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signals and SNR’s of as low as�9 dB (or less), for the individual
sinusoids.

As one may expect, the algorithm performance deteriorates as the
noise level increases. In particular, we note that at low SNR’s, the
algorithm convergence slows down and the variation of the ALE
parameters become more erratic, and at some stage, it may fail unless
its step sizes are decreased so that a more accurate averaging of
the noisy signals can be obtained. This, of course, slows down the
algorithm convergence further.

Another problem that our as well as all the existing IIR ALE
algorithms are suffering from is their sensitivity to the colored noise,
which may result in some bias in the estimated parameters, or it
may even result in unreliable behavior of the algorithms as the noise
level increases [8]. This problem, in general, is more serious when
the cascaded IIR ALE’s are used. This is because as input noise
passes through the successive stages of the IIR ALE, it becomes more
colored. To minimize this effect, one has to let thesk parameters of
the ALE approach unity as close as possible so that the effect of the
produced nulls on changing the noise spectrum are minimal.
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A Parameter Estimation Scheme for Damped Sinusoidal
Signals Based on Low-Rank Hankel Approximation

Ye Li, K. J. Ray Liu, and Javad Razavilar

Abstract—Most of the existing algorithms for parameter estimation of
damped sinusoidal signals are based only on the low-rank approximation
of prediction matrix and ignore the Hankel property of the prediction ma-
trix. In this correspondence, we propose a modified KT (MKT) algorithm
exploiting both rank-deficient and Hankel properties of the prediction
matrix. Computer simulation results demonstrate that compared with
the original KT algorithm and the matrix pencil algorithm, the MKT
algorithm has lower noise threshold and can estimate the parameters of
signal with larger damping factors.

I. INTRODUCTION

The problem of parameter estimation of damped sinusoidal signals
in the presence of additive noise is very important in spectral analysis
and many applications, such as magnetic resonance spectroscopy and
radioastronomy. The difficulty of this problem stems from the fact
that the damped sinusoidal signal is nonstationary, and the correlation
matrix cannot be found. Hence, many efficient traditional approaches
are not applicable. There are several model-based algorithms being
devised to cope with this problem. The Prony method is one of the
widely used algorithms, but it is sensitive to measurement noise.
The backward linear prediction algorithm (or Kumaresan–Tufts (KT)
algorithm) [6] can attain the Cramer–Rao (CR) bound if the peak
signal-to-noise ratio (SNR) is high, and the damping factors of
signals are small. However, for the signals with lower SNR or large
damping factor, the KT algorithm is unable to estimate the signal
parameters effectively. Several algorithms have been proposed to
improve the high noise threshold problem in the KT algorithm. Some
of them are the total least square (TLS) algorithm [8], the maximum
likelihood (ML) algorithm [1], and the matrix pencil algorithm [3].
Singular value decomposition (SVD)-based information theoretic
criteria [9] have recently been presented to detect the number of
damped/undamped sinusoids and parameter estimation.

The existing parameter estimation algorithms for damped sinu-
soidal signals use only the rank-deficient property of the prediction
matrix and ignore its Hankel property. Since the parameter estimation
of sinusoidal signals from noisy data is equivalent to the low-
rank Hankel matrix approximation of data matrix (or prediction
matrix), the performance of parameter estimation will be improved
significantly if both rank deficiency and Hankel properties of the
prediction matrix are exploited in matrix approximation. Based on
this idea, a modified KT algorithm is proposed in this correspondence,
which uses both the Hankel and the rank-deficiency properties of the
prediction matrix.

This correspondence is organized as follows. In Section II, the
matrix approximation in the KT algorithm is analyzed. Then, a
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modified Kumaresan–Tufts (MKT) algorithm is developed in Section
III. Finally, computer simulation results are presented in Section IV
to demonstrate the performance of MKT algorithm.

II. L OW-RANK MATRIX APPROXIMATION

A sequencex(n) consists ofK damped sinusoidal signals can be
expressed as

x(n) =

K

k=1

cke
s n (1)

whereck’s are nonzero complex amplitudes,sk = ��k + |!k, and
�k 2 R+; ! 2 [��; �] for k = 1; 2; � � � ; K. �k is called the
damping factorof the damped sinusoid with angle frequency!k.
The larger the damping factor, the faster the amplitude of the sinusoid
decays. The observed sequencey(n) is obtained fromx(n) corrupted
by additive noisew(n), which is assumed to be a complex white
Gaussian process. Normally, we have to make sure thatN(N > 2K).
The observed data can be expressed as

y(n) = x(n) + w(n) for n = 0; 1; 2; � � � ; N � 1: (2)

The KT algorithm [6] is one of the most effective algorithms for
parameter estimation of damped sinusoidal signals. To estimate the
parameters of the damping sinusoidal signals using the KT algorithm,
an(N�L)�L [min (N�L; L) � K] conjugate backward prediction
matrix and an(N � L)-component column vector are first set up as
follows:

A =

y�(1) y�(2) � � � y�(L)

y�(2) y�(3) � � � y�(L+ 1)
...

...
...

...
y�(N � L) y�(N � L+ 1) � � � y�(N � 1)

;

h =

y�(0)

y�(1)
...

y�(N � L� 1)

(3)

where “�” stands for the complex conjugate.
To find the frequencies of the damped sinusoids, anL-component

prediction coefficient vectorc should be found such that

Ac � �h (4)

where c = (c1; c2; � � � ; cL)
0 are the backward linear prediction

coefficients. Then,e�s for k = 1; 2; � � � ; K can be estimated by
calculating the roots of the prediction polynomial

C(z) = 1 + c1z
�1

+ � � �+ cLz
�L

: (5)

Hence, the performance of an algorithm relys on how accurate the
estimation of the prediction polynomial is.

To estimatec, the optimum rankK matrix approximation ofA
is first made by

Â =

K

k=1

�kukv
H
k (6)

where�k’s (�1 � �2 � � � � � �L) are the singular values ofA, and
uk andvk are the left singular vector and the right singular vector

of A corresponding to the singular value�k, and “H” stands for the
conjugate transposition. To make the system equation

Âc = �h (7)

have a solution, eitherh must be in spanfu1; u2; � � � ; uKg or ĥ,
which is the projection ofh on spanfu1; u2; � � � ; uKg, must be
used instead ofh in (7). In either case, (7) can be written as

Âc = �ĥ (8)

where

ĥ =

K

k=1

(u
H
k h)uk: (9)

Since rank(Â) = K � L, (8) is an underdetermined system of
equation aboutc, and there are multiple solutions. The solution
minimizing kck is given by

c = �

M

k=1

�
�1

k (u
H
k h)vk; (10)

which is thec in the KT algorithm [6]. It has been proved in [5]
and [6] that if c is estimated using (10), then onlyK of C(z)’s
zeros are outside the unit circle, which are signal zerose�s for
k = 1; 2; � � � ; K. The rest of theL � K zeros are inside the unit
circle. By means of this property, the desired zeros can be easily
identified to estimate the parameters. To obtain optimum performance,
theL (L � K) is chosen to be larger thanN � L, usually3N=4.

From the above discussion, the KT algorithm uses the low-rank
matrix approximation to reduce the noise effect. When the SNR
is high and enough data are available, the rank approximation in
the KT algorithm will reduce the measurement noise significantly;
hence, the KT algorithm in this case will almost attain the CR bound
[6]. However, if the SNR is reduced to certain degree, the rank
approximation in the KT algorithm is unable to reduce the noise effect
efficiently, and moreover, it may introduce an extra perturbation. In
that case, the noise threshold appears. Since the noise threshold of the
KT algorithm is due to the low-rank matrix approximation, to reduce
the noise threshold, the matrix approximation approach employed in
the KT algorithm must be improved.

III. M ODIFIED KT ALGORITHM

From (3), we can see that the prediction matrix of a data sequence
is of Hankel form. Indeed, according to [4] there is a very interesting
property that can be summarized as follows.

Lemma: If a data sequencex(n) consists ofK distinct sinusoids
as in (1), then for anyL(L > K), the L � L prediction matrix
PL = [x(i + j)]L�1i; j=0 is a singular Hankel matrix with rankK and
full rank K�K principle minorPK = [x(i+ j)]K�1

i; j=0. Conversely,
for anyL�L singular Hankel matrixPL = [x(i+j)]L�1i; j=0 with rank
K, if its K �K principle minorPK = [x(i+ j)]K�1

i; j=0 is full rank,
thenx(n) for n = 0; 1; � � � ; (2L� 2) can be uniquely expressed as
the summation ofK distinct sinusoids as given by (1).

The above lemma reveals a one-to-one correspondence between
a data sequence consisting of damped sinusoidal signals and rank-
deficient Hankel matrix. Therefore, parameter estimation of damped
sinusoidal signals from noisy data is equivalent to performing the
low-rank Hankel matrix approximation. More specifically, letPL be
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TABLE I
MODIFIED KT A LGORITHM

(a)

(b)

Fig. 1. MSE of (a)! and (b) � versus SNR of the matrix pencil, KT,
and MKT algorithms obtained in 200 trials whens = �0:2 + |2�0:42 and
N = 24

an L � L prediction matrix of noisy datay(n)

PL = [y(i+ j)]L�1i; j=0: (11)

If we can find anL�L Hankel matrixP = [y(i+ j)]L�1i; j with rank
K and a full rankK�K principle minor, then the parameters of the
signal can be uniquely determined fromP.

(a)

(b)

Fig. 2. MSE of (a)! and (b)� versus� of the matrix pencil, KT, and MKT
algorithms obtained in 200 trials whens = ��+ |2�0:42 andN = 24.

For the KT algorithm, only the rank-deficiency characteristics of
the prediction matrix is used in matrix approximation. The approxi-
mated matrixÂN�L;L in (6) unfortunately loses the Hankel property.
If both the rank and Hankel properties of the matrix are used in the
matrix approximation to reduce the noise effect, the performance
of the estimation will be improved significantly. The modified KT
algorithm introduced here will exploit both properties.

To use the low-rank Hankel matrix approximation to reduce the
measurement noise, we first set up a square prediction matrix from
the observed noisy data:

PL = [y(i+ j)]L�1i; j=0: (12)

To make full use of the given data, letL = dN=2e here. Since there is
no analytical low-rank Hankel matrix approximation approach avail-
able, an iterative approach for low-rank Hankel matrix approximation
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(a)

(b)

Fig. 3. Zeros ofC(z) obtained in 40 trials of (a) KT algorithm and (b)
MKT algorithm when SNR= 15 dB.

is used here. First, an optimum rankK matrix approximation toPL

is made using the SDV.

PL = [yi; j ]
L�1
i; j=0 =

K

k=1

�kukv
H
k (13)

where�k for k = 1; 2; � � � ; K are theK largest singular value of
PL anduk, andvk are corresponding left and right singular vectors.
PL is usually not Hankel. Then, a Hankel matrix̂PL is found to
minimize kP̂L � PLkF , whereP̂L is given by

P̂L = [ŷ(i+ j)]
L�1
i; j=0 (14)

and

ŷi+j =
1

N
0�n;m�L�1;m+n=i+j

yn;m (15)

with N being the number of the elements in matrixPL satisfying
n+m = i+j in (13). After this step, the rank of̂PL is not necessarily
K. A low-rank approximation is used again. The procedures are
repeated until a Hankel matrix with onlyK dominate singular values
is obtained. From the approximated Hankel matrixP̂L, better noise-
reduced datây(n) can be found. Then, by using the KT algorithm, the
parameters of the signal can be obtained fromŷ(n). The algorithm is
summarized in Table I. The convergence of the above iteration can
be proved using the theory of composite property mapping algorithm
[2]. In [2], it has been shown that the exponential data satisfy
the hypotheses of composite mapping theorem, and therefore, the
composite mapping algorithm can be used to reduce the noise effect
from the measured exponential data. Since the damped sinusoidal
signals form a subset of exponential signals, the same results extend to
these kinds of signals. Therefore, the Hankel approximation process
applied to reduce the noise effect in damped sinusoidal data will
converge to a solution. In what follows, we will prove that the
proposed low-rank Hankel approximation can indeed achieve better
performance.

Theorem 1: Let Ptrue = [x(i + j)]i; j=0 be the true prediction
matrix; then,

kP̂L �PtruekF � kPL �PtruekF : (16)

The equality holds only ifPL is Hankel.
Proof:

From (15), direct calculation yields that

1

N
i+j=n; 0�i; j�n

jx(n)� yi; j j
2

= jx(n)� ŷ(n)j2

+
1

N
i+j=n; 0�i; j�n

jŷ(n)� yi; j j
2

� jx(n)� ŷ(n)j2 (17)

whereN is the number of elements in matrixPL satisfyingi+j = n.
Using the above inequality, a direct calculation yields that

kPL �Ptruek
2

F = kPL � P̂Lk
2

F + kP̂L �Ptruek
2

F

�kP̂L �Ptruek
2

F : (18)

The above theorem demonstrates thatPL is always more accurate
than P̂L. If the SVD in the iteration procedures can reduce the
noise effect efficiently, a better estimation ofPtrue can be obtained
by preserving the Hankel form after each iteration. Hence, the
performance of the modified KT algorithm should be better than
that of the original KT algorithm. Even though we emphasize the
modified KT algorithm in this paper, similar procedures can also be
used for the TLS algorithm.

It is worth mentioning that the complexity of the MKT algorithm
is in the same order as the KT algorithm. Extra computations in
MKT algorithm comes from the Hankel approximation part, which
requires several SVD’s until the algorithm converges. However, for
most practical cases of interest, the Hankel approximation typically
converges within a few iterations. For the results we have reported
in this correspondence, we have used only two iterations of the
algorithm, and we still got very good results. Since the number of
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(a) (b)

(c) (d)

Fig. 4. MSE of (a)!1, (b) �1, (c) !2, and (d)�2 obtained in 200 trials of the matrix pencil, KT, and MKT algorithms whens1 = �0:2 + |2�0:42,
s2 = �0:1 + |2�0:52, and N = 25.

additional SVD’s required in MKT is only two, the complexity of
the MKT algorithm remains almost the same as that of the original
KT [6] algorithm and the matrix pencil method [3].

IV. COMPUTER SIMULATION EXAMPLES

In this section, we will test the performance of the MKT algorithm
and compare it with the KT algorithm and the matrix pencil algorithm
[3] by two computer simulation examples.

In our examples, the damped sinusoid is corrupted by complex
white Gaussian noise with zero mean and variance�2. The SNR
used in the examples is the peak signal-to-noise ratio defined as

SNR= 10 log
1

2�2
: (19)

The performance of the algorithms is measured by the mean square
error (MSE). For comparison, we also simulate the performance of
Kumaresan–Tufts (KT) algorithm [6], the matrix pencil algorithm
[3], and calculate the CR bound using the formula in [6]. In our
simulation,N = 24 andL = 18 for both the KT algorithm and the
MKT algorithm.

Example 1: The simulated data are given by

x(n) = e
sn

+ w(n) (20)
where s = �� + |!, andw(n) is complex white Gaussian noise
and with variance�2.

When we fixs = �0:20 + |2�(0:52) and change the SNR, the
simulation results are shown in Fig. 1(a) and (b) for the MSE of
damping factor� and frequency!, respectively. From this figure,
the MSE’s of the matrix pencil algorithm, the KT algorithm, and the
MKT algorithm are all near CR bound if the SNR is high. We can



486 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 2, FEBRUARY 1997

see that the performance of MKT algorithm follows closely to the
CR bound in estimating damping factor�, and the noise threshold
in estimating the frequency is about 3–4 dB below those of the KT
algorithm and the matrix pencil algorithm.

When we fix SNR= 20 dB, ! = 2�(0:52), and we change the
damping factor�. The MSE’s of� and ! are shown in Fig. 2(a)
and (b). From the figure, we can see that when the damping factor
is less than 0.2, the performance of KT, MKT, and the matrix
pencil algorithms is near the CR bound. If� � 0:55, the KT
algorithm and the matrix pencil algorithm are unable to estimate
the parameters, whereas the MKT algorithm can still estimate the
parameters effectively.

Example 2: The simulated data are generated by

y(n) = e
s n

+ e
s n

+ w(n) (21)

wheres1 = �0:2 + |2�(0:42), s2 = �0:1 + |2�(0:52), andw(n)
is complex white Gaussian noise with variance�

2. This example is
from [6].

The zeros of prediction polynomials are shown in Fig. 3. From the
figure, it is clear that the MKT algorithm has less bias and smaller
variance than the KT algorithm. The MSE’s of�1; !1; �2, and!2

for the matrix pencil algorithm, the KT algorithm, and the MKT
algorithm are shown in Fig. 4(a)–(d). From these figures, the noise
threshold of the MKT algorithm is about 3–4 dB lower than that of
KT algorithm.

V. CONCLUSIONS

The reduced-rank matrix approximation has been an effective tool
in many branches of signal processing. In this paper, we demonstrate
that if we can also preserve the matrix structure, such as the Hankel
structure for the case of parameter estimation of damped sinusoidal
signals, the performance can be further improved. Specifically, we
presented the MKT algorithm to estimate the parameters of damped
sinusoidal signals. The MKT algorithm exploits both reduced rank
and Hankel properties of the prediction matrix. Compared with the
original KT algorithm and the matrix pencil algorithm, it has lower
noise threshold and is able to estimate the parameters of signal
with large damping factors. Hence, preserving the Hankel structure
in reduced-rank matrix approximation improves the performance
significantly. The proposed approach and concept presented in this
article can also be extended to the general area of reduced rank signal
processing [10], where structural low-rank approximation can be very
effective in performance improvement.
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