)
ATClopye | average leave time cost(in rounds)

Fig. 3.

User join at join tree root

the topology reduces to a main tree and join tree topology
as shown in Fig.2(b). To distinguish the proposed key tree
topology from those described in the existing schemes [13]
[14], we call the key tree in Fig.2(a} a join-exit tree and a key
tree without special structures a simple key tree. We specify
the notations related to a join-exit tree in Table I and present
the detailed join-exit tree algorithms.

A. The Join Tree Algorithm

We choose the average user joinr time as performance metric,
and address the following four problems in the join tree
algorithm:

1. If a join (ree is used, where in the join ee do we insert
the joining user?

2. When the join tree is full, how do we relocate users from
the join tree to the main tree?

3. What is the optimal join tree capacity?

4. When should we choose to use a join tree?

1) Insertion Strategy for Joining Users: When the join tree
is empty and a new user wants Lo join, the insertion node is
chosen as the root of the current key tree. The insertion is
done by treating the entire existing group as one logical user,
and performing a two-party DH between this logical user and
the new user. Therefore the new user forms the root of join
tree. This process is shown in Fig.3. When there are already
some users in the join tree, the insertion node is determined by
the Algorithm 1, where usernumber(x) returns the number
of users under a given node in the key tree.

Algorithm 1 Finding the insertion node
x — join-lree-root
while usernumber(z) # 2* for some integer k do
z — rightchild(z)
end while
insertion-node «— x

Fig.4 shows the growth of the join tree from | user to 8
users using the proposed insertion strategy.

2619

Join 1ee usexi

2 3

A J{\

M1 M2 M3
0 O

M1 M2

A

M1 M2 M3 M4

Ml M2 M3 M4

8
.

)

M1M2 M3 M4 M5 M6 M7 M8

A

Fig. 4. Sequential User Join Strategy (only the join tree is shown)

Join rae & mein e
usars

Fig. 6. Join Tree Relocation Method 2

2} Relocation Strategy: When the join tree is full, users
in the join tree will be relocated into the main tree. Reloca-
tion can be dome in two ways with different tradeoffs: The
difference of these two methods is whether to preserve the
sub-group keys in the original join tree.

The first method is illustrated in Fig.5. During relocation,
the subgroup keys among the users in the join tree are
preserved. Hence the join tree structure is also preserved. All
users in the join tree are viewed as a logical user and this
logical user is inserted into the main tree. An insertion node
is chosen to be the leaf node on the shortest branch in the main
tree, shown as the black node in Fig.5. Then all keys along
the path (shown as a dashed line in Fig.5) from the insertion
node to the tree root are updated.

The second relocation method is 11]ustrated in Fig.6. This
method inserts the join tree users into different nodes in the
main tree. The insertion nodes are chosen to be the leaf nodes
in the shortest branches. After the insertion nodes are found, a
new group key is computed in a bottem-up fashion. The keys
on the branches from all original join tree users to the tree
root are updated.

The relocation time for the first and second method is at
most log Nas and log Nas + 1, respectively. The first method
has a.lower communication cost. Only 2log Nps messages in
total are sent during relocation key update. The second method

0-7803-8355-5/04/520.00 ©2004 IEEE.

TABLE I
SEQUENTIAL USER JOIN LATENCY
E 1123145617890
R 11223 2[3[313[2[3 [~

helps to maintain the balance of the key tree, which reduces
the expected cost of leave events [13]. Because the second
method addresses both the join and leave time cost, we choose
the second method for our analysis and simulations.

3) Optimal Join Tree Capacity: Using the proposed inser-
tion strategy, the user join latency for the k-th user in the
join tree after the last join tree relocation is measured as
r{k) rounds, which is listed in Table II. We observe that the
sequence of r(k) has a special property, namely,

2P +q)=1+r(q), 0<qg<2P, (3)

where p is a non-negative integer, and g a positive integer.
Lemma 1. If the user join latency r{k) for the k-th user on
the join tree is determined by (3), then

Ca

e UCE

holds for any positive integer C;, and cquality is achieved
when C is a power of 2.

Proof: See appendix.

Consider the average join time for C; users joining the
group after the last join tree relocation. Counting the relocation
time of log Vs, the average join lime for these C users is

1
3 logCr+1 (4)

Gy
1
AT Groin = 5= (3 7(K) +log Na). (5)
k=1
Using Lemma 1, we obtain
1 1
ATCjpin < SlogCr+ 1+ == log Ny (6)
2 oF

Since it is not easy to minimize ATCjqin, directly, we mini-
mize its upper bound over C;. The optimal C; value is given
by
apt
Cy

. 1 1
argmlnx>0{§ logz+1+ p log N}
= "2In Ny {7

This analysis leads to the following theorem:

2620

Theorem 1. For a given main tree¢ user number Nas and
the insertion rule specified by Algorithm 1, the optimal join
tree capacity Cy is 2In Ny, and the average join time during
two join tree relocations is upper bounded by

AT Cjp4p, < %]oglog Ny + g— + 5—111—2 - %logloge. 8

Proof: Directly from (5)-(7).

The join tree capacity is thus determined by the number of
users in the main tree. This relation gives us an upper bound
on the average user join time cost. However, since users can
start to communicate once they are added in the join trée, the
user join latency does not include the relocation overhead of
log N3¢ rounds. When € is egual to 2In Ny, the maximum
join latency is logCy = logln Nas + 1 and the average join
latency is bounded by
3 1 !
373 logloge.

4) Activation Condition for Join Tree: We now discuss a
condition under which a reduction in average join lime can
be achieved by using join tree. We call this condition the
activation condition for join tree. Suppose all users joining
the group wili first be added to the join tree. Consider the
case when users join one by one and assume that the join tree
and the main tree are balanced. In the worst case, adding each
user in the join tree incurs a time cost of log Cy rounds, and
a batch relocation incurs an additional time cost of log Ny
rounds for C; users. Sco the average join time satisfies

ATCjoin < logCy + (log Npg)/Cy. ®

ALjoin < %log(log Nar) +

In the same situation, if a simple key tree with only a main
tree is used, the average join time would be log Vs, Therefore
a reduction in time cost can be obtained by using a join tree
if the following inequality holds,

log Cs + (log Nag)/Cy < log Ny,
or equivalently,

Cy
C;—1

This condition tells us when the number of users in the group
is large enough, a join tree should be activated to reduce the
average join time. We can show that there exists a threshold
group size, T'Hqp, such that all Nas values larger than
THjoin can satisfy (10). Therefore when the group size is
smaller than or equal to THjpin, a simple key tree is used.
Otherwise, a join tree is activated.
Example

log Nps > log Cj. (10)

NMZQ, CJ=2IHNM%4;
Cy

F—1

log Nar = 3.2, log Cr =~ 2.3

This Nas value satisfies (10). Therefore 1T'Hjqm can be set to
9.

0-7803-8355-9/04/520.00 ©2004 IEEE.

TABLE 11{
NOTATIONS FOR BATCH MOVEMENT

B batch movement size

P exit tree residual rate .

Uy | user number in exit tree right after the last batch movement
Us | current number of users in exit tree

B. The Exit Tree Algorithm

The join tree algorithm employs scheduling and amorti-
zation techniques. Scheduling user departure, however, is a
harder task, because there is no simple way to accurately
predict user’s departure time and location in the key tree. We
assume that when users join the group communication, most of
them can have a self-estimated departure time. In the following
analysis, we show that with perfect user departure information

~ and the use of exit tree, the average user departure time can

be reduced to ©(log(logn)), where n is the group size. Later
in the simulations, we also show that a reduction in average
departure time can be obtained when the estimated departure
time deviates from the actual departure time,

In this part, we first present a batch movement operation,
followed by the analysis on optimal exit tree capacity. Finally
we discuss the activation condition for exit tree.

1} Batch Movement: The batch movement refers to the
operations to move the potential leaving users from the main
tree o the exit tree. During the batch movement, a series of key
updates are performed and a new group key is computed. The
batch movement does not affect the group communications
since the old group key can still be used without violating
any security requirement. And the new group key becomes
effective upon the completion of its computation.

When a new user joins the group, he/she will report a
self-estimated departure time. The whole group maintains a
leaving queune, which is a priority queue [32] indexed by users’
estimated departure time. Before each join tree relocation, the
departure information of the join tree users are added to the
leaving queue.

With a user’s departure, the leaving queue and a condition
for batch movement (to be presented below) are checked. If
the leaving user is in the leaving gueue, his/her item will
be removed from the leaving queue. If the batch movement
condition is met, the first B users in the leaving queue will be
moved to the exit tree in batch, where B is referred to as the
batch movement size. The insertion locations for these users
in the exit tree are chosen to maintain the balance of the exit
tree. In Table II we introduce batch movement notations.

Our proposed batch movement condition is

Ues < pUp, {11)
where we use the exit tree residual rate (or residual rate for
short), g € (0, 1), as well as U}, and U, to control the timing
of batch movement. Using this condition, if we start from an
empty exit tree (U, = 0), the number of users in the exit tree
after the k-th batch movement will be "5 ¢* B, which will
converge to B/(1 — p) as k goes 1o infinity. Therefore we set

2621

the exit iree capacity Cg as
Cs = BJ(1-p). (12)

2) Optimal Fxit Tree Capacity: In deriving the optimal exit
tree capacity, we minimize an uppér bound of the average
leaving time over the exit tree capacity. This upper bound for
the average leaving time is not as tight as that for the average
join time because of the randomness in users’ departure.

A batch movement of B users to the exit tree will incur a
time cost of (log Nps + 2). Each user leaving from the exit
tree will incur at most a time cost of (log Cg + 2). Thus the
average user leave time for these B users is bounded by

ATCgne < i(log N + 2) + (log Cr+ 2).

Using (12), we can rewrite it as

1
AT Cregpe € —————(log Npy +2) + (log Cp + 2). (13
) (l-p)CE(g Ny +2) + (log Cg + 2). (13)
Minimizing the right hand side of (13}, we obtain
1
apt — . 2
CH argmin, {———(1 — g)x(logNM +2)+ (logz +)}
In Ny +21n2

14
(1-p) 4

Therefore when exit tree is activated and its capacity is com-
puted according to (14), the average leaving time is bounded
by

ATCleaue < log(log Nas + 2) + 9,
where ¢ = 2 —log(1 — p) + loge —log loge. Combining (14)
and (12} leads to the optimal batch movement size

B =In Ny + 2In 2. (15)

In summary, the exit tree capacity is chosen as

=10 if no exit tree used,
E= (InNuy +2In2)/(1 — p} otherwise.

3) Activation Condition for Exit Tree: Recall that the
average leaving time using a simple key tree with Nys users
is log Njs. Compared with (13), a reduction in the average
leaving time can be achieved by the proposed exit tree strategy
if

———(log Ny +2) + (log G + 2) < log Ny,
(1-p)CE
or equivalenty,
log Nps + 2
(1-p)log Nag ~logCp —2)
Combining (14) and (16), we have the activation condition as

amn

Cg 2 (16)

log Nyt > log Cg + loge + 2.

Condition (17) indicates that, when the group size is large
enough, employing an exit tree can reduce the average leaving
time. Similar to the join tree case, we can show that there is a
threshold group size, T Hiegye, such that all Ny values larger

0-7803-8355-9/04/520.0C ©2004 TEEE.

than T Hieque can satisfy (17). Only when the group size is
larger than T Hyeove, the exit tree is activated. We also notice
that the join tree is activated before the exit tree is, because
satisfying (17) requires a larger Ny than satisfying (10).
Example
Ny = 256,

logCg =~ 2.8,

Ce =T,
log Npr —loge — 2 = 4.6,

This Npr value satisfies (17). Therefore T Hieppe Can be set
10 256,

1V. DYNAMIC SUBTREE GROUP KEY AGREEMENT

In this section we present a contributory group key agree-
ment that jointly use the join and exit tree. Based on the results
in Section III, the join and exit tree capacities are adjusted
according to the group size, So we name it Dynamic SubTree
(DST) group key agreement,

A. Group Key Establishment

In prior works, one of the assumptions in key establishment
stage is that many users are available at the same time [28]
[20]. Thus parallel computation can take place io establish a
group key [20]. In reality, however, there are situations when
users join the group sequentially, and early arrival users are
not necessary to wait for all users o be present.

In DST scheme, when many users are present at the same
time, subgroup keys in the key tree are computed in a bottom-
up fashion in parallel to obtain the final greup key. This
technique is also described in [20]. Otherwise we establish
and update the group key using the join protocol (discussed
below) of DST agreement. The exit tree will not be activated
during the key establishment stage.

B. Join Protocol

The threshold group size for join tree activation is set to
THjoim = 9. Key update for a user join event follows the
next four steps, as illustrated in Fig.3:

1. Choose an insertion node in the key tree;

2. Generate a new inner node to assume the position of the
insertion node;

3. The insertion node and the new member become children
of the new inner node;

4. Update all the keys associated with the nodes on the path
from the new inner node to the root.

Before the join tree is activated, Algorithm 1 is used in
the simple key tree to choose the insertion node. When the
group size is larger than 9, the join tree is activated. The join
tree capacity Oy is computed according to (7), and rounded
to the nearest integer. If inserting the new user according (o
Algorithm 1 will not make the join tree height more than
flog N1, the insertion strategy is followed. Otherwise, the
insertion node will be chosen as the minimum level leaf node
in the join tree. This modification takes user departure from
the join tree into consideration, and helps make the join tree
balanced.

2622

When the join tree becomes full, following the correspond-
ing algorithms in Section III, all users in the join tree will be
relocated into the main tree, and their departure information
is put into the leaving queue. After the relocation, the join
and exit tree capacities (if exit tree is activated) are updated
according to (7) and (14), respectively.

C. Leave Protocol

The threshold group size for exit tree activation is set to
T Hyzqve = 256. The exit tree residual rate is set 0 p = 0.5,
Key update for a leave event follows the next four steps:

1. delete the leaving user node and its parent node,

2. promote the leaving user’s sibling node to their parent
node’s position,

3. update all keys associated with the nodes on the path
from the leaving user’s grandparent node to the tree root.

4, if the leaving user’s information is in the leaving queue,
remove the corresponding information.

In addition to the above four steps, if a user is leaving from
the main tree or the exit iree, the following extra operations
are necessary.

When the user is leaving from the main tree and there are
also users in the join tree, the key update for user relocation
and user departure are performed together, By doing so the
time cost for user relocation is further amortized. After the
key update, the join tree capacity is vpdated according to (7).
And the exit tree capacity is also updated if the value computed
from (14) becomes larger than the current number of users in
the exit tree.

When the user is leaving from the exit tree and the baich
movement condition is satisfied, a batch movement will be
performed according to the batch movement strategy in Sec-
tion II. Following the batch movement, the join and exit tree
capacity are updated in the same way as described in the Iast
paragraph.

In practice, when the number of users in a group is always
around T Hiesve, using the previous activation condition will
lead to repeated switching of the key tree topology, thus
incurring a considerable overhead. To stabilize the key tree
topology, we propose a delayed switching policy. The leave
tree is activated when Ny > 27T Hyouoe and deactivated when
Ny < THjeoype. This will improve the stability of the key
tree.

V. EXPERIMENTS AND PERFORMANCE ANALYSIS

In this section, we present three sets of simulations ac-
cording to the ways user activity data are acquired. The first
set of simulations focuses on group key establishment, We
consider the scenario of sequential user join. The second
set of simulations is based on user activity data collected
from previous MBone multicast sessions [33]. The third set
of simulations shows the results for a large dynamic group,
whose user activity data are randomly generated according 1o
a probabilistic model. In each simulation, the performance of
our proposed scheme is compared with TGDH scheme [13],
a typical of tree-based key agreement.

0-7803-8355-9/04/3$20.00 ©2004 IEEE.

Sequential user join average tme cost
T

-

—t —r— T
o
7+ x Dynamic subtiee (DST) o
— - Analyical upper bound for DST
TGDH o
e a©
o @

5 o @ -
£ 60
£ -
2
s 4 o [- A
3 ‘c__cla—""' wx x x %
> - x x X
a G)- .-G xx X -

- xx XX
e Q *
i [=JE
. x
2L - @
L
13 ® 4
[
0 L P . ' —
1o* 1w 0 10* 10! 16°

Gloup size

Fig. 7. Sequential User Join Average Time Cost

A. Seguential User Join Key Establishment

For sequential user join, the proposed DST protocol uses a
simple key tree for small group size, and activate the join tree
when the group size is larger than 9.

In Fig.7, we plot the average user join time for sequential
user join using TGDH [13] and the proposed DST. The x-
axis indicates the group size, and the y-axis indicates the
average user join time for the corresponding group size. It
can be seen that our dynamic subtree scheme achieves the
same performance as TGDH when the group size is small,
and outperforms TGDH scheme when the group size becomes
large. From the figure we can see that, when a large group of
users is joining the communication group, TGDH achieves an
average time cost of ©(log V), and the proposed DST scheme
achieves an asymptotic performance of @(log (log N)). The
dashed line is the theoretc upper bound for the average time
cost of sequentiat user join from (8).

B. MBone Data Experiment

From the study of Multicast Backbone (MBone) multicast
sessions, Ammeroth ef al. observed that the MBone multicast
group size is usually small (typically 100-200), and users
either stay in the group for a short period of time or a very
long time [33] [34].

Using our proposed DST scheme, an exit tree will not be
activated for a group size smaller than T'H;..... However,
when a user stays in the group for only a short period of
time, it is highly possible that this user joins the group in
the join tree and leaves from the join tree without getting to
the main tree. This analysis indicates that our proposed DST
scheme should outperform the existing tree-based schemes for
the same user activities in MBone multicast sessions.

We choose three user activity log files from three MBone
multicast sessions {35]. Two of these three sessions are NASA
space shuttle coverage and the other one is CBC News World
online test. The user activities can be shown using a plot along
the time line (in minutes), where /V(¢) is the current number

2623

Group Dynamic Inkwmatien of the CBC Newsworld On-Line Tagton 10/20/1996
T T T T T

[}) 1000 2000 3000 4000 $000 5000 T000 8000
Tima {maniite)

Fig. 8. MBone Session User Activity: CBC News World

Simulation Using MBone Dala

o

>

Average Join Tene
o e

<

Averaga Leave Time
»> e

-

Fig. 9. Simulatior Using MBone Data

of users in the multicast group, J(¢) is the number of users
joining the group at this moment, and L(#) is the number of
users currently leaving the group, These log files serve as the
user activity input for DST protocol simulation, Comparing
the simulation results of the average time cost for our DST
protocol and for TGDH in Fig.9, we can see that our proposed

. DST scheme has about 50% improvement in user join, and
about 20% improvement in user leave.

C. Simulated Data Experiment

In the simulated data experiment, we generate user activities
according to a probabilistic model. The duration of our simula-
tion is 5000 time urits and is divided into four non-overlapping
segments, T; to Ty. In each time segment T, users’ arrival
time is a Poisson process with mean arrival rate A; and users’
staying time follows an exponential distribution with mean
value p;. The Poisson arrival and exponential staying time are
suggested in [33]. The values of A; and u; are listed in Table
v,

The group size is initialized to be 0. In a total of 5000

0-7803-8355-9/04/$20.00 ©2004 IEEE,

TABLE IV
STATISTICAL PARAMETERS FOR USER BAHAVIOR

duration 0-199 [200-499 | 500-4499 | 4500-5000
Ai 7 5 2 1
i 2500 500 500 500
long stay shon stay
TABLE V

SIMULATED DATA EXPERIMENT COMPARISON

average worst case

Join leave | jom [leave
DST 2.766 7.083 14 14
TGDH | 10825 | 9956 | 12 12

time units, there are 12000 user join events and 10983 user
leave events. The maximum group size at any time is about
2800 and the group size at the end of simulation is about
1100, Each user’s arrival time is known. And we assume
the estimated staying time for each user follows Gaussian
distribution N(y;, 0?) with the mean value y; being the
actual staying time for user ¢, and the standard deviation o;
proportional to the mean. Let R be the ratio of the standard
deviation to the mean, i.e., B = o:/p;. We fix R for all users
and simulate the average join and leave time for different
R values in the range of [0,1]. Because of the Gaussian
distribution in the estimated staying time, a user can potentially
report a negative staying time. Such a user will not be moved
to the exit tree. :

The simulation results in Fig.10 show that, when the stan-
dard deviation is two orders of magnitude smaller than the
true staying time, the proposed DST scheme can efficiently
schedule both user join and leave events. As R increases, the
average processing time per event (join and leave) remains
unchanged for small & and increase by a small amount for
large R. When R value is small, we have more accurate
estimation of users’ staying time, and by our protocol, most
users are moved to the exit tree and leave the group from the
exit tree. When R becomes large, two situations may occur
and result in an increased operation time. A leaving user may
not be moved to the exit tree because of the inaccuracy in the
estimated staying time, or some users may be inappropriately
moved to the exit tree and saturate the exit tree capacity,
preventing other users from entering the exit tree. In both
situations, more users tend to leave the group from the main
tree, increasing the overall average processing time, However,
since our protocol tries to combine the handling of user
departure from the main tree with the join tree relocation and
counts the time cost of such a combined event as user leave
time, the average user join time so accounted may decrease.
Alternatively, the time cost of the combined event can be
counted toward the join cost, in which case the average user
leave time would be reduced.

In Table V we show the average join and leave time of our
proposed scheme when R = 0.01. We also show the worst
case user join and leave time. Here we count the time cost
for relocation or batch movement into the time cost of the
preceding join or leave event. The worst case operation time
remains the same for any K value. Comparing these time cost

2624

Simuiaisd Dala Experiment
12 T T

=+~ Avaiage Join Tima
—ir- AvetaDe Laave Time

=5~ Avarage Overall alion Time

Aveyage Cperalion Time
2

A the fatic of standard devialion to Maan of the eslimatad slaying lime

Fig. 10. Simulated Data Experiment

results with those for TGDH, we can see that the proposed
scheme can improve the average user join time, and reduce the
average leave time when the estimated staying time is fairly
accurate.

V1. DISCUSSIONS
A. Protocol Complexity

1} Time Complexity from Other Perspectives: In addition
to the time cost for each join and leave event, which is
©(log(logn)) on average in our proposed scheme, it is in-
teresting to examine the amount of time a user would spend
on key update during his/her lifetime in the group, and the
amount of time the whole group would spend on key updaie
during the lifetime of the group communications,

Consider a sequence of » join events followed by n leave
evenis. We assume that the first user joining the group is alsc
the last one to leave the group. In the DST protocol, this first
user wiil spend the majority of his/her lifc time in the main
tree for Key management purpose. On average, this first user
will spend 2-round time for each user jein event and 3-round
tme for each user leave event, assuming all users report their
staying time accurately. Therefore this user has spent ©(n)
rounds in total on key update during his/her life time. Since
this first user has the longest life-time among all users, O(r)
is the upper bound for any user’s total key update time. For
tree-based key agreement using a simple key tree, this first
user will spend ©{rlogr) rounds in total on key update.

From the system perspective, for the same sequence
of events described above, the whole group will spend
B(rlog(log n)) rounds in key update using the proposed DST
protocol. If a key agreement using a simple key tree with only
a main tree is employed, the time cost wiil be ©(nlogn).

2) Communication Complexity: In this part, we discuss the
average number of messages for user join and leave events
under (wo scenarios.

In the first scenario, we assume that multicast is available
for group communications. In particular, If a message needs

0-7803-8355-9/04/$20.00 ©2004 IEEE.

10 be senf to m users, seading one multicast message is
enough. When the subgroup keys in the join tree are preserved
during relocation (relocation methed 1), the average number of
messages for a join event is O(log(logn)). Otherwise, using
relocation method 2, the average number of messages needed
for a join event is ©(logn). For a leave event, the average
number of messages is always @(logn).

In the second scenario, we assume that multicast is not
available. If a message needs to be sent to v users, = duplicate
copies of the same message must be sent. In this case the
average number of messages is O(n) for both user join and
leave event.

3) Compuatation Complexity: In the proposed DST protocol,
the rotal number of exponentiations performed by all users is
O(n) during the key update for a join or leave event. Such
a measurement capture the overall computation load of the
entire group.

For a particular user, the average number of exponentiations
performed by him/her during join and leave events is less
or equal to the average number of DH rounds in the same
scenario. Therefore it is O(log(log »)).

B. The Group Coordinator

As suggested in [12], we prefer 10 have a group coordinator
in the implementation of our scheme. The role of this group
coordinator is to store the current key tree topology and
manage future topological changes, such as determining the
join location and organizing the batch movement. However, the
trust in the coordinator is limited, since it is not responsible
for generating and distributing keys. In implementation, the
coordinator can be either a centralized or distributed third
party. It can also consists of several or all members in the
group.

The time complexity of the algorithms that a group coor-
dirator needs to perform, such as a priority queue or some
graph algorithms, may seemingly exceed those engaged in key
updates. However, since we use DH round as the time unit for
key update, the complexity of computing modular exponen-
tiation in DH protocol is a dominating factor. Therefore the
algorithmic complexity for the group coordinator woukl not
be an important factor in the overall system time complexity.

VII. CONCLUSIONS

In this paper, we have applied dynamic amortization and
scheduling techniques for time-efficient group key agreement
and presented a new contributory key agreement, known as
the Dynamic Subiree Group Key Agreement, for secure group
communications. Built upon a tree-based key management
framework, our proposed scheme ¢mploys a main tree as well
as two subtrees that serve as temporary buffers for joining
and leaving users. The join and exit subtrees help amortize
the time cost for user join and leave events.

Focusing on time efficiency issues in contributory key
management, our proposed scheme can achieve an average
time cost of ©{log(logn)) for user join and leave events for
a group of n users. In addition, our DST scheme reduces

2625

the total time cost of key update over a user’s lifetime from
O{nlogn) by the prior work to &(n), and over a system’s
life time from @(nlogn) to ©(nlog(logn)). In the mean
time, our proposed scheme also achieves low communication
and computation overhead. These results suggest substantial
savings by our proposed scheme, especially for large dynamic
groups.

We have shown through analysis that the optimal subtree
capacity is at the log scale of the group size. We have

also designed an adaptive algorithm to activate the join/exit

subtrees when the gain over using main tree only is substantial.
Our experimental results on both simulated user activities and
the real MBone data have shown that the proposed scheme
outperforms the existing tree-based schemes in the events of
group key establishment, user joir and leave by a large margin
for large and dynamic groups, and does not sacrifice any time
efficiency for small groups.

ACKNOWLEDGEMENT

This work was supported in part by the Army Research
Office under Award No. DAAD19-01-1-0494 and the National
Science Foundation under Award No. CCR-0133704,

APPENDIX

In this appendix, we will show the inequality

AZ

where 7(1) = 1, (2% + q) = 1 + r(q), p is a non-negative
integer, and g € [1, 2F] is a positive integer, The equality holds
when A is a power of 2.

We first use induction to show that when A = 2, p =
0,1, 2, ..., the equality holds.

When A=1, LHS = RHS = 1.

Next, we assume the equality holds for A = 2P, namely,

logA +1, (18)

=3 r(k) = %log2p+l. (19)

Consider the case of 4 = 2Pt

2P+1

2p+1 Z r(k)
2?
_ 2p1+1 (Zr(k)+2(r(k +1))

k=1 k=1

LHS =

1 1 '
= — _{2.(= P Py 9r
= 5o (27(2]og2 +1)2 +2) (*)

1
= log 2P+l 1 = RHS,
where (x) is obtained by using the induction assumption (19).

We now prove the inequality for any positive integer A.
It is obvious to see that inequality is true for A = 1,2. By

0-7803-8355-9/04/520.00 ©2004 IEEE.

induction, suppose that the inequality is true forall 1 < A <
2P - ¢, and we consider A = 2P - ¢, where 0 < g < 27,

1 A
LHS = =Y r(k)

4 k=1
1 (& d

= Z(+Zr(k)+1)

k=1 k=1

1 /1
- P 9P —

< 1 (Glosz+ 12+ ahtoga+1) 44) (-0
1

1
= {-A—(Zplog2p+qlogQ+2q)}+1, (20)

where (%) is obtained by using the induction assumption.
To prove that (20) < 1log A + 1 is equivalent to prove

2r q
—log 2P + 1 log(4q) < log A. 20

A

Applying the identity Ink = flk g—lcda:, logk = loge -Ink,
(21) can be written as an integration form

» 7 4] 4y
1 —dz —d <1 —dx
oo {5 [S g [e} e [

A

1 41 191
& F —dz 4+ g / —dz — / —dx| >0 {22)
0 T 1z 1
We denote B = 2F and fix p (hence B is fixed). Thus

A= B+ q. It is straightforward to see that (22) holds when
B+gzdqor1<qg< £,
When B/3 < g < B, (22) is equivalent to
p A 4q
Eal P B R
A op I A. A T
Since ¢ is the only variable in (23), let f(g) be the LHS of
(23), and consider f(q) as a continuous function of g

B B+q 4 q 49
~dr — ——— —d
fla) = BJrq[T B+q_/,:3+qu’
where g € [B/3, B]. Taking the derivative of f(q), we get

B 40
(B+4q)?

In previous proof we showed that the equality of (18) holds
when A is power of 2, i.e. f(B) = 0. We also showed that
flq) > 0 for 1 < ¢ < & Since f(B/3) >0, f(B) =0,
flq) is continuous on [B/3, B] and f/(g) < 0, we must have
f(q) > 0on [B/3, B]. Thus (22) also holds for B/3 < ¢ < B.
This completes the proof.

(23)

d
Eaf(q)=— Sz <0 (24)

REFERENCES

[1] S. Paul, Multicast on the Intemnet and its applications, Kluwer academic
Publishers, 1998.

[2]1 L. Eschenauver and V.D. Gligor, “A key-management scheme for
distributed sensor networks,” in Proceedings of the 9th ACM conference
on Compuler and communications security. 2002, pp. 4147, ACM
Press.

2626

13
(4]
5]

{6

=

7l

(8]

[9}

[10]

[11]

112

(13

[14]

{15]

{16]

(7

[18}

9]

20

[21}

122]

[231

241

[251

126]

0-7803-8355-5/04/$20.00 ©2004 [EEE.

M.J. Moyer, J.R. Rao, and P. Rohatgi, “A survey of security issues in
mnlticast communications,” IEEE Network, pp. 12-23, Nov./Dec. 1999,
H. Harney and C. Muckenhirn, “Group key management protocol
(GKMP) architecture,” RFC 2094, July 1997,

P. Judge and M. Ammar, “Gothic: A group access control architecture
for secure multicast and anycast,” in Proceedings of the IEEE INFO-
COM°02, 2002, pp. 1547-1556.

R. Canett, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“Multicast security: A taxonomy and some efficient constructions,” in
Proceedings of the [EEE INFOCOM'99, 1999, pp. 708-716.

C.K. Wong, M. Gouda, and 5.5. Lam, “Secure group communications
using key graphs,” IEEE Transactions on Networking, vol. 8, no. 1, pp.
16-30, Feb 2000.

A. Perrig, D. Song, and J.D. Tygar, “ELK, a new protocol for efficient
large-group key distribution,” in Proceedings of the IEEE Symposium
on Security and Privacy, 2001, pp. 247-262.

H. Hamey and C. Muckenhirn, “Group key muanagement protocol
(GKMP) specification,” REC 2093, July 1997. .-
D. Walloer, E. Harder, and R. Agee, “Key management for multicast:
Issues and architecture,” Internet-Draft drafi-wallner-key-arch-00.txt,
June 1997. .

I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha, “Key
management for secure internet multicast using boolean function mini-
mization techniques,” in Proceedings of the IEEE INFOCOM'99, 1999,
vol. 2, pp. 689-698.

M. Steiner, G. Tsudik, and M. Waidner, “CLIQUES: a new approach
to group key agreement” in Proceedings of the IS8th International
Conference on Distributed Computing Systems, 1998, pp. 380-387.

Y. Kim, A, Perrig, and G. Tsudik, “Simple and fault-tolerant key
agreement for dynamic collaborative groups,” in Proceedings of the 7th
ACM Conference on Comp and Ct ications Security. 2000, pp.
235-244, ACM Press.

L.R. Dondeti and S. Mukherjee, “DISEC: a distributed framework for
scalable secure many-to-many comrmmication,” in Proceedings of the
Sth {EEE Symposium on Computers and Commanications, 2000, pp.
693-698.

Y. Sun, W. Trappe, and K.JR. Lii, “An efficient key management
scheme for secure wireless multicasy,” in Proceedings of the IEEE
International Conference on Communications, 2002, vol. 2, pp. 1236—
1240.

R. Molva and A. Pannetrat, “Scalable multicast security in dynamic
groups,” in Proceedings of the 6th ACM conference on Computer and
communications security, 1999, pp. 101-112.

S. Mittra, “lolus: a framework for scalable secure multicasting,” in
Proceedings of the ACM SIGCOMM’S7. 1997, pp. 277-288, ACM Press.
S. Banerjee and B. Bhattacharjee, “Scalable secure group commu-
pmication over [P multicast” IEEE Journal on Selected Areas in
Communications, vol. 20, no. 8, pp. 1511-1527, Oct. 2002.

M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The
VersayKey framework: Versatile group key management,” IEEE Journal
on Selected Areas in Communications, pp. 1614-1631, Sept. 1999.

W. Trappe, Y. Wang, and K.J.R. Liu, “Establishment of conference keys
in heterogeneous networks,” in Proceedings of the IEEE Intemational
Conference on Communications, 2002, pp. 1236-1240.

B. Sun, W. Trappe, Y. Sun, and KJ.R. Liu, “A time-efficient contrib-
utory key agreecement scheme for secure group communications,” in
Proceedings of the IEEE International Conference on Communicalions,
2002, pp. 1159-1163.

5. 7hu, S. Setia, and 8. Jajodia, “Performance optimizations for group
key management schemes,” in Proceedings of the 23rd International
Confference on Distributed Computing Systems, 2003, pp. 163-171.

A. Ballardie, “Scalable multicast key distribwion,” RFC 1949, May
1996.

K. Becker and U. Wille, “Communication complexity of group key
distribution,” in Proceedings of the 5th ACM conference on Computer
and communications security. 1998, pp. 1-6, ACM Press.

1. Snceyink, S. Suri, and G. Varghese, “A lower bound for multicast key
distribution,” in Proceedings of the IEEE INFOCOM 01, 2001, vol. 1,
pp. 422-431.

D. Balenson, D. McGrew, and A. Sherman, “Key management for large
dynamic groups: One-way function trees and amortized initialization,”
IETF Internet draft (work in progress), August 2000.

[27]

£28]

[29]

301

[31]

(32]

{33}

34]

[35]

2627

W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. TT-22, no. 6, pp. 644654,
November 1976.

1. Ingemarsson, D.T. Tang, and C.K. Wong, “A conference key
distribution system,” IEEE Transactions on Information Theory, vol.
1T-28, no. 5, pp. 714-720, September 1982.

M. Steiner, G. Tsudik, and M. Waidner, “Diffie-hellman key distribution
extended 1o group communication,” in Proceedings of the 3rd ACM
conference on Computer and communications security. 1996, pp. 31—
37, ACM Press.

S.E. Eidridge and C.D. Walter, “Hardware implementation of mont-
gomery’s modular multiplication algorithm,” [EEE Transactions on
Computers, vol. 42, no. 6, pp. 693-699, June 1993.

J.L. Hennessy and D.A. Patterson, Computer architectire: a quantitative
approach, chapter 5, Morgan Kaufmann publishers, Inc., second edition,
1996.

T.H. Corman, C.E. Leiserson, and R.L. Rivest, iroduction to algo-
rithms, chapter 7, The MIT Press and McGraw-Hill Book Company,
second edition, 2001.

K.C. Almeroth and MH. Ammar, “Multicast group behavior in
the Internet’s multicast backbone (MBone),” IEEE Communications
Magazine, pp. 124-129, Iune 1997.

K.C. Almeroth, “A long-term analysis of growth and usage patterns
in the multicast backbone (MBone),” in Proceedings of the IEEE
INFOCOM’00, March 2000, vol. 2, pp. 824-833.

MBone user activity data, “fip:/Htp.cc.gatech.edwpeople/kevin/release-
data,” March 2003,

