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A Unified Square-Root-Free Approach for QRD- 
Based Recursive Least Squares Estimation 

S. F.  Hsieh, K .  J .  R. Liu, and K.  Yao 

Abstract-Givens rotation is the most commonly used method in per- 
forming the QR decomposition (QRD) updating. The generic formula 
for these rotations requires explicit square-root (sqrt) computations 
which constitute a computational bottleneck and are quite undesirable 
from the practical VLSI circuit design point of view. So far, there has 
been more than ten known sqrt-free algorithms. In this correspon- 
dence, we provide a unified systematic approach for the sqrt-free Giv- 
ens rotation. By properly choosing two parameters, p and v, all pre- 
viously known sqrt-free, as well as new methods, are included in our 
unified approach. This unified treatment is also extended to the QRD- 
based recursive least squares (RLS) problem for optimum residual ac- 
quisition without sqrt operations. 

I. INTRODUCTION 

The Givens rotation, which requires a square-root (sqrt) opera- 
tion in the generic formulation, is a versatile method in performing 
many signal processing algorithms involving matrix computations, 
such as the QR decomposition (QRD), the singular value decom- 
position, and the eigendecomposition [7]. While many researchers 
have worked on reformulating algorithms suitable for parallel com- 
puting and VLSI architectures, current VLSI architectures still dis- 
approve if not prohibit sophisticated computations. A noticeable 
example is the sqrt operation, which may occupy much area in a 
VLSI chip or  may also require many cycles to accomplish such 
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computation. In addition, a recent simulation study presented in 
[ 141 by Proudler et al. showed that a finite-precision implementa- 
tion of a sqrt-free lattice algorithm achieved better numerical re- 
sults than that using the conventional Givens rotation method. 

Thus, much effort has been spent on minimizing or everl elimi- 
nating the sqrt operation from these algorithms. One well-known 
example is the sqrt-free Givens rotation first proposed by Gentle- 
man [5]. Hammarling generalized his results briefly [9]. Later, 
other versions of the sqrt-free Givens rotations were also proposed 
[ l ] ,  [2], [8]. All of the above algorithms only focus on the sqrt- 
free Givens rotation itself andlor its applications in solving a least 
squares (LS) problem. McWhirter (131 was the first to apply the 
sqrt-free Givens rotation to recursive LS (RLS) problems in com- 
puting the desired optimum residual without solving explicitly for 
the LS coefficients. Closely related to the Givens rotation method 
is the modified Gram-Schmidt (MGS) orthogonalization, which is 
another approach in performing the QRD. Ling et al. [ l l ] ,  1121 
and Kalson and Yao [lo] independently developed the sqrt-free 
MGS methods for the RLS filtering problems. A rank-one updating 
of Cholesky factorization without sqrt’s has also been reported in 
the literature 131. Recently, Chen and Yao [4] summarized the 
works done on the sqrt-free RLS filtering and proposed another 
more efficient sqrt-free method. So far, there has been more than 
ten known sqrt-free algorithms 111, [2], [4], 151, [8]-[ll].  How- 
ever, all of the previously known derivations were based on heu- 
ristic approaches. There is no known systematic way of generating 
the sqrt-free algorithms. Motivated by these works, we wish to 
understand the fundamental relationships among these sqrt-free al- 
gorithms. One of the contributions of this correspondence is that 
these fundamental relationships are characterized in simple man- 
ners through only two parameters. 

The prototypes of generalized sqrt-free algorithms are given in 
Section 11, where all of the sqrt-free algorithms are found by the 
selection of two parameters. We proceed in Section I11 to seek a 
sqrt-free optimum residual of the RLS filtering problem. A brief 
conclusions is given in Section IV. 

11. THE pv FAMILY OF SQUARE-ROOT-FREE ALGORITHMS 

A Givens rotation matrix as given by 

is used to premultiply a two-row matrix 

1 CY1 C Y 2 . . . a p  

PI 02 - . . 0, 

a; ff; . . . ff; 
to zero out the element at the (2, I )  location such that it becomes 

where 

c = a,/-, a n d s  = PI/- (1) 
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In VLSI circuit design, sqrt operation is expensive, because it 
takes up much area or is slow (due to many iterations). Therefore, 
it is advantageous to avoid or minimize sqrt operations. 

By taking out a scaling factor from each row, the two rows under 
consideration before and after the Givens orthogonal transforma- 
tions is denoted by 

s expressions in (18) are not explicitly needed in the computation 
of (l3)-(17). The use of the rotation parameter c in (18) (with one 
sqrt operation) will be further considered in Section I11 when the 
optimum residual e is desired. Furthermore, Section 111 will show 
that it is possible to obtain e without any sqrt operation and the 
explicit computation of the rotation parameter c can be bypassed. 
To avoid repetitive computations and take the advantage of previ- 
ously computed results, (14). (16), and (18) use the newly updated 
k: of (13). As stated earlier, we are free to choose those two pa- 
rameters p and U. Different choices of p and U will affect the num- 
ber of multiplications and divisions, as well as the numerical sta- 
bility and parallelism of these computations. 

It can be easily shown that this unified view can generate all of 
the previously known sqrt-free algorithms via a proper choice of p 
and U. In fact, there has been more than ten sqrt-free algorithms 
known so far. Among them are Gentleman [ 5 ] ,  Hammarling [ 9 ] ,  
Bareiss [ I ] ,  Kalson and Yao [ I O ] ,  Ling er al. [ I l l ,  [ 1 2 ] ,  Barlow 
and Ispen [2], Chen and Yao 141, Gotze and Schwiegelsohn [ 8 ] .  
For example, if we choose p = 1 and U = 1 ,  it becomes the sqrt- 
free algorithm proposed by Gentleman in [5] and can be updated 
as follows: 

k6 = k,,a: + k,bt (19) 

ki, = k,,ki,/kA (20) 

a;  = 1 (21) 

a,’ = (k,a,a, +khb1b,)/kl ,  

b,’ = -bla, + a,b, .  

j = 2, . . . . P  

(22) 

and 

where 

(6) 

,, kh ,  k6, and kA are the scaling factors resulting in sqrt-free - .  
operations, and a: and p: are the updated a, and 0, when PI is 
zeroed out. 

Now, our task is to find the expressions for, k:, k i ,  a ; ,  {(a,’ , 
b,’), j = 2. . . . , p } ,  in terms of k, ,  k h ,  { (a , ,  b l ) , j  = 1, . . . , p } ,  
such that no sqrt operation is actually needed. The sqrt expressions 
of a, a, 4. and 4 in ( 5 )  and (6) are used for representa- 
tional purposes only and are not actually performed. 

Replacing a, = &a,, 0, = a b , ,  ai = &U,’, 6; = &b,’, j  
= 1, . . . , p ,  in (1)-(4) leads to 

a ;  = J(k,at + kbbt)/kL 

1 

4 Jk,a: + kbb: 
a; = [koala, + kbblb,] j = 2, . . . 3 P .  To check that these results are correct, we find that 

kuala]  + khblb, 
a; = 4 a ;  = 4 

ala, + PIP, 
m = c ,a /  + SIP] 

- - 

and 

To avoid sqrt computation, we need to determine k: and ki such 
that ai, a,’, and b,’ will not require sqrt operation. It is clear that if 
we choose k,!, and k i  as 

ku kb k’ - 
- v2(k,a: + kbb:) .IO, - Pia, - 

(24) - - -sa, + cp, - 

which are consistent with the results in  (3) and (4). For the systolic 
array implementation described in [13], we choose a ,  = 1 and de- 
fine the generalized rotational parameters 

where p and U are parameters that will be determined later to be 
any sqrt-free function of k,, kb,  a , ,  and b , ,  then @ - ( I O )  can be 
computed without sqrt operation. We then have the following up- 
dating formulas without sqrt operation: 

k: = (koa: + kbb:) /p2  (13) C = k, /k‘: ,  and S = k,b,/k,!,.  (25) 

Then we have 

a,’ = Cu, + Sb, 

b,’ = b, - b la , .  

(27) 

(28) 

b,’ = u[-b,a,  + a,b,]  (17) 

c = ( a l / p ) a ,  and s = ( b , / p ) J k h / k : , .  (18) 

Notice that the sqrt operations disappear in our formulas of (13)- 
(17), while they are needed in the Givens rotations. Also, the c and 

These results are consistent with the works by Gentleman [ 5 ]  and 
McWhirter [ 131. The details of the systolic implementation can be 
found in [13]. 

In Table I, we list various sqrt-free algorithms and the corre- 
sponding choices of p and U. Hence, this class of sqrt-free algo- 
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TABLE I 
SOME KNOWN SQRT-FREE ALGORITHMS OF THE pv FAMILY 

Ir V Authors (Year) Remark 

1 

1 

a ,  + k,b: 

1 

Gentleman (1973) a ,  = 1 

Hammarling (1974) 

Bareiss (1982) 

Ling (1989), KalsoniYao (1985) k,,a, = 1 

CheniYao (1988) k,a, = 1 

GotzeiSchwiegelshohn (1989) 

BarlowiIspen (1 987) Scaled 

New algorithm 

TABLE I1 
COMPARISONS OF COMPUTATIONAL COMPLEXITY OF SOME MEMBERS I N  + V  FAMILY 

~- 

Square Root Multiplication Division Addition 

1 2p - 1 1 Givens Rotation 4P 
p = l , u = l  4p + 3 1 2p - 1 0 

2p + 6 2 2p - 1 0 

2p + 6 2 2p - 1 0 

4p + 4 2 2p - 1 0 
1 

a ,  
p = l , v = -  

4 p  + 5 1 2p - 2 0 

koa: + khb: , u =  1 4p + 6 2 2p - 1 0 Cc=- 
ko kh 

4p + 4 1 2p - 1 0 1 
koa: + khb: 

p = koa: + k,b:, v = 

rithms is called the pv family of sqrt-free Givens rotation algo- 1 
v =  rithms. koa: + kbb: 

not Only can we generate those known sqrt-free algo- then we can readily verify that this is a new sqrt-free algorithm. In 
flthms, but we are 
choosing new pairs Of ( p ,  ’) parameters. 

to find new sqrt-free by 
let us 

fact, the new sqfl-free algorithm is among the best in the list of 
Table I in terms of number of divisions, e .g . ,  it only requires one an 

division and no square root. In principle, there are unlimited choices 
of p and v for sqrt-free algorithms. Table I1 shows comparisons of 
computational complexity of some algorithms listed in Table I .  

choose 

p = koa: + kbb: 
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111. SQRT-FREE TRIANGULAR ARRAY UPDATING AND OPTIMUM 
RESIDUAL ACQUISITION 

Solving a full rank LS problem Aw = b ( A  E R m X n ,  m 2 n) 
without the sqrt operation can be easily achieved [5]. Let the QRD 
of A be QTA = R, where R is an upper triangular matrix, then 

and the optimum weight vector can be obtained by solving RO = 

U. Now, starting with a full dense augmented matrix &[A b ] ,  a 
series of sqrt-free rotations can be applied to zero out the subvector 
below the main diagonal of the underlying matrix to obtain 

& [ R  0 ;  61 

where & = diag (4, . ' ' , 4) and R = &SF, U = &U. 
Since the explicit computation of & is not required, the optimum 
weight vector can be obtained without the sqrt operation by 
solving R O  = U. 

In the following, we will apply the developed prototypes of sqrt- 
free rotations developed before to  the QRD-based RLS estimation 
problem where we are only interested in the optimum residual. How 
to obtain the optimum residual by using the systolic array [ 131 has 
been well known. To be specific, we are interested in updating 
from 

R u  R' U' 
L T  to [o' v 1. (30) 

It has been shown [13] that the p X p upper triangular matrix R' 
can be obtained through a sequence of p Givens rotations, and the 
optimum residual e for the newly appended data [x' y ]  is given 
by 

with c, representing the cosine value of the i th rotation angle. 

agonal matrix leads (30) to the form of 
Factoring out the scaling constants into the premultiplying di- 

Unlike the previously developed formula, where we are only in- 
terested in updating k , ,  a,,  , to k,' , U,', and zeroing out all the b,'s,  
this time we also need to know the cosine values explicitly as re- 
quired in the optimum residual given in (31). 

After the first rotation, b,  will be zeroed out and we have 

(33) 

(34) 

with (pl, v I )  being the parameter pair which are still free to be 
chosen later. Note the close analogy of (33)-(38) to those of (13)- 
(18). Similarly, after the ith rotation (1 < i i p ) ,  we have 

k,u2 + k(1-I)bll-I)' 

(39) 
11 4 

k,' = 
PLf 

Finally, after p rotations are finished, (32) becomes 

ai2 . . . a;,, 

a& . . . ai, 
. .  . .  

4, 
0 0 . . .  

(42) 

(43) 

(44) 

which has the form of 

I:; 3 
in (30). The optimum residual e in (31) now becomes 

- 

where kbp' is defined in (40). To further simplify the expression in 
(46), we notice that k?) can be computed recursively as follows: 

where (40) is used in the recursion 
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With (49) substituted into (46), we have 

Because & [b, ,  bZ, . . . , bp, b,,+ ,] = [xi, x 2 ,  . . . , x,,, y ]  is the 
appended new data row, we are certainly free to choose k ,  = 1 to 
reduce the arithmetic complexity and simplify the expression in 
( S O ) .  Therefore, a lemma on obtaining the sqrt-free optimum re- 
sidual is given below. 

Lemma 1: (Sqrt-free Optimum Residual): The optimum residual 
e can be computed with no sqrt operations and is given by 

if k ,  is chosen to be unity. 0 
McWhirter [ 131 successfully employed Gentleman’s proposition 

[5] in computing the residual e without sqrt operations. By choos- 
ing p, = v ,  = a,, = I ,  1 C- i 5 p ,  the optimum residual can be 
reduced to 

(Gentleman/McWhirter) (52 )  

where C, is defined in (2.5). This result is again consistent with the 
work by McWhirter [ 131. 

Another example can be taken from Hammarling’s suggestion 
[9] as follows: 

Then it follows that k: = k , a , , / p ,  and the Hammarling optimum 
residual is given by 

IV. CONCLUSIONS 

The Givens rotation is the most commonly used method in per- 
forming QRD updating. Most of these rotation-based methods re- 
quire explicit sqrt computations which are undesirable from the 
practical VLSI circuit design point of view. Our work is the first 
effort to establish basic understanding of all known sqrt-free QRD 
algorithms, from which the basic criterion is seen to be simple. We 
have shown that all the current known sqrt-free algorithms belong 
to the p v  family. New sqrt-free algorithms can be easily obtained 
from this p v  family. The issue of choosing optimal parameters /A 

and v in terms of computational complexity (hardware and soft- 
ware) and numerical properties still remains an open question. This 
unified approach also provides a fundamental framework for the 
sqrt-free RLS algorithm, which is essential for fast operations and 
practical VLSI implementations. 
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Phase Retrieval Using a Window Function 

Wooshik Kim and Monson H.  Hayes 

Abstract-In this correspondence, we consider the problem of recon- 
structing a signal from the Fourier intensity of the signal and the Four- 
ier intensities of two windowed signals: one by a window w (n) and the 
other by its complementary window [l - w ( n ) ] .  We develop several 
conditions under which a signal can be uniquely specified to within 
several trivial ambiguities such as sign, translation, and time reversal 
from the given conditions. We present a possible reconstruction algo- 
rithm derived from the Gerchberg-Saxton algorithm. 
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