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Abdract-ln this DaDer. we nrowxe a time-efficient contrib- The scalabilitv of a P ~ O U D  kev aereement in laree and 

- 
is the group sue. Our experiment results on both simulated user 
activities and the real MBone data have shown that the proposed 
scheme outperforms the existing tree-based schemes. 

be employed or,&ze the keys belonging to ’the group 
users 171 [131. The usage of a logical key tree reduces the 
communications complexity associated with join and leave 

I. INTRODUCTION 

The recent development in multicast communications has 
led to the deployment of many group-oriented applications 111, 
such as video conferencing, network games and dataxollection 
in sensor networks [21. In many group communication sys- 
tems, communication security is an indispensable component 
[3]. One important aspect of group communication security is 
access control [4], which can be achieved by encrypting the 
communication content using a secret key known to all group 
members [SI [61. Such a key is usually referred to as the group 

To address the access control issue in group communi- 
cations, many group key management protocols have been 
proposed 141 171 181 [10]-[22]. These schemes can be classified 
into two categories, centralized schemes [IO] 171 1111, where a 
central key server is responsible for generating and distributing 
keys to all group members, and contributory schemes 1121- 
[14], where each group member contributes hisiher own share 
to the group key. There are also key management schemes that 
emphasize the underlying communications technology, such as 
the Internet [IS] [51 or wireless networks [IS]. 

To establish and update a group key in a large dynamic 
group often require a considerable amount of effort. Consider a 
group of n users. Upon each user’s join, the group key needs to 
be updated to prevent the joining user from accessing the past 
communications. Similarly, upon each user’s departure, the 
group key needs to be updated to prevent the leaving user from 
accessing the future communications. The communication and 
computation overhead associated with key update is related 
to the group size n. When the group is large and the join 
and leave events are frequent, the key updates will incur a 
significant overhead for the entire group. 

key V I  [SI PI. 

events to O(logn), where n is the group size. 
Since the two-party Diffie-Hellman (DH) protocol [27] 

was published in 1976, many contributory key agreements 
that extend the two-party DH to group scenarios have been 
proposed [I31 [14] 1281 [291. In some applications, contrib- 
utory key agreements are particularly attractive due to three 
reasons. First, it does not require the existence of a secure 
communication channel. Second, it does not put all trust in a 
third party (a key server) that generates and distributes keys 
for group members. Third, it does not need the establishment 
of a key server, which could be infeasible in some practical 
situations 1131. While the communication and computation 
complexity of contributory key agreements have drawn ex- 
tensive attention [131 [14] [241 [251, the discussion on the 
time-efficiency issues of contributory schemes remains limited. 
Furthermore, cryptographic primitives of a contributory key 
agreement, such as modular multiplication and exponentiation 
[30], are computationally more expensive than their centralized 
counterparts [SI, which poses a timeefficiency challenge to 
contributory key agreements. 

In this paper, we investigate time efficiency issues of con- 
tributory key agreements. We first analyze the importance of 
time efficiency in contributory key agreements and propose 
two performance metrics for tree-based contributory schemes. 
To improve the time efficiency, we design a novel key tree 
topology with join and exit subtrees. Together with this key 
tree topology, we propose a set of algorithms to handle user 
join and leave events. We then integrate all the algorithms 
into a Dynamic Subtree Group Key Agreement. The proposed 
scheme employs amortization and scheduling techniques to 
improve the time efficiency in large dynamic groups. Our 
analytical results show that the proposed scheme achieves an 
asymptotic average time of @(log (log n)) for a join event, and 
also @(log (logn)) for a leave event when group dynamics are 
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known a priori. In addition to the improved time efficiency, our 
scheme has low communications and computation complexity. 

The rest of this paper is organized as follows. Section I1 
reviews tree-based contributory key agreement and proposes 
two performance metrics for time efficiency. Section III dis- 
cusses the join and exit tree topology and algorithms used in 
our scheme. In Section IV, we integrate these algorithms into a 
unified protocol. We present the simulation results in Section M, Y 4 M, M, Y 

VI. Finally, the conclusions are drawn in Section VII. 
V and discuss several other performance aspects in  Section (a) a key tree @) user join 

Fig. I .  Notations for a key Uee 

11. BACKGROUND AND PERFORMANCE METRICS 
key, which is held by all members in the group. All other 

the group members that are descendants of the corresponding 

In this section, we discuss the time efficiency issues of inner nodes represent subgroup keys, each of which is held by 

contributory key agreemenu. The performance metrics that inner node. we adopt the notations from 1131 as follows: 

key agreement and review a 'lass Of tree-based 

measure the time efficiencv are also formulated. 
M ,  
( I ,  w) 
K(L,u)  
9 
P 

A. lime-Emiency Issues in Contributory Key Agreements 
Time efficiency of contributory key agreemenrs describes 

the processing time of key updating due to users' join and 
departure. After sending the join request, a join user has 
to wait until group keys are updated before being able to 
participate in the group communication. Since both computing 
cryptographic primitives and exchanging messages for a key 
update are time-involving, this waiting time is not negligible. 
Similarly, in the case of user departure, the amount of time 
needed to recompute a new group key reflects the latency 
in user revocation. In applications with large group size and 
highly dynamic membership, the time efficiency of the key 
management is an important quality-of-service concern. 

Many contributory key agreements aim at extending the 
two-party DH protocol to the group scenario, such as [13], 
[14], [28], [29]. These schemes evaluate their time perfor- 
mance by the number of rounds needed to perform the proto- 
col. In general, the number of rounds cannot always accurately 
reflect the time cost, especially when different rounds represent 
different operations. For example, in GDH.2 [291, one modular 
exponentiation is performed in the fust round, while n modular 
exponentiations are performed in the n-th round. In this work, 
we will focus on the tree-based contributory schemes using 
DH, each round of which is to perform a two-party DH. In 
this scenario, we can use round as the basic time unit. 

B. Key Establishment and Update in Tree-based Contributory 
Schemes 

In this part, we briefly review rekeying operations for join 
and leave events in tree-based conuibutory key agreements 
[13], 1141, [20], which can use two-party DH protocol as a 
basic module. These schemes satisfy the security requirements 
for group key distribution, namely, group key secrecy, forward 
secrecy, backward secrecy and key independence as defined in 
[13] and [SI. 

In a tree-based key agreement, three types of keys are 
organized in a logical key tree, as illustrated in Fig.l(a). The 
leaf nodes in a key tree represent the private keys held by 
group members. The root of the tree corresponds to the group 

i-th group member 
w-th node at level 1 in a key tree 
the key associated with the node (1,w) 
exponentiation base 
modular base 

where Rjoin is the total number of DH rounds performed for 
Njoin join events. 
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Fig. 2. Join EM Tree Topology 

Similarly, the user leave time is defined as the number of 
rounds to process key updates for a user leave event. The 
average- user leave time, denoted by ATCL,,,, is calculated M , Y Y Y  

number of users in main tree 
join tee capacity 
exit wee capacity 
average join time cost(io rounds) 
average leave time con(in rounds) 

as - 

where Rieoue is the total number of DH rounds performed for 
NI,,, leave events. 

2 )  User Join/Leave Lotency Metric: We define user join 
latency as the number of DH rounds needed for a joining user 
to acquire a group key, and user leave latency as the number 
of DH rounds needed to calculate a new group key that is 
unknown to the leavine user. The averaee user ioin and leave 

Fig. 3. User join at join tree root 

the topology reduces to a main tree and join tree topology 
as shown in Fig.Z(b). To distinguish the proposed key tree 
topology from those described in the existing schemes [131 
[14], we call the key tree in Fig.Z(a) a join-exit tree and a key 
tree without special structures a simple key tree. We specify 
the notations related to a joinexit tree in Table I and present 
the detailed join-exit tree algorithms. - I 

latency are denoted as ALj,i, and ALt,,,,, respectively. 
In many existing key agreements VI, 1131, U41, [281, Wl. 

the user join time and latency are always the same. So does 
the user leave time and latency. In this paper, we present a 
contributory key agreement that aims at reducing average user 
joinfleave time, while achieving a user joidleave latency that 
is even lower than the corresponding user joidleave time. 

A. me ~~j~ T~~~ Algorithm 
we choose the average 

and 
algorithm: 

the joining user? 

join time as performance 
the following four in the join tree 

1. If a join tree is used, where in the join tree do we insert 

2. When the ioin tree is full. how do we relocate users from 

111. JOIN-EXIT TREE: THE TOPOLOGY AND ALGORITHMS 
In this section, we present a logical key tree topology that 

consists of three parts: join tree, exit tree, and main tree, as 
shown in Fig.Z(a). Similar to the key trees shown in [I31 and 
[141, our proposed key tree is a binary tree. We define join 
tree capacity and exit tree capacity as the maximum number 
of users that can be held in the join and exit tree, respectively. 
Using the join-exit tree structure, we discuss how to choose the 
join and exit tree capacity dynamically such that the average 
user join and leave time are minimized. 

The join tree and exit tree are designed to be considerably 
smaller than the main tree. The joining users will first be 
added to the join tree. Later on, when the join tree reaches its 
capacity, all users in the join tree will be relocated together 
into the main tree. In addition, when users' departure time is 
known, users that are likely to leave in the near future will be 
moved in hatch from the main tree to the exit tree. Tbe join- 
exit tree design rationale resembles that of memory hierarchy 
in computer design [31]. The join tree and exit tree are similar 
to the cache, and the main tree is similar to the main memory. 

The join-exit tree topology can be reduced to a simpler 
form. For example, when there is no user in the exit tree, 

the join tree to the main tree? 
3. What is the optimal join tree capacity? 
4. When should we choose to use a join tree? 
I) Insertion Strategy for Joining Users: When the join tree 

is empty and a new user wants to join, the insertion node is 
chosen as the root of the current key tree. The insertion is 
done by treating the entire existing group as one logical user, 
and performing a two-party DH between this logical user and 
the new user. Therefore the new user forms the root of join 
tree. This process is shown in Fig.3. When there are already 
some users in the join tree, the insertion node is determined by 
the Algorithm 1, where asernumber(x)  returns the number 
of users under a given node x in the key tree. 

Algorithm 1 Finding the insertion node 
x t join-tree-root 
while usernumber(x) # 2k for some integer k do 

end while 
insertion-node - z 
Fig.4 shows the growth of the join tree from 1 user to S 

1: t rightchild(z) 

users using the proposed insertion strategy. 
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Fig. 4. Sequential User Join Strategy (only lhe join Uee is shown) 

TABLE II 
SEQUENTIAL USER JOlN LATENCY 

k 1 1  1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  I 1 0  1 ... 
r(k) 1 1  1 2  1 2  1 3  1 2  1 3  1 3  1 4  1 2  I 3 I ... 

helps to maintain the balance of the key tree, which reduces 
the expected cost of leave events [13]. Because the second 
method addresses both the join and leave time cost, we choose 
the second method for OUT analysis and simulations. 

3 )  Optimal Join Tree Capacity: Using the proposed inser- 
tion strategy, the user join latency for the k-th user in the 
join tree after the last join tree relocation is measured as 
r ( k )  rounds, which is listed in Table 11. We observe that the 
sequence of r(k) has a special property, namely, 

~ ( 2 ~  + q)  = 1 + ‘ ( q ) ,  0 < q 5 2p, (3) 

Lemma 1. If the user join latency r(k) for the IC-th user on 
where p is a non-negative integer, and q a positive integer. 

the join tree is determined by (3), then 

I 

Fig. 5. Join Tree Relocation Method 1 

Fig. 6. Join Tree Relocation Melhod 2 

2 )  Relocation Strategy: When the join tree is full, users 
in the join tree will be relocated into the main tree. Reloca- 
tion can be done in two ways with different tradwffs: The 
difference of these two methods is whether to preserve the 
sub-group keys in the original join tree. 

The first method is illustrated in Fig.5. During relocation, 
the subgroup keys among the users in the join tree are 
preserved. Hence the join tree structure is also preserved. All 
users in the join tree are viewed as a logical user and this 
logical user is inserted into the main tree. An insertion node 
is chosen to he the leaf node on the shortest branch in the main 
tree, shown as the black node in Fig.5. Then all keys along 
the path (shown as a dashed line in Fig.5) from the insertion 
node to the tree root are updated. 

The second relocation method is illustrated in Fig.6. This 
method inserts the join tree users into different nodes in the 
main tree. The insertion nodes are chosen to be the leaf nodes 
in the shortest branches. After the insertion nodes are found, a 
new group key is computed in a bottom-up fashion. The keys 
on the branches from all original join tree users to the tree 
root are updated. 

The relocation time for the first and second method is at 
most log Nh, and log NM + 1, respectively. The first method 
has a lower communication cost. Only 2 log NM messages in 
total are sent during relocation key update. The second method 

(4) 

holds for any positive integer CJ,  and equality is achieved 
when CJ is a power of 2. 
Proof: See appendix. 
Consider the average join time for CJ users joining the 

group after the last join tree relocation. Counting the relocation 
time of log N M ,  the average join time for these CJ users is 

Using Lemma 1, we obtain 

(6)  

Since it is not easy to minimize ATC3h, directly, we mini- 
mize its upper bound over CJ.  The optimal CJ value is given 

cy = argmin,,,{ logz + 1 + - X log Nh,} 

1 1 
ATCjoim 5 5 log CJ + 1 + - log N M .  

CJ 

by 
1 1 

= - 2 l n N ~  (7) 

This analysis leads to the following theorem: 
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Theorem 1. For a given main tree user number NM and 
the insertion rule specified by Algorithm I ,  the optimal join 
tree capacity CJ is 2 In N M ,  and the average join time during 
two join tree relocations is upper bounded by 

Fhok Directly from (5)-(7). 
The join tree capacity is thus determined by the number of 

users in the main tree. This relation gives us an upper bound 
on the average user join time cost. However, since users can 
start to communicate once they are added in the join trk, the 
user join latency does not include the relocation overhead of 
IogNM rounds. When CJ is equal'to 2 l n N ~ ,  the maximum 
join latency is IogCJ = logln NM + 1 and the average join 
latency is bounded by 

4) Activation Condition for Join Tree: We now discuss a 
condition under which a reduction in average join time can 
be achieved by using join tree. We call this condition the 
activation condition for join tree. Suppose all users joining 
the group will first be added to the join tree. Consider the 
case when users join one by one and assume that the join tree 
and the main tree are balanced. In the worst case, adding each 
user in the join tree incurs a time cost of 1ogC.r rounds, and 
a batch relocation incurs an additional time cost of log NM 
rounds for CJ users. So the average join time satisfies 

ATCj&, 5 l o g C ~  + ( logNM)/cJ .  (9) 

In the same situation, if a simple key tree with only a main 
tree is used, the average join time would be log N M .  Therefore 
a reduction in time cost can be obtained by using a join tree 
if the following inequality holds, 

1ogC.r + ( logN,u) IC~ 5 ~ N M ,  

or equivalently, 

This condition tells us when the number of users in the group 
is large enough, a join tree should be activated to reduce the 
average join time. We can show that there exists a threshold 
group size, THjoin, such that all NM values larger than 
THjOin can satisfy (IO). Therefore when the group size is 
smaller than or equal to THj&,, a simple key tree is used. 
Otherwise, a join tree is activated. 

Example 

NM 9, CJ = 2 I n N M  =4; 

log CJ 2 2.3 C J  logNM zz 3.2, __ c, - 1 

This NM value satisfies (IO). Therefore THjoi, can be set to 
9. 

E 
P 
UP 
UC 

TABLE 111 
NOTATIONS FOR BATCH MOVEMENT 

batch movement size 
erjt tree residual rate 
mer number in exit tree right after the last batch movement 
arrent number of users in exit tree 

B. m e  Exit Tree Algorithm 

The join tree algorithm employs scheduling and amorti- 
zation techniques. Scheduling user departure, however, is a 
harder task, because there is no simple way to accurately 
predict user's departure time and location in the key tree. We 
assume that when users join the group communication, most of 
them can have a self-estimated departure time. In the following 
analysis, we show that with perfect user departure information 
and the use of exit tree, the average user departure time can 
be reduced to O(log(logn)), where n is the group size. Later 
in the simulations, we also show that a reduction in average 
departure time can be obtained when the estimated departure 
time deviates from the actual departure time. 

In this part, we first present a batch movement operation, 
followed by the analysis on optimal exit tree capacity. Finally 
we discuss the activation condition for exit tree. 

1) Batch Movement: The batch movement refers to the 
operations to move the potential leaving users from the main 
tree to the exit tree. During the batch movement, a series of key 
updates are performed and a new group key is computed. The 
batch movement does not affect the group communications 
since the old group key can still be used without violating 
any security requirement. And the new group key becomes 
effective upon the completion of its computation. 

When a new user joins the group, hdshe will report a 
self-estimated departure time. The whole group maintains a 
leaving queue, which is a priority queue [321 indexed by users' 
estimated departure time. Before each join tree relocation, the 
departure information of the join tree users are added to the 
leaving queue. 

With a user's departure, the leaving queue and a condition 
for batch movement (to be presented below) are checked. If 
the leaving user is in the leaving queue, hisher item will 
be removed from the leaving queue. If the batch movement 
condition is met, the first B users in the leaving queue will be 
moved to the exit tree in batch, where B is referred to as the 
batch movement size. The insertion locations for these users 
in the exit tree are chosen to maintain the balance of the exit 
tree. In Table III we introduce batch movement notations. 

Our proposed batch movement condition is 

U, I p u p >  (11) 

where we use the exit tree residual rate (or residual rate for 
short), p E (0, l), as well as U, and GIc, to control the timing 
of batch movement. Using this condition, if we start from an 
empty exit tree (Up = 01, the number of users in the exit tree 
after the k-th batch movement will be p'B, which will 
converge to B/(  1 - p )  as k goes to infinity. Therefore we set 
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the exit tree capacity CE as 

C E  = B/(1 - p). (12) 

2 )  Optimal Exit Tree Capacity: In deriving the optimal exit 
tree capacity, we minimize an upper bound of the average 
leaving time over the exit tree capacity. This upper bound for 
the average leaving time is not as tight as that for the average 
join time because of the randomness in users’ departure. 

A batch movement of B users to the exit tree will incur a 
time cost of ( l o g  NM + 2). Each user leaving from the exit 
tree will incur at most a time cost of ( I o g C E  + 2). Thus the 
average user leave time for these B users is bounded by 

1 
ATCieawe 5 x ( l O g N h l  + 2) f ( I o g C E  + 2). 

Using (12). we can rewrite it as 
1 

ATG,,,, 5 ( l o g N M f 2 ) + ( k J g C E + 2 ) .  (13) 
(1 - P I C E  

Minimizing the right hand side of (131, we obtain 

c:@ = argmia, { - (1 - p)z (log NM + 2) + (log 2 + 2) 1 1 

(14) 

Therefore when exit tree is activated and its capacity is com- 
puted according to (14), the average leaving time is bounded 

- In NM + 21112 - 
(1 - P )  ’ 

by 
ATCieaue 5 log(log NM + 2) + 4 

where S = 2 - l o g ( 1  - p)  + l o g e  - log l o g  e .  Combining (14) 
and (12) leads to the optimal batch movement size 

BOpt = In NM + 2In2. (15) 

In summary, the exit tree capacity is chosen as 

{ (In NM + 2ln2)/( l  - p) otherwise. 
0 if no exit tree used; 

3 )  Activation Condition for Exit Tree: Recall that the 
average leaving time using a simple key tree with NM users 
is I o g N M .  Compared with (131, a reduction in the average 
leaving time can be achieved by the proposed exit tree strategy 
if 

or equivalently, 

Combining (14) and (16), we have the activation condition as 

log N M  2 log C E  + l o g e  + 2. (17) 

Condition (17) indicates that, when the group size is large 
enough, employing an exit tree can reduce the average leaving 
time. Similar to the join tree case, we can show that there is a 
threshold group size, THt,,,,, such that all NM values larger 

0-7803-8355-9101F520.00 0 2 W  IEEE. 26 

than THI,,,, can satisfy (17). Only when the group size is 
larger than THi,,,,, the exit tree is activated. We also notice 
that the join tree is activated before the exit tree is, because 
satisfying (17) requires a larger N M  than satisfying (10). 

Example 
NM = 256, CE = 7; 

1ogCE S 2 . 8 ,  l O g N M - l o g e - 2 m 4 . 6 .  

This NM value satisfies (17). Therefore T&,,,, can be set 
to 256. 

IV. DYNAMIC SUBTREE GROUP KEY AGREEMENT 

In this section we present a contributory group key agree- 
ment that jointly use the join and exit tree. Based on the results 
in Section 111, the join and exit tree capacities are adjusted 
according to the group size. So we name it Dynamic SubTree 
(DST) group key agreement. 

A. Group Key Establishment 
In prior works, one of the assumptions in key establishment 

stage is that many users are available at the same time [281 
[201. Thus parallel computation can take place to establish a 
group key [20]. In reality, however, there are situations when 
users join the group sequentially, and early arrival users are 
not necessary to wait for all users to be present. 

In DST scheme, when many users are present at the same 
time, subgroup keys in the key tree are computed in a bottom- 
up fashion in parallel to obtain the final group key. This 
technique is also described in [ZOI. Otherwise we establish 
and update the group key using the join protocol (discussed 
below) of DST agreement. The exit tree will not be activated 
during the key establishment stage. 

B. Join Protocol 
The threshold group size for join tree activation is set to 

THj,;, = 9. Key update for a user join event follows the 
next four steps, as illustrated in Fig.3: 

I. Choose an insertion node in the key tree; 
2. Generate a new inner node to assume the position of the 

insertion node; 
3. The insertion node and the new member become children 

of the new inner node; 
4. Update all the keys associated with the nodes on the path 

from the new inner node to the root. 
Before the join tree is activated, Algorithm 1 is used in 

the simple key tree to choose the insertion node. When the 
group size is larger than 9, the join tree is activated. The join 
tree capacity CJ is computed according to (7), and rounded 
to the nearest integer. If inserting the new user according to 
Algorithm 1 will not make the join tree height more than 
[log N M ~ ,  the insertion strategy is followed. Otherwise, the 
insertion node will be chosen as the minimum level leaf node 
in the join tree. This modification takes user departure from 
the join tree into consideration, and helps make the join tree 
balanced. 

I22 



When the join tree becomes full, following the correspond- 
ing algorithms in Section 111, all users in the join tree will be 
relocated into the main tree, and their departure information 
is put into the leaving queue. After the relocation, the join 
and exit tree capacities (if exit tree is activated) are updated 
according to (7) and (14). respectively. 
C. Leave Protocol 

The threshold group size for exit tree activation is set to 
THi,,,, = 256. The exit tree residual rate is set to p = 0.5. 
Key update for a leave event follows the next four steps: 

1. delete the leaving user node and its parent node, 
2. promote the leaving user’s sibling node to their parent 

node’s position, 
3. update all keys associated with the nodes on the path 

hom the leaving user’s grandparent node to the tree root. 
4. if the leaving user’s information is in the leaving queue, 

remove the corresponding information. 
In addition to the above four steps, if a user is leaving from 

the main tree or the exit tree, the following extra operations 
are necessary. 

When the user is leaving from the main tree and there are 
also users in the join tree, the key update for user relocation 
and user departure are performed together. By doing so the 
time cost for user relocation is further amortized. After the 
key update, the join tree capacity is updated according to (7). 
And the exit uee capacity is also updated if the value computed 
horn (14) becomes larger than the current number of users in 
the exit tree. 

When the user is leaving from the exit tree and the batch 
movement condition is satisfied, a batch movement will be 
performed according to the batch movement strategy in Sec- 
tion UI. Following the batch movement, the join and exit tree 
capacity are updated in the same way as described in the last 
paragraph. 

In practice, when the number of users in a group is always 
around THI,,,,, using the previous activation condition will 
lead to repeated switching of the key tree topology, thus 
incurring a considerable overhead. To stabilize the key tree 
topology, we propose a delayed switching policy. The leave 
tree is activated when NM 2 ZTHl,,,, and deactivated when 
NM < THleaue. This will improve the stability of the key 
tree. 

v. EXPERIMENTS AND PERFORMANCE ANALYSIS 

In this section, we present three sets of simulations ac- 
cording to the ways user activity data are acquired. The first 
set of simulations focuses on group key establishment. We 
consider the scenario of sequential user join. The second 
set of simulations is based on user activity data collected 
from previous MBone multicast sessions [33]. The third set 
of simulations shows the results for a large dynamic group, 
whose user activity data are randomly generated according to 
a probabilistic model. In each simulation, the performance of 
our proposed scheme is compared with TGDH scheme [131, 
a typical of tree-based key agreement. 
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Fig. 8. MBone Session User Activity: CBC News World 

Srmhuon u n a  LBma D.. 

duration 0-199 
xi 7 
P. 2500 

long stay 

N I Y  I *U 2 

Fig. 9. Simulation Using MBone Data 

of users in the multicast group, J(t) is the number of users 
joining the group at this moment, and L ( t )  is the number of 
users currently leaving the group. These log files serve as the 
user activity input for DST protocol simulation. Comparing 
the simulation results of the average time cost for our DST 
protocol and for TGDH in Fig.9, we can see that our proposed 

. DST scheme has about 50% improvement in user join, and 
about 20% improvement in user leave. 

C. Simulated Data Experiment 
In the simulated data experiment, we generate user activities 

according to a probabilistic model. The duration of our simula- 
tion is 5000 time units and is divided into four non-overlapping 
segments, TI to 2’4. In each time segment T;, users’ arrival 
time is a Poisson process with mean arrival rate Xi  and users’ 
staying time follows an exponential distribution with mean 
value p+. The Poisson arrival and exponential staying time are 
suggested in [331. The values of Xi and wi are listed in Table 
N. 

The group size is initialized to be 0. In a total of 5000 

200-499 I 500.4499 I 4500.5000 
5 1  2 1  1 

500 I 500  1 500 
shat stay 
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TGDH 
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Fig. IO. Simulated Dah Experiment 

results with those for TGDH, we can see that the proposed 
scheme can improve the average user join time, and reduce the 
average leave time when the estimated staying time is fairly 
accurate. 

VI. DISCUSSIONS 

A. Protocol Complexig 
1 )  ZTme Complexity fmm Other Perspectives: In addition 

to the time cost for each join and leave event, which is 
O(log(1ogn)) on average in our proposed scheme, it is in- 
teresting to examine the amount of time a user would spend 
on key update during hisher lifetime in the group, and the 
amount of time the whole group would spend on key update 
during the lifetime of the group communications. 

Consider a sequence of n join events followed by n leave 
events. We assume that the first user joining the group is also 
the last one to leave the group. In the DST protocol, this first 
user will spend the majority of hisher life time in the main 
tree for key management purpose. On average, this first user 
will spend 2-round time for each user join event and 3-round 
time for each user leave event, assuming all users report their 
staying time accurately. Therefore this user has spent O ( n )  
rounds in total on key update during hisher life time. Since 
this first user has the longest life-time among all users, O(n) 
is the upper bound for any user's total key update time. For 
tree-based key agreement using a simple key tree, this first 
user will spend O(nlogn)  rounds in total on key update. 

From the system perspective, for the same sequence 
of events described above, the whole group will spend 
O(n log(log n) )  rounds in key update using the proposed DST 
protocol. If a key agreement using a simple key tree with only 
a main tree is employed, the time cost will be O(nlogn). 

2)  Communication Complexity: In this part, we discuss the 
average number of messages for user join and leave events 
under two scenarios. 

In the first scenario, we assume that multicast is available 
for group communications. In particular, If a message needs 

to be sent to m users, sending one multicast message is 
enough. When the subgroup keys in the join tree are preserved 
during relocation (relocation method l), the average number of 
messages for a join event is O(log(1ogn)). Otherwise, using 
relocation method 2, the average number of messages needed 
for a join event is O(1ogn). For a leave event, the average 
number of messages is always O(logn). 

In the second scenario, we assume that multicast is not 
available. If a message needs to be sent to m users, m duplicate 
copies of the same message must be sent. In this case the 
average number of messages is O(n) for both user join and 
leave event. 

3) Computation Complexity: In the proposed DST protocol, 
the total number of exponentiations performed by all users is 
O(n) during the key update for a join or leave event. Such 
a measurement capture the overall computation load of the 
entire group. 

For a particular user, the average number of exponentiations 
performed by himher during join and leave events is less 
or equal to the average number of DH rounds in the same 
scenario. Therefore it is O(log(log n)). 

B. The Group Coordinator 
As suggested in [12], we prefer to have a group coordinator 

in the implementation of our scheme. The role of this group 
coordinator is to store the current key tree topology and 
manage future topological changes, such as determining the 
join location and organizing the batch movement. However, the 
uust in the coordinator is limited, since it is not responsible 
for generating and distributing keys. In implementation, the 
coordinator can be either a centralized or distributed thud 
party. It can also consists of several or all members in the 
group. 

The time complexity of the algorithms that a group coor- 
dinator needs to perform, such as a priority queue or some 
graph algorithms, may seemingly exceed those engaged in key 
updates. However, since we use DH round as the time unit for 
key update, the complexity of computing modular exponen- 
tiation in DH protocol is a dominating factor. Therefore the 
algorithmic complexity for the group coordinator would not 
he an important factor in the overall system time complexity. 

VII. CONCLUSIONS 

In this paper, we have applied dynamic amortization and 
scheduling techniques for time-efficient group key agreement 
and presented a new contributory key agreement, known as 
the Dynamic Subtree Group Key Agreement for secure group 
communications. Built upon a tree-based key management 
framework, our proposed scheme employs a main tree as well 
as two subtrees that serve as temporary buffers for joining 
and leaving users. The join and exit subtrees help amortize 
the time cost for user join and leave events. 

Focusing on time efficiency issues in contributoly key 
management, our proposed scheme can achieve an average 
time cost of O(log(1ogn)) for user join and leave events for 
a group of n users. In addition, our DST scheme reduces 
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the total time cost of key update over a user’s lifetime from 
O(n1ogn) by the prior work to O(n),  and over a system’s 
life time from O(n1ogn) to O(nlog(1ogn)). In the mean 
time, our proposed scheme also achieves low communication 
and computation overhead. These results suggest substantial 
savings by our proposed scheme, especially for large dynamic 
groups. 

We have shown through analysis that the optimal subtree 
capacity is at the log scale of the group size. We have 
also designed an adaptive algorithm to activate the join/exit 
subtrees when the gain over using main tree only is substantial. 
Our experimental results on both simulated user activities and 
the real MBone data have shown that the proposed scheme 
outperforms the existing tree-based schemes in the events of 
group key establishment user join and leave by a large margin 
for large and dynamic groups, and does not sacrifice any time 
efficiency for small groups. 
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APPENDIX 

In this appendix, we will show the inequality 

where r(1) = 1, r(2P + q)  = 1 + r(q),  p is a non-negative 
integer, and q E [l, Z P ]  is a positive integer. The equality holds 
when A is a power of 2. 

We first use induction to show that when A = 2P, p = 
0, 1,2, _.., the equality holds. 

W h e n A = l , L H S = R H S =  1. 
Next, we assume the equality holds for A = 2P, namely, 

Consider the case of A = 2J’+’. 
zP+’ 

1 
L H S  =. 2p+l C r ( k )  

k = l  

2 . ( - log2P+l)2P+2’)  1 (*) = - (  2P+I 2 
1 
2 

= -1og2p+1+ 1 = RHS, 

where (*) is obtained by using the induction assumption (19). 
We now prove the inequality for any positive integer A. 

It is obvious to see that inequality is true for A = 1,2. By 

induction, suppose that the inequality is true for all 1 5 A < 
2P + q, and we consider A = 2 P  + q, where 0 < q 5 2 P .  

A 1 
L H S  = -Er&) A k = l  

-(2Plog2P + qlogq + 2q) + 1, (20) I = A { ’  
2 A  

where ( t t )  is obtained by using the induction assumption. 
To prove that (20) 5 log A + 1 is equivalent to prove 

(21) 

Applying the identity Ink = s: idz, log k = log e . In k, 

2 p  4 -log 2‘ + - log(4q) 5 log A. A A 

(21) can be written as an integration form 

We denote B = 2P and fix p (hence B is fixed). Thus 
A = B + q. It is straightforward to see that (22 )  holds when 
B + q  2 4q, or 15 q 5 f. 

When B / 3  5 q 5 B,  (22) is equivalent to 

Since q is the only variable in (23), let f ( q )  be the LHS of 
(23), and consider f ( q )  as a continuous function of q 

where q E [ B / 3 ,  B ] .  Taking the derivative of f ( q ) .  we get 

In previous proof we showed that the equality of (18) holds 
when A is power of 2, i.e. f ( B )  = 0. We also showed that 
f ( q )  > 0 for 1 5 q 5 9. Since f ( B / 3 )  > 0, f ( B )  = 0, 
f ( q )  is continuous on [ B / 3 ,  B ]  and f’(q) < 0, we must have 
f ( q )  > 0 on [ B / 3 ,  B ] .  Thus (22)  also holds for B / 3  5 q 5 B.  
This  completes the proof. 
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