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Abstract— In self-organized mobile ad hoc networks (MANET)
where each user is its own authority, fully cooperative behaviors,
such as unconditionally forwarding packets for each other, cannot
be directly assumed. The pricing mechanism is one way to
provide incentives for the users to act cooperatively by rewarding
some payment for cooperative behaviors. In this paper, we model
the pricing and routing in self-organized MANETs as multi-
stage dynamic games. A dynamic pricing framework is proposed
to maximize the sender/receiver’s payoff by considering the
dynamic nature of MANETs, meanwhile, keeping the forwarding
incentives of the relay nodes by providing the optimal payments
based on the auction rules. The simulation results illustrate
that the proposed dynamic pricing schemes have significant
performance gains over the existing static pricing algorithms.

I. INTRODUCTION

In recent years, mobile ad hoc networks (MANET) have
received much attention due to their potential applications and
the proliferation of mobile devices. In traditional emergency
or military situations, the nodes in a MANET usually belong
to the same authority and act cooperatively for the common
goals. Recently, emerging applications of MANETs are also
envisioned in civilian usage [1]–[3], where nodes typically
do not belong to a single authority and may not pursue a
common goal. We refer to such networks as self-organized
(autonomous) MANETs.

Before MANETs can be successfully deployed in a self-
organized way, the issue of cooperation stimulation must
be resolved first. In the literature, two types of schemes
have been proposed to stimulate cooperation among selfish
nodes: reputation-based schemes and payment-based schemes.
In reputation schemes, such as [1], [2], [4], a node determines
whether it should forward packets for other nodes or request
other nodes to forward packets for it based on their past
behaviors. In the payment-based schemes, such as [3], [5],
a selfish node will forward packets for other nodes only if it
can get some payment from those requesters as compensation.

In this paper we focus on the payment-based mechanisms.
Although the existing payment-based schemes have achieved
some success in self-organized MANETs, most of them
assume that the network topology is fixed or the routes
between the sources and the destinations are known and
pre-determined. However, in MANETs, there usually exist
multiple possible routes from the source to the destination;
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furthermore, due to mobility, the available routes between
the sources and the destinations may change frequently. In
this paper, we refer to path diversity as that in general there
exist multiple routes between a pair of nodes. We refer to
time diversity as that due to mobility and dynamic traffic
patterns, the routes between two nodes will keep changing
over time. Some works have been proposed to exploit the
path diversity, such as [6]–[8], in which the authors have
introduced some auction-like methods for the cost-efficient
and truthful routing in MANETs. In those papers, the sender-
centric Vickrey auction has been adopted to discover the most
cost-efficient routes. However, none of the existing schemes
have addressed how to exploit the time diversity, which we
expect can significantly improve the system performance.

In this paper, we consider the pricing and routing as
multi-stage dynamic games and propose a dynamic pricing
framework to maximize the sender’s payoff over multiple
routing stages considering the dynamic nature of MANETs,
meanwhile, keeping the forwarding incentives of the relay
nodes by providing the optimal payments based on the auction
rules. The main contribution is as follows: Firstly, by modeling
the pricing and routing as a dynamic game, the sender is
able to exploit the time diversity in MANET to increase their
payoffs by adaptively allocating the packets to be transmitted
into different stages. Secondly, an optimal dynamic program-
ming approach based on the Bellman equation is proposed
to implement efficient multi-stage pricing for self-organized
MANETs. Thirdly, the path diversity of MANET is exploited
using the optimal auction mechanism in each stage.

The remainder of this paper is organized as follows: The
system model of self-organized MANETs are illustrated in
Section II. In Section III, we formulate the pricing process
as dynamic games based on the system model. In Section
IV, the optimal dynamic auction framework is proposed for
the optimal pricing. In Section V, extensive simulations are
conducted. Finally, conclusions are drawn in Section VI.

II. SYSTEM DESCRIPTION

An ad hoc network consists of a group of wireless mobile
nodes, in which individual nodes cooperate by forwarding
packets for each other to allow nodes to communicate beyond
direct wireless transmission range. We assume that each node
is equipped with a battery with limited power supply, can
freely move inside a certain area, and communicates with other
nodes through wireless connections. For each node, packets are
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scheduled to be generated and delivered to certain destinations
with each packet having a specific delay constraint. In our
system model, we assume all nodes are selfish and rational,
that is, their objectives are to maximize their own payoff,
not to cause damage to other nodes. However, node are
allowed to cheat whenever they believe cheating behaviors
can help them to increase their payoff. Assume that if a
packet can be successfully delivered to its destination, then
the source and/or the destination of the packet can get some
benefits, and when a node forwards packets for others, it
will ask the requesters to provide some compensation, such
as virtual money or credits [3], [5], which should at least
cover its cost. Without loss of generality, we assume that the
source of a packet pays to the intermediate nodes who have
forwarded packets for it. Like in [3], we assume that there exist
some bank-like centralized management points to handle the
billing information. In MANETs, due to the mobility, nodes
need to frequently perform route discovery. In this paper, we
refer to the interval between two consecutive route discovery
procedures as a routing stage, and assume that for each source-
destination pair, the quality of the selected route between them
will keep unchanged in the same routing stage. Furthermore,
to simplify our analysis, we assume that for each source-
destination pair, the discovered routes in different routing
stages are independent.

After performing route discovery at each stage, multiple
forwarding routes can be exploited between the source and
the destination. Assume there are � possible routes and let
vi,j be the forwarding cost of the jth node on the ith
route, which is also referred to as the node type in this
paper. Considering possible node mobility in MANET, � and
vi,j are no longer fixed values, which can be modelled as
random variables. Let the probability mass function (PMF) of
� be f̃(�) and the corresponding cumulative density function
(CMF) be F̃ (�). Similarly, vi,j can be characterized by its
probability density function (PDF) f̂i,j and the cumulative
density function (CDF) F̂i,j . Define the cost vector of the ith
route as vi = {vi,1, vi,2, ..., vi,hi

}, where hi is the number of
forwarding nodes on the ith route. Thus, we have the total
cost on the ith route ri =

∑hi

j=1 vi,j , which is also a random
variable. Let the PDF and CDF of ri be fi and Fi, respectively.

III. PRICING GAME MODEL

In this paper, we model the process of establishing a route
between a source and a destination node as a game. The play-
ers of the game are the nodes in the network. With respect to a
given communication session, any node can play only one of
the following roles: sender, relay node, or destination. In self-
organized MANET, each node’s objective is to maximize its
own benefits. Therefore, the source-destination pair and nodes
on the possible forwarding routes construct a non-cooperative
pricing game [9]. Since the selfish nodes belong to different
authorities, they only have the information about themselves
and will not reveal their own types to others. Generally, such
non-cooperative game with incomplete information is complex

and difficult to study. But based on our game setting, the well-
developed auction theory [10] can be applied to formulate and
analyze the pricing game. According to the auction game [10],
the sender can be viewed as the principle (auctioneer), who
attempts to buy the forwarding services from the candidates
of the forwarding routes. The possible forwarding routes are
the agents (bidders) who compete with each other for serving
the source node, by which they may gain extra payments for
future use. Thus, because of the path diversity of MANET, the
sender is able to lower its forwarding payment by introducing
the competition among the routing candidates based on the
auction rules. It is important to note that instead of considering
each node as a bidder as in [6], [8], we consider each route as
a bidder in this paper, which makes it possible for the sender
to fully exploit the path diversity to maximize its own payoffs.

We first consider the static pricing game (SPG) model.
Specifically, consider an auction mechanism (Q,M) consist-
ing of a pair of functions Q : D → P and M : D → R�,
where D is the set of the bidding strategies, P is the set of
probability distributions over the set of routes L. Note that
Qi(d) is the probability that the ith route candidate will be
selected for forwarding and Mi(d) is the expected payment
for the ith route, where d is the vector of bidding strategies
for all routes, i.e., d = {d1, d2, .., d�} ∈ D. Let d−i denote
the strategy vector of route i’s opponents. Then, the utility
function of the ith forwarding route can be represented as
follows

Ui(di, d−i) = Mi(di, d−i) − Qi(di, d−i) · ri. (1)

Recall that ri is the forwarding cost of the ith route. Before
studying the equilibria of this auction game, we first define the
direct revelation mechanism as the mechanism in which each
route bids its true cost, that is, di = ri. The Revelation Prin-
ciple [10] states that given any feasible auction mechanism,
there exists an equivalent feasible direct revelation mechanism
which gives the auctioneer and all bidders the same expected
utilities as in the given mechanism. Thus, we can replace the
bids d by the cost vector of the routes, i.e., r = {r1, r2, ..., r�}
without changing the outcome and the allocation rule of the
auction game. Therefore, the equilibrium of the SPG can be
obtained by solving the following optimization problem to
maximize the sender’s payoff while providing incentives for
the forwarding routes.

max
Q,M

{
E�,r

[
g ·

�∑
i=1

Qi(r) −
�∑

i=1

Mi(r)

] }
(2)

s.t. Ui(ri, d−i) ≥ Ui(di, d−i),∀di ∈ D (3)

Qi(r) ∈ {0, 1},
�∑

i=1

Qi(r) ≤ 1. (4)

where the constraint (3) is also referred to as the incentive
compatibility (IC) constraint, which ensures the users to report
their true types, and g is the marginal profit of transmitting
one packet.
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Considering the dynamic nature of MANET, we will focus
on studying the dynamic pricing game (DPG), which is played
over many routing stages. Let �t denote any realization of
the route number on the tth stage and rt be a realization of
the types of all routing candidates on the tth stage. Denote
K and B as the total number of packets to be transmitted
and the bandwidth constraint, respectively. Let T be the delay
constraint of the packets defined as the maximal number
of routing stages these packets can wait. Thus, the pricing
game needs to be constrained within a T -period time window.
Then, consider a T -period dynamic game, the overall utility
maximization problem for the source-destination pair can be
formulated as follows.

max
Q,M,K1

{
T∑

t=1

βt · E�t,rt

[
G(Kt) ·

�t∑
i=1

Qi(rt) − kt ·
�t∑

i=1

Mi(rt)
]}
(5)

s.t. Ui,t(ri,t, d−i,t) ≥ Ui,t(di,t, d−i,t),∀di,t ∈ D

Qi(rt) ∈ {0, 1},
�t∑

i=1

Qi(rt) ≤ 1.

kt ≤ B,

T∑
t=1

kt = K. (6)

where kt is the number of packets transmitted in the tth stage
and Kt is the vector of the numbers of the transmitted packets
in the first T − t + 1 stages, which can be represented as
Kt = {kT , kT−1, ..., kt}. Note that a smaller t in this paper
stands for a later time stage. Here, G(Kt) is the profit function
that the sender gains in the tth stage determined by specific
applications, which may not only depend on how many packets
are transmitted in current stage, i.e., kt, but also be affected by
how many packets have been transmitted in previous stages,
Kt+1. Without loss of generality, we assume the profit function
is concave in kt. Also, β is the discount factor for multistage
games, and the subscript t indicates the tth routing stage.

IV. THE OPTIMAL DYNAMIC AUCTION FRAMEWORK FOR

EFFICIENT PRICING IN MANET

Considering the optimal auction results in the DPG model
formulated in Section III, we further propose the optimal
dynamic auction framework for pricing in self-organized
MANET. As it is difficult to directly solve (6), we study the
dynamic programming approach in our proposed framework
to simplify the multistage optimization problem.

Define the value function Vt(x) as the maximum expected
profit obtainable from stages t, t − 1, ..., 1 given that there
are x packets to be transmitted within the constraint of time
periods. Simplifying (6) using the Bellman equation, we have
the maximal expected profit Vt(x) written as follows.

Vt(x) = max
Q,kt

{
E�t,rt

[[
G(Kt)

�t∑
i=1

Qi(rt)

− kt

�t∑
i=1

J(vi)Qi(rt)
]

+ β · Vt−1(x − kt)
]}

, (7)

s.t. Qi(rt) ∈ {0, 1},
�t∑

i=1

Qi(rt) ≤ 1,

kt ≤ B, kt ≤ x

where J(ri) = ri + 1/ρ(ri), and ρ(ri) = fi(ri)/Fi(ri) is the
hazard rate [11] function associated with the distribution of
the routing cost. Note that J(ri) is also called the virtual type
of the ith player. Moreover, the boundary conditions for the
above dynamic programming problem are

V0(x) = 0, x = 1, ...,K, (8)

Recall that we have the delay constraint T of the maximal
allowed time stages and the bandwidth constraint B of the
maximal number of packets able to be transmitted for each
stage. Based on the principle of optimality in [12], an alloca-
tion Q that achieves the maximum in (7) given x, t and r is
also the optimal solution for the overall optimization problem
(6). Note that the above formulation is similar to that of the
multi-unit sequential auction [13] studied by the economists.

First, note that from (7) and the monotonicity of J(·), it is
clear that if the sender transmits k packets within one time
period, these packets should be all awarded to the forwarding
route with the lowest cost ri. Therefore, define the marginal
benefits from the tth stage as

Rt(kt) = max
Q

{
G(Kt) ·

�t∑
i=1

Qi(rt) − kt ·
�t∑

i=1

J(ri)Qi(rt) :

Qi(rt) ∈ {0, 1},
�t∑

i=1

Qi(rt) ≤ 1, kt ≤ B

}
, (9)

which can also be solved and written as

Rt(kt) =




0 if kt = 0,

G(kt,Kt+1) − kt · J(r(1)) if 0 < kt < k̃t,

G(k̃t,Kt+1) − k̃t · J(r(1)) if kt ≥ k̃t,
(10)

where k̃t = min (B, x) and r(1) represents the lowest cost
of the forwarding routes. Thus, the dynamic optimization
objective (7) can therefore be rewritten in terms of Rt(kt)
as follows:

Vt(x) = max
0≤kt≤min{B,x}

{
E�t,r[Rt(kt) + β · Vt−1(x− kt)]

}
, (11)

which is also subject to the boundary condition (8). Let
k∗

t (x) denote the optimal solution above, which is the optimal
number of packets to be transmitted on the winning route at
the tth stage given x. Letting �Rt(i) ≡ Rt(i) − Rt(i − 1)
and �Vt(i) ≡ Vt(i) − Vt(i − 1), we can rewrite the maximal
expected profit Vt(x) as

Vt(x) = max
0≤kt≤min{B,x}

{
E�t,rt

[ kt∑
i=1

[�Rt(i) −

β · �Vt−1(x − i + 1)]
]}

+ β · Vt−1(x). (12)

The above formulation will help us to simplify the optimal
dynamic pricing problem. Then, in order to solve the dynamic
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pricing problem (7)-(8), we need to first introduce the follow-
ing lemmas based on (12).

Lemma 1: If �Vt−1(x) ≥ �Vt−1(x + 1), then k∗
t (x) ≤

k∗
t (x + 1) ≤ k∗

t (x) + 1,∀x ≥ 0.
Lemma 2: �Vt(x) is decreasing in x for any fixed t and is

increasing in t for any fixed x.
The proof of the above lemmas can be found in [14]. Using

Lemma 1 and Lemma 2, the optimal allocation of packet
transmission for the proposed dynamic auction framework can
be characterized by the following theorem.

Theorem 1: For any realization (�t, rt) at the tth stage, the
optimal number of packets to transmit at state (x, t) is given
by

k∗
t (x) =




max{1 ≤ k ≤ min{x,B} :
�Rt(k) > β · �Vt−1(x − k + 1)}

if Rt(1) > β · �Vt−1(x),
0 otherwise.

(13)

Moreover, it is optimal to allocate these k∗
t (x) packets to the

route with the lowest cost ri.
Proof: Vt(x) is the summation of two terms in (12). As

the second term is fixed given x, the optimal k∗
t maximizing

the first term needs to be studied. Based on the definition
(10), �R(·) is decreasing in its argument. Also, �Vt−1(·) is
decreasing in its argument from Lemma 2. Thus, �R(k) −
β · �Vt−1(x − k + 1) is also monotonically decreasing in
k. Therefore, the optimal allocation at tth time period with
x packets in queue, k∗

t (x), is the largest k for which this
difference is positive.

Theorem 1 shows how the source node should allocate
packets into different time periods. The basic idea is to
progressively allocate the packets to the route with the smallest
realization of J(r(1)) until the marginal benefit �Rt(i) drops
below the marginal opportunity cost �Vt−1(x − i + 1).

In order to have the optimal allocation strategies using
Theorem 1, we first need to know the expected profit function
�Vt(x),∀t, x. For finite number of time periods, T , in prob-
lem (7), the optimal dynamic programming proceeds backward
using the Bellman equation [12] to obtain �Vt(x). Due to the
randomness of the route number and its type, it is difficult
to obtain the close-form expression of �Vt(x). Thus, we use
simulation to approximate the values of �Vt(x) for different
t and x, which proceeds as follows: Start from the routing
stage 0. For each stage t, generate N samples of the number
of available routes and their types, which follow the PDF
f̃(�) and fi(ri), respectively. For each realization and for
each pair of values (x, t), calculate k∗

t (x) using Theorem
1. By using the conclusion of Lemma 1, we simplify the
computation of k∗

t (x) and only need O(NK) operations to
calculate Vt(x) for all x at fixed t time period. Therefore,
O(NKT ) operations are required for the whole algorithm.
Note that the computation of Vt(x) can be done off-line,
which will not increase the complexity of finding the optimal
allocation for each realization. We then study the expected
profit function for infinite number of routing stages. Such
scenario gives the upper-bound of the expected profit, because

the source node can wait until low-cost routes being available
for transmission. The value iteration [12] method from the
dynamic programming can be applied here to obtain the value
function of our scheme with infinite time horizon.

Next, our task is to find auction mechanisms that achieve the
derived optimal policy. Considering the truth-telling property
of the second-price auction, we focus on this mechanism
in our paper. In our framework, the source node is trying
to find the route with the lowest cost, which implies the
application of reverse second-price auction [10]. Considering
the sealed-bid auctions require less side-information than open
auctions [10] and hence save the network resources, we apply
the sealed-bid second-price auction for our optimal allocation
policy. Further, in order to guarantee the truth-telling property
of the bidders, we use r̃t as the reserved price for every
stage, which is the highest price that the sender agrees to pay
for transmitting one packet within current time period. Note
that r̃t = J̃−1

t (�Vt−1(xt)), where xt is the packets to be
transmitted from the tth stage and J̃t(r) = G(1,Kt+1)−J(r).

V. SIMULATION STUDIES

In this section, we evaluate the performance of the proposed
dynamic pricing approach in mobile ad hoc networks. In
our simulation, N nodes are randomly deployed inside a
rectangular region of 10γ × 10γ according to the 2-dimension
uniform distribution with the maximal transmission range γ =
100m for each node, and each node moves according to the
random waypoint model [15]. Dynamic Source Routing (DSR)
[15] is used as the underlying routing to discover possible
routes. Let λ = Nπ/100 denote the normalized node density,
that is, the average number of neighbors for each node in the
network. Note that each source-destination pair is formed by
randomly picking two nodes in the network. Without loss of
generality, we only consider the minimum-hop routes as the
bidding routes for simplicity in the proposed optimal dynamic
auction framework. Considering the mobility of each node, its
forwarding cost is no longer a fixed value and, without loss of
generality, we assume that its PDF f̂(v) follows the uniform
distribution U [ū, u], which has the mean µ and the variance
σ2. Then, using the Central Limit Theorem [16], the cost of
a h-hop route can be approximated by the normal distribution
with the mean h · µ and variance h · σ2. In our simulation,
we consider the performances of three different schemes: our
scheme with finite time horizon, our scheme with infinite time
horizon and the static scheme. Note that the infinite time
horizon cannot be achieved in real application. But it can
serve as an upper bound for measuring the performance of our
scheme. The static scheme allocates a fixed number K/T of
packets into each stage while also using the optimal auction
at each stage. This scheme performs static pricing for each
stage by exploiting only the path diversity. Assume the cheat-
proof profit sharing mechanisms are in place to ensure the
cooperation of the forwarding nodes on the same route. Let
the benefit function be G(K) = g ·k, where g is the benefit of
successfully transmitting one packet. Note that the simulation
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Fig. 1: The overall profits of the fixed scheme, our scheme
with finite time horizon and infinite time horizon.

parameters are set as T = 20, K = 100 and B = 10. Let
g = 60, ū = 10, and u = 15.

In Fig. 1, we compare the overall profits of the three
schemes for different node densities with different number
of transmitted packets. The concavity of the simulated value
functions of our scheme matches the theoretical statement in
Lemma 2. It can be seen from the figure that our scheme
achieves significant performance gains over the static scheme,
which mainly comes from the time diversity exploited by the
dynamic approach. For instance, our scheme with T = 20
in the scenario of node density being 10 can even achieve
similar performance of the static scheme with node density
30. We observe that the performance gap between our scheme
with finite time horizon and the static scheme becomes larger
when the node density decreases. Thus, in order to increase the
profits under the situations of low node densities, it becomes
much more important to exploit the time diversity. Also, the
total profits of our scheme increases with the increment of
the node density due to the higher order of path diversity.
Further, since the performance gaps between the schemes with
finite and infinite time horizon are all very limited for different
node densities when T = 20, only a few routing stages are
required to fully exploit the time diversity. In Fig. 2, the
average profits of the three schemes are shown for different
node densities. This figure shows that the average profit of
transmitting one packet decreases as the number of packets to
be transmitted increases. It is because the packets have to share
the limited routing resources from both the time diversity and
path diversity. When the node density is 30, the average profit
degrades much slower than other cases because the potential
of utilizing both the time diversity and path diversity is high.

VI. CONCLUSIONS

In this paper, we have investigated the pricing mechanisms
for efficient routing in self-organized MANET. We model the
pricing procedure as a multi-stage game by considering the
dynamic nature of MANET. The proposed dynamic pricing
framework can enable the sender to fully exploit the time
diversity in MANET, which substantially increases his payoff
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Fig. 2: The average profits of the fixed scheme, our scheme
with finite time horizon and infinite time horizon.

by dynamically allocating the packets to be transmitted into
different stages. The optimal dynamic auction algorithm is
developed to achieve optimal packet allocation and route
selection. The simulation results illustrate that the proposed
scheme achieves significant performance gains over the static
one under different simulation settings.
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