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A Cartel Maintenance Framework to
Enforce Cooperation in

Wireless Networks with Selfish Users
Zhu Han, Zhu Ji, and K. J. Ray Liu

Abstract— In distributed wireless networks without centralized
control, each user is its own authority to maximize its own per-
formance. This distributed characteristic provides the users with
the incentives of greedy competitions for the network resources
such as bandwidth and transmission time. Such competitions
deteriorate the system performance dramatically and result in
low non-cooperative performances. Ensuring cooperation among
selfish users can improve the performances and thus becomes
an important issue for such wireless networks. In this paper, a
Cartel Maintenance repeated game framework is proposed to
enforce the cooperation among selfish users. The soul of Cartel
Maintenance is to construct contracts among independent indi-
viduals for cooperative benefits and non-cooperative punishment,
so as to limit inefficient competitions. In the proposed framework,
a trigger-punishment game rule is designed to encourage the
users to follow the cooperative strategy. First, all users agree
to cooperate. Then in the following time slot, if users observe
the others play cooperatively, cooperation will be played. If
some users detect that others may defect based on the observed
information, these users will play punishment phases for a certain
period of time. This punishment is optimized so that the gain
obtained by the deviation users is outweighed by the future
punishments. Therefore, no user has the incentives to deviate,
and the cooperation among selfish users is enforced. Then, the
framework is employed to the multiple random access scenarios
in wireless networks with selfish users, where the closed-form
optimal solutions of cooperation enforcement are derived. The
simulation results show that the proposed scheme can achieve
significant performance gains over the non-cooperation scheme
by having enough punishment threat to keep the cooperation
among users.

Index Terms— Game theory, distributed control, and cooper-
ative systems.

I. INTRODUCTION

IN RECENT years, distributed wireless networks, which
consist of a collection of radio transceivers without requir-

ing centralized administration or pre-arranged fixed network
infrastructure, have been investigated intensively. Considering
the application scenarios in which the users are “selfish” and
act non-cooperatively to maximize their own interests, the
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performances of such networks are deteriorated dramatically
due to the inefficient competitions for the wireless resources
among selfish users. The greediness of selfish users and the
distributed network structure challenge the feasibility of the
conventional approaches and require novel techniques for dis-
tributed and efficient networking. Thus, ensuring cooperation
among selfish users becomes an important issue for designing
wireless networks.

In distributed wireless networks, mobile users aim to self-
ishly maximize their own performances. Such a fact motivates
the adoption of the Game Theory [1], which studies the
mathematical models of conflict and cooperation among intel-
ligent and rational decision makers. Rational means that each
individual’s decision-making behavior is consistent with the
maximization of some subjective expected utility. Intelligent
means that each individual understands everything about the
structure of the situation, including the fact that others are
intelligent rational decision makers. Non-cooperative game,
cooperative game, and repeated game are three major compo-
nents of Game Theory.

In the literature, game theory has been primarily applied
to the research areas of flow control [2] and routing [3].
Recently, different types of game approaches have been in-
troduced to several areas of wireless communications. The
non-cooperation game theory was studied in [4] for power
control problems, where pricing technique was used to achieve
Pareto optimality. In [5], the non-cooperation game approach
was employed for subcarrier-assignment in multi-cell OFDMA
systems. The non-cooperative game theory has also been
studied for self-organizing mobile ad-hoc wireless networks
(MANET). In [6], the reputation-based game approaches were
proposed to encourage packet-forwarding among users. In [7],
the authors proposed a non-cooperative approach for encour-
aging collaboration in MANET. In regard to the cooperation
game theory, in [8], an cooperative game approach named
Nash Bargaining Solution was studied in the scenario of
power, rate, and subcarrier allocation for single-cell OFDMA
systems to have a fair and efficient performance. Besides, in
the repeated game, the behaviors of users at multiple stages
are studied to dynamically optimize the wireless resource
allocation over time. In [9], the repeated game approach was
proposed for the optimal routing control. In [10], the authors
used the Markov chain theory to model the multiple-access
problem as a repeated game with perfect information. The
packet forwarding schemes using “TIT for TAT” schemes
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were proposed in [11], [12]. Auction theory, one of the most
important applications of Game Theory, has also been applied
to MANETs to provide incentives for users to cooperate such
as [13], where VCG auction was adopted to encourage truth-
telling and discover the most cost-efficient routes in ad hoc
networks. Some preliminary result of this paper is presented
in [14].

In this paper, we incorporate the repeated game theory to
study how to enforce cooperations among distributed selfish
users in wireless networks. First, inspired by the micro-
economy approach in [15], we propose a trigger-punishment
Cartel-Maintenance framework to enforce cooperation among
users. The soul of Cartel Maintenance is to construct con-
tracts among independent individuals for cooperative benefits
and non-cooperative punishment, so as to limit inefficient
competitions. We assume that the rational users optimize
their profits over time. At first, the users agree to operate at
some cooperation points. Meanwhile, the users monitor their
performances distributively. If the performances are lower
than certain trigger thresholds, it probably means that some
users act greedily by deviating from the agreed cooperation
point. The deviation benefits the greedy users but impairs the
performances of the other users who still act cooperatively.
In this situation, the other users will play non-cooperatively
to compete for more resources for a certain period of time.
Consequently, the performances of the users including the
deviating users drop dramatically. So the current gain of
the deviation is outweighed by the loss due to the future
punishments from the others. As a result, all users have no
incentive to deviate from the agreed cooperation point and
are enforced to cooperate in a distributed manner by the above
Cartel-Maintenance repeated-game framework.

We consider the distributive rate control scenario in wire-
less networks in which several distributed and greedy users
share an access point via some multiple-access protocol to
communicate with a remote destination. The scenario fits a
variety of practical situations such as ad hoc networks and
sensor networks. The proposed framework is employed to the
above scenario to enforce the cooperation and enhance the
system performance. For the distributed users in the network,
there are costs to transmit their packets, and also benefits if
their packets are successfully transmitted. Each user’s profit
is defined as the benefits minus the costs. The users are able
to adapt their packet transmission rates for the cooperation
play or punishment play. They can locally observe their
successful packet transmission probabilities, and correspond-
ingly play cooperation or non-cooperation. Based on a close
approximation of the objective function, we derive the optimal
parameters of the packet transmission rate, punishment time,
and trigger threshold for the distributed greedy users in closed-
forms. The simulations demonstrate that the proposed scheme
can enforce the selfish users to cooperate and have an efficient
system outcome using the optimal punishment threat. The
resulting performances of the proposed distributed scheme are
close to those of the centralized-control scheme and much
better than those of the non-cooperative scheme.

This paper is organized as follows: In Section II, we provide
a brief introduction of repeated game theory and then present
the trigger-punishment Cartel Maintenance framework. In Sec-

tion III, we provide the system model of a wireless network
scenario. In Section IV, we employ the proposed framework
to this wireless network and derive the corresponding optimal
parameters. In Section V, simulation results are provided.
Conclusion is drawn in Section VI.

II. THE CARTEL MAINTENANCE REPEATED GAME

FRAMEWORK

In this section, we first discuss the basic concepts of the
repeated game theory. Then, the Cartel Maintenance repeated
game framework with the trigger punishment game rule is
designed to enforce cooperations among distributed selfish
users.

A. Repeated Game Theory Basics

A game G in the strategic form has three elements: the set
of users (players) i ∈ I, which is a finite set {1, 2, ..., N};
the strategy space Si for each user i; and utility functions πi,
which measures the outcome of the ith user for each strategy
profile σ = (σ1, σ2, ..., σN ), where user i controls its strategy
σi ∈ Si. We define σ−i as the strategies of user i’s opponents,
i.e., σ−i = (σ1, ..., σi−1, σi+1, ..., σN ). In static games, the
interaction between users occurs only once, while in dynamic
games the interaction occurs several times and may continue
forever.

To analyze the outcome of a game, the Nash Equilibrium is
a well-known concept, which states that in the equilibrium
every agent selects a utility-maximizing strategy given the
strategies of other agents. A strategy profile σ∗ is a Nash
Equilibrium if, for all users,

πi(σ∗
i , σ∗

−i) ≥ πi(σi, σ
∗
−i), ∀σi ∈ Si, (1)

i.e., a Nash equilibrium is a profile of strategies such that
each user’s strategy is an optimal response to the other users’
strategies, and σ∗ is called the Nash Equilibrium Point (NEP).
The importance of an NEP is that it is a point where no non-
cooperative user has an incentive to deviate.

However, one problem with an NEP is that it is not
necessarily very efficient in performances. If the users play
cooperatively, the performances can be greatly improved.
Thus, the question arises that how to enforce the greedy users
to cooperate with each other. The repeated game provides
us possible mechanisms to enforce the users to cooperate
by considering long-term scenarios. In the repeated games,
the users face the same static game in every period, and the
user’s overall payoff is a weighted average of the payoffs in
each stage over time. In the repeated game, the users can
observe some information reflecting their opponents’ past play.
Hence, they are able to condition their future plays on the
observed information in history to obtain better equilibria. The
information revealed by the game outcome can be observed
by all users and is named as the public information.

Definition 1: Let G be a static game and β be a positive
discount factor which is less than 1. The T -period repeated
game, denoted as G(T , β), consists of game G repeated T
times. The game payoff is given by

Vi =
T∑

t=1

βt−1πt
i , (2)
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where πt
i denotes the payoff to user i in period t. If T goes

infinity, then G(∞, β) is referred as the infinitely-repeated
game. In this paper, we employ the infinitely-repeated game.
In fact, the repeated game may not be necessarily infinite as
long as the users do not know when the game ends. For the
simplicity of notation and presentation, we will derive our
scheme based on the infinitely repeated game.

In many situations, the users are only able to obtain im-
perfect information of the strategies of their opponents based
on the public information. Moreover, at stage t, each user
not only knows the history of the public information ht but
also knows the private histories of its own past actions, zt

i . We
study the situation where users ignore their private information
in choosing their actions. This situation leads to the public
strategies as follows.

Definition 2: Strategy σi is a public strategy if it only
depends on the public history of the game and is not affected
by the users’ private histories, i.e., σt

i(h
t, zt

i) = σt
i(h

t, ẑt
i) for

all periods t, public histories ht, and different private histories
zt
i and ẑt

i .

Then, it is worth studying whether a public strategy induces
a Nash equilibrium from period t on.

Definition 3: a repeated-game strategy σi is a perfect public
equilibrium (PPE) if: (a) Strategy σi is a public strategy; (b)
For each period t and history ht, strategy σi yields a Nash
equilibrium from that period on.

Based on the above definitions, we can see that perfect
public equilibria are the equilibria that no user has incen-
tives to deviate from in the repeated game with the public
information. Because when all users use public strategies, they
agree on the subsequent possible actions and outcomes given
the public history ht. The PPE further specifies the strategies
having a Nash equilibrium from period t on, thus eliminates
the deviation incentives of rational users in the repeated game
based on the concept of Nash equilibrium. Note that PPE can
also be considered as an extension of the idea of subgame
perfection in the repeated game [1].

Now the question is whether or not the cooperation among
users can be enforced by the repeated games to generate better
performances. From Folk Theorem [1] below, we know that in
an infinitely repeated game, any feasible outcome that gives
each player better payoff than the Nash equilibrium can be
obtained.

Theorem 1: Folk Theorem: Let (π1, . . . , πN ) be the payoffs
from a Nash equilibrium of game G and let (V1, . . . , VN )
be any feasible payoffs from G. If Vi > πi for every
player i, then there exists an equilibrium of G(∞, β) that
attains (V1, . . . , VN ) as the average payoff, provided that β is
sufficiently close to 1.

This equilibrium can have better performances than those
of static game NEP. However, the Folk’s Theorem does not
explain how to enforce the equilibrium. In the following
subsection, we further develop the detailed game rule for
enforcing the cooperation among users to achieve this better
equilibrium.

B. Cartel Maintenance Framework with Trigger Punishment
Game Rule

The basic idea for the proposed Cartel Maintenance re-
peated game framework is to provide enough threat to greedy
users so as to prevent them from deviating from cooperation.
First, the cooperative point is obtained so that all users
have better performances than those of non-cooperative NEPs.
However, if any user deviates from cooperations while the
others still play cooperatively, this deviating user has a better
utility, while the others have relatively worse utilities. If no
rule is enforced, the cooperative users also have incentives to
deviate. Consequently, the network deteriorates to the non-
cooperation results with inefficient performances. The pro-
posed framework provides a mechanism so that the current
defecting gains of the selfish user will be outweighed by the
future punishment from the other users. For any rational user,
this threat of punishment prevents them from deviation. As a
result, the cooperation is enforced.

The proposed trigger rule is a strategy to introduce punish-
ment on the defecting users. In the trigger rule, the users start
with cooperation. Assume each user can observe the public
information (e.g. the outcome of the game), Pt at time t.
Examples of this public information can be the successful
transmission rate and network throughput. Notice that such
public information is mostly imperfect or simply partial in-
formation about the users’ strategies, which is because there
is limited ability for signaling all information in practice.
Here we assume a larger Pt stands for a higher cooperation
level, resulting in higher performances for all users. Let the
cooperation strategies be λ̄ = [λ1, λ2, ..., λN ]T and the non-
cooperative strategies be s̄ = [s1, s2, ..., sN ]T, respectively.
The trigger-punishment game rule is characterized by three
parameters: the optimal punishment time T , trigger threshold
P ∗, and the cooperation strategy λ̄. The trigger punishment
strategy (λ̄, P ∗, T ) for distributed user i is given as follows:

(a) User i plays the strategy of the cooperation phase, λ̄, in
period 0;

(b) If the cooperation phase is played in period t and Pt >
P ∗, user i plays the cooperation phase in period t + 1;

(c) If the cooperation phase is played in period t and Pt <
P ∗, user i switches to a punishment phase for T − 1 periods,
in which the users play a static Nash equilibrium s̄ regardless
of the realized outcomes. At the T th period, play returns to
the cooperative phase.

Note that s̄ generates the non-cooperation outcome, which
is much worse than that generated by the cooperation strategy
λ̄. Therefore, the deviating selfish user has much lower utilities
in the punishment phase. Moreover, the punishment time T is
designed to be long enough to let all cheating gains of the
selfish users be outweighed by the punishment. So the users
have no incentive to deviate from cooperation, since the users
aim to maximize the long-run payoffs over time. Moreover,
we assume the users are synchronized in the sense that they
can start punishment and restore cooperation simultaneously.
This assumption fits the situations where the network topology
is relatively simple and the public information can be easily
observed. If the synchronization assumption is not valid, a
certain period of time is required for transition from the
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Fig. 1. Illustration of a wireless network with selfish users.

punishment phase back to the cooperative phase.
The rest of the problem is how to calculate the optimal

parameters of (λ̄, P ∗, T ), i.e., how to construct a Cartel so
that the benefit is optimized and the incentive for deviation
is eliminated. We define Ptrig = Pr(Pt < P ∗), which is the
trigger probability that the realization of public information
is less than the trigger threshold. If we discuss the different
future situations in (2), the expected payoff Vi is given as
follows:

Vi(λ̄, P ∗, T ) = πi(λ̄) + (1 − Ptrig)βVi(λ̄, P ∗, T )

+Ptrig[
T−1∑
t=1

βtπi(s̄) + βT Vi(λ̄, P ∗, T )],∀i (3)

where πi(λ̄) and πi(s̄) are the cooperation and non-
cooperation payoffs, respectively. The first term at the right
hand side of (3) is the current expected payoff if cooperation is
played; the second term and third term are the payoffs for two
different results depending on whether or not the punishment
is triggered, respectively. Notice that Vi is a function of not
only users’ strategies λ̄ but also the game parameters P ∗ and
T . Our objective is to maximize the expected payoff Vi for
each user while the optimal strategy yields an NEP for the
proposed algorithm. In order to achieve the NEP given P ∗

and T , the optimal strategies of the repeated games can also
be characterized by the first-order necessary conditions,

∂Vi(λi, λ−i)
∂λi

= 0,∀i.1 (4)

If all users have the same utility and the game outcome is
symmetric for all users, the solution λ∗ of the first-order
conditions is the same for all users. This solution is also a
function of parameter P ∗ and T . In order to obtain the optimal
P ∗ and T for maximizing the expected payoff Vi, we have the
following differential equations

∂Vi(P ∗, T )
∂P ∗ = 0, and

∂Vi(P ∗, T )
∂T

= 0,∀i. (5)

In general, (4) and (5) need to be solved via numerical meth-
ods. For a certain structure of the payoff function, we are able
to derive the closed-form optimal configuration {λ̄, P ∗, T}.

1Notice that the optimal strategies might not be the strategies obtained from
centralized control.

In the following sections, based on the above discussion,
we will employ the repeated game framework to a specific
wireless network, develop efficient and distributed rate control
strategies, and further derive the optimal closed-form config-
uration using an approximation.

III. SYSTEM MODEL

Figure 1 shows the block diagram of a multiuser wireless
network. There are many distributed users and one access
point. Each user can transmit its data packets to the access
point by using the multiple access protocols such as Aloha
and carrier sense multiple access (CSMA). Each user can
adjust its packet transmission rate to the access point. The
access point has the ability to transmit the data packets to the
remote destination via a wireless link. The scenario can be
viewed as a snapshot of a clustered ad hoc network. The access
point is the cluster head, which is responsible for forwarding
packets for their nearby users to the other cluster heads.
The network scenario also fits the sensor network scenario,
where a powerful node collects information from different
autonomous sensors and forwards it to remote stations. As-
sume the feedback mechanism such as ARQ exists between
the access point and the destination, so that the successful
packet transmission probabilities can be obtained. Since there
is no central authority in the above networks, each user is
its own authority and inclines to act greedily to compete for
the network resources by having a high packet transmission
rate, which results in a lot of collisions of the multiple-access
protocols and consequently inefficient performances. In the
rest of this section, we model the utility of profit reflecting
the interests of selfish users.

Assume there are N active users in the wireless networks.
The transmission times for the data packets are divided into
time slots. The packet arrival can be modeled as the Poisson
distribution. Users can adjust their strategies by changing the
arrival rates. The packet transmission rate vector for all users
is denoted by λ̄ = [λ1, ..., λN ]T, where λi is the rate of user
i. Total arriving rate at the access point is then Λ =

∑N
i=1 λi.

Each user intends to increase its transmission rate. However,
arbitrary increases of the packet transmission rates result in a
higher probability of collision at the access point and reduce
the system throughput. In addition, the probability of suc-
cessful transmission is also affected by the link quality from
the access point to the destination. All users can observe the
successful packet-transmission probability that functions as the
public information. Note that this public information can be
announced using trivial signalling with negligible costs. The
probability can be expressed as P̂ = θ ·P (Λ), where function
P : �+ → �+ denotes the successful transmission probability
per packet that is a function of Λ for the multiple-access
protocol, and θ is the probability of successful transmissions
from the access point to the destination that is modeled as an
identically and independently distributed sequence of random
variables with mean μ, probability density function (PDF) f ,
and cumulative distribution function (CDF) F .

In general, the successful packet transmission probability
P (Λ) is not a linear function. Within a typical working range,
we can approximate P as a linear and decreasing function of
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Fig. 2. Linear approximation.

total packet transmission rate Λ as

P (Λ) ≈ a − bΛ, (6)

where a and b are positive constants. From the simulations
shown later, (6) is a good approximation as shown in Figure 2.
Such a linear approximation allows us to obtain a closed-form
analytical solution that provides insights on the formulated
problem in the next section. Other nonlinear models with
better accuracy can also be employed using a similar analysis.
However, the closed-form solution might not be able to be
obtained and numerical methods can be utilized to find the
solutions in a straightforward way.

We assume a benefit of c2 can be obtained for each
successful transmitted packet. Thus, the user’s benefit can be
written as

ui(λ̄) = c2P̂ (Λ)λi = c2θ · (a − bΛ)λi. (7)

Without loss of generality, we assume c2 = 1.
Because of power consumption or pricing, there exists a

cost for each packet transmission. In this paper, we use linear
model for the cost as:

C = c0 + c1λi, (8)

where c0 is the basic cost to maintain the link and c1 is the
cost per transmission packet.

Considering the benefit and cost simultaneously, each user’s
profit is defined as the benefit minus the cost, which can be
written as

πi(λ̄) = P̂ λi − C = θ(a − bΛ)λi − c0 − c1λi,∀i. (9)

Define Λ−i = Λ − λi =
∑

j �=i λj as the total transmission
packet rate of the other users. The ith user’s expected profit
in (9) can be further represented as a function of λi

πi(λ̄) = [A − B(Λ−i + λi)]λi − c0, (10)

where A = μa − c1 and B = μb. Remember that μ is the
mean of θ.

IV. ENFORCE COOPERATION FOR MULTIPLE ACCESS IN

WIRELESS NETWORKS

In this section, we first present the motivations of the
proposed strategy by analyzing both the performances of the
non-cooperative scheme and the scheme with fully centralized
control. Then the optimal parameters of our scheme are
deduced in closed forms.

In order to understand the motivations of introducing the
repeated game approach, we study the users’ behavior in the
static non-cooperative game. In this non-cooperative game, the
users act selfishly and independently to increase their profits
by adapting their packet transmission rates, i.e.,

arg max
λi

πi, ∀i. (11)

Let s̄ = [s1, ..., sN ]T denote the optimal rate vector for the
above non-cooperative optimization. By taking the derivatives
of λi in (9) for all users and solving the equations, we have

si = s =
A

B(N + 1)
, ∀i. (12)

By substituting (12) into (10), the non-cooperation profit is

πi(s̄) =
A2

B(N + 1)2
− c0, ∀i. (13)

We assume that
0 < c1 < μa, (14)

and

0 < c0 <
(μa − c1)2

μb(N + 1)2
. (15)

Both (14) and b > 0 imply that A and B are positive constants.
Notice that (15) guarantees that users earn positive profits, i.e.,
πi(s̄) > 0,∀i.

On the other hand, if there exists centralized control, the
system has complete information about all users’ strategies
and can maximize the system overall profit as

arg max
λ̄

N∑
i=1

πi. (16)

Denote users’ rate vector which maximizes the expected
overall profit by r̄ = [r1, ..., rN ]T. Substituting (9) in (16)
and solving the first-order conditions of (16), we have the
solutions as

ri = r =
A

2BN
, ∀i. (17)

Substituting (17) into (10), the centralized controlled profit is

πi(r̄) =
A2

4BN
− c0, ∀i. (18)

From (12) and (17), we observe that the non-cooperative
packet transmission rate s̄ is much higher than the centralized
one r̄ due to the selfishness. As a result, from (13) and (18),
we can see that, as long as there is more than one user, each
user’s expected profit with centralized control is higher than
that of the non-cooperative results.

Further, the non-cooperative strategy s̄ is a static Nash
equilibrium, which implies that no user has the deviation
incentive. On the other hand, although centralized strategy
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r̄ achieves much better outcomes, it provides the selfish
users’ deviation incentives. If user i deviates from (17) by
transmitting at a higher rate, while others’ transmission rates
remain the same, from (10) and (18) this deviating user gets
the profit

πi = {A − B[
(N − 1)A

2BN
+ λi]}λi − c0. (19)

By differentiating λi, if N > 1, we have

∂πi

∂λi
|r̄=

(N − 1)A
2N

> 0. (20)

Thus, the deviating user can have a higher profit. However,
the greediness of users will make them all deviate and
eventually lead to the non-cooperative scenario. Since it is
difficult and costly to implement the centralized control in
many network settings, our goal is to construct a distributed
rate control mechanism for wireless networks to enforce the
users’ cooperation with each other and achieve a better per-
formance. The Cartel Maintenance repeated game framework
discussed in the previous sections can be exploited to solve
the above problem by introducing threat of punishment on
non-cooperation behaviors.

Specifically, the users’ expected profit is obtained by putting
the profit for one stage indicated by (9) into (2). For the system
model discussed in the previous section, by using the proposed
framework, we then use the trigger-punishment game rule
to derive the optimal solution for cooperation enforcement.
At the beginning, all users are in a cooperative period with
cooperative rate λ̄. This can be calculated by letting the access
point announce some information such as the number of users
once. Then they locally monitor the realization of successful
transmission probability P̂t at time t. If the probability is
higher than some threshold P ∗, it means that all users probably
transmit at the cooperative operating rate. On the other hand,
if the probability drops lower than the threshold, it means that
some users may cheat by transmitting at a higher rate. Conse-
quently, the other users will play punishment by transmitting
non-cooperatively according to (12) for a period of T − 1.
After the punishment period, they will come back to play the
cooperation again.

It’s worth mentioning that the successful transmission prob-
ability is determined by two factors: the users’ transmission
rates and the wireless channel condition from the access point
to the destination. It is possible that all users act cooperatively
but the probability is still under the threshold because of a low
channel realization. Under this situation, the users will play
the non-cooperative phase, because they cannot tell if the low
successful transmission probability is caused by the deviations
or the bad channels. This phenomenon is called “false pricing
war” in the economy literature. Such phenomenon affects
the system performance, which is the expense for distributed
implementation. We will show this expense in the simulation
results.

The remaining problem is how to find the optimal values of
the cooperative rate λ̄, threshold P ∗ and punishment duration

T . From (3), the expected profit of user i is given by

Vi(λ̄) = πi(λ̄) + Pr{P̂ ≥ P ∗}βVi(λ̄)

+Pr{P̂ < P ∗}
(

T−1∑
τ=1

βτπi(s) + βT Vi(λ̄)

)
, (21)

where the first term at the RHS is the current expected value,
the second term is the expected value at the next time slot
with cooperation, and the third term is the expected value at
the next time slot with non-cooperation. Then we can rewrite
(21) as:

Vi(λ̄) =
πi(s)
1 − β

+
π(λ̄) − π(s)

1 − β + (β − βT )F (P ∗/P (Λ))
, (22)

where F is CDF of θ. In order to achieve the NEP, an
equilibrium transmission rate vector λ̄∗ can be achieved by
solving

Vi(λ̄∗) = max{Vi(λ̄)|λj = λ∗
j for j 	= i, and λi ≥ 0}. (23)

The above maximization can be further solved from (22) by
using the first-order condition as

∂Vi(λ̄)
∂λi

= [1 − β + (β − βT )F (P ∗/P (Λ∗))]πi
i(λ̄

∗) +

(β − βT )[P ∗P ′(Λ∗)/P (Λ∗)2]f(P ∗/P (Λ∗))
[πi(λ̄∗) − πi(s̄)] = 0,∀i, (24)

where πi
i(λ̄) = ∂πi(λ̄)/∂λi, P ′(Λ) = dP (Λ)/dΛ and let

φ∗ = P ∗/P (Λ∗). It is obvious that the optimal packet rates
satisfying (24) indicates Nash equilibria for every stage in the
repeated game.

Before we derive the optimal strategies, we discuss the
public strategy and perfect public equilibrium first.

Proposition 1: The optimal strategy of the trigger-
punishment algorithm is a public strategy.

Proof: The optimal strategy of the trigger-punishment
algorithm consists of λ∗ in the cooperation phases and s in
the punishment phases for every user. In our repeated game,
the public history ht is the observation of P̂t in the previous
stages, which can be defined as ht = [P̂1, P̂2, ..., P̂t−1]T. The
private history zt

i refers to each user’s previous outcomes, i.e.,
zt
i = [π1

i (σ1
i ), π2

i (σ2
i ), ..., πt−1

i (σt−1
i )]T, where στ

i indicates
the ith user’s strategy at time τ . From the trigger-punishment
algorithm in IV.B and (22), the optimal strategy only depends
on the public history ht, i.e., σt

i(h
t, zt

i) = σt
i(h

t, ẑt
i) for all t.

Therefore, the optimal strategy is a public strategy.
Proposition 2: The optimal strategy of the trigger-

punishment algorithm is a perfect public equilibrium.
Proof: : The optimal strategy is proved to be a public

strategy in the above proposition. Then, we need to show
that for each period t and history ht, the optimal strategy on
current stage yields a Nash equilibrium from that period on. In
our problem, the optimal repeated-game strategy is to switch
between the cooperation phase strategy λ∗ and the punishment
phase strategy s. As λ∗ is the solution of (24), it is a Nash
equilibrium for (21). Moreover, the punishment strategy s is
proved to be a Nash equilibrium in proposition 1. Thus, we
conclude the optimal strategy is a perfect public equilibrium.



HAN et al.: A CARTEL MAINTENANCE FRAMEWORK TO ENFORCE COOPERATION IN WIRELESS NETWORKS WITH SELFISH USERS 1895

Next, in order to further understand the first-order condi-
tions in (24), we introduce the following propositions.

Proposition 3: For any strictly concave profit function, the
non-cooperative output vector s̄ is an equilibrium for any P ∗

and T , i.e., the noncooperative outcome of a signal stage game
is a Nash equilibrium.

Proof: Considering s̄ is the optimal rate vector for the
optimization problem in (11), πi

i(s̄) = 0 for i = 1, ..., N .
Taking the second derivative of Vi(λ̄) in (22) with respect to
λi and letting λ̄ = s̄, we obtain

∂2Vi(s̄)
∂λ2

i

=
∂2πi(s̄)

∂λ2
i

/[1 − β + (β − βT )F ]2,∀i. (25)

From (10), we have ∂2πi(λ̄)/∂λ2
i < 0, which indicates the

concavity of the profit function πi(λ̄). Further, the concavity
of the profit function implies concavity of the value function
Vi(λ̄) at s̄ by (25). Therefore, the non-cooperative output
vector s̄ is an equilibrium solving (23).

From the above proposition, we can see that the problems
are not whether or not the equilibria exist, but whether, among
the existing equilibria, there is one which yields the best profits
of users. Basically, this proposition motivates the following
deriving calculus. Specifically, we need to select the values
of P ∗ and T to maximize the expected profit for each user,
which in turn implicitly determine the optimal λ̄ by (24).

Proposition 4: If users are homogenous, all users will pro-
duce exactly the same transmission rate at cooperative periods,
i.e., under symmetry assumption, λi = λj ,∀i, j.

Proof: If there exist positive λ∗
k and λ∗

l for some k and
l, we can rewrite (24) as

απi
i(λ̄

∗) + γ[πi(λ̄∗) − πi(s̄)] = 0, for i = k, l, (26)

where α = 1−β +(β −βT )F and γ = (β −βT )fP ∗P ′/P 2.
Note α > 0 (since 0 < β < 1) and γ < 0 (since P ′ < 0).
From (10), for i = k, l, we have

πi
i(λ̄

∗) = A − BΛ∗ − Bλ∗
i , (27)

πi(λ̄∗) − πi(s̄) = λ∗
i (A − BΛ∗) − A2/[B(N + 1)2]. (28)

By subtracting (26) for user k from that of user l and using
(27) and (28), we are able to obtain

[αB − γ(A − BΛ∗)](λ∗
k − λ∗

l ) = 0. (29)

Since (A − BΛ∗) > 0, α > 0, γ < 0 and λ∗
k and λ∗

l are
positive, (29) can be satisfied if and only if λ∗

k = λ∗
l .

From Proposition 2 which states the symmetry, we can
denote the optimal transmission rate in cooperative periods
for each user by λ∗. Then the total arriving rate Λ∗ = Nλ∗.
The first-order necessary condition (24) can be rewritten as

[1 − β + (β − βT )F (φ∗)][A − (N + 1)Bλ∗] = (β − βT )

f(φ∗)[
P ∗b

(a − Nbλ∗)2
][λ∗(A − NBλ∗) − A2

B(N + 1)2
]. (30)

Proposition 5: If an equilibrium characterized by λ̄∗, P ∗,
and T satisfies (24), λi ∈ (s/N, s], ∀i.

Proof: From (22), we know that Vi(λ̄) ≥ Vi(s̄) if
and only if πi(λ̄) ≥ πi(s̄). Considering the symmetric linear
structure, we have

λ(A − NBλ) − c0 ≥ A2/(B(N + 1)2) − c0, (31)

where λi = λ for i = 1, ..., N . Further, from (31), we obtain
the range of transmission rate as

A/(N(N + 1)B) ≤ λ ≤ A/((N + 1)B), (32)

or
s/N ≤ λ ≤ s. (33)

Moreover, it can be shown that πi
i(s̄/N) > 0 and πi(s̄/N) =

πi(s̄). Thus, V i
i (s̄/N) > 0 for all i. Therefore, s̄/N itself is

not an equilibrium.
Based on the above propositions, we will develop the

optimal values of λ̄, P ∗, and T in the following part. The
equilibrium value of user i is Vi(λ̄(P ∗, T );P ∗, T ). Since
for each P ∗ and T , from (30), we can calculate the Nash
equilibrium λ̄∗(P ∗, T ), which is a function of the trigger price
P ∗ and T . Therefore, the optimal problem becomes

max
P∗,T

V ∗
i (P ∗, T ), i = 1, ..., N, (34)

Since we assume all users have the same utility function, these
optimal values are the same to all users. In order to obtain
the optimal values of P ∗ and T , the first-order necessary
conditions should be satisfied as

∂V ∗
i

∂P ∗ = 0, i = 1, ..., N, (35)

and
∂V ∗

i

∂T
= 0, i = 1, ..., N. (36)

Considering the symmetric property and ∂Vi(λ̄
∗)

∂λi
= 0, for j 	=

i, (35) and (36) can be written as

N∑
j=1

∂Vi

∂λj

∂λ∗
j

∂P ∗ +
∂Vi

∂P ∗ = (N − 1)
∂Vi

∂λj

∂λ∗
j

∂P ∗ +
∂Vi

∂P ∗ = 0,

(37)
and

N∑
j=1

∂Vi

∂λj

∂λ∗
j

∂T
+

∂Vi

∂T
= (N − 1)

∂Vi

∂λj

∂λ∗
j

∂T
+

∂Vi

∂T
= 0. (38)

Before solving (37) and (38), the following differentials can
be calculated from (22) as

∂Vi(λ̄∗)
∂λj

=
−(A − NBλ∗)

[1 − β + (β − βT )F (φ∗)]
, for j 	= i, (39)

∂Vi(λ̄∗)
∂T

=
P̃ 2[A − (N + 1)Bλ∗]βT ln βF (φ∗)

(β − βT )f [1 − β + (β − βT )F (φ∗)]P ∗b
, (40)

∂Vi(λ̄∗)
∂P ∗ =

−P̃ [A − (N + 1)Bλ∗]
P ∗b[1 − β + (β − βT )F (φ∗)]

, (41)

∂λ∗

∂P ∗ =
P̃ [A − (N + 1)Bλ∗] − b � η

P ∗bK
, (42)

and

∂λ∗

∂T
=

βT ln β[P ∗b � f(φ∗) − F (φ∗)P̃ 2(A − (N + 1)Bλ∗)]
P ∗f(φ∗)b(β − βT )K

,

(43)
where λ∗

j = λ∗,∀j, P̃ = P (Nλ∗) = a−Nbλ∗, � = πi(λ̄∗)−
πi(s̄), and

η = 1 +
f ′(P ∗/P̃ )
f(P ∗/P̃ )

P ∗

P̃
, (44)
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and

K =
B � (N + 1)

A − (N + 1)Bλ∗+
bN � (η + 1)

P̃
−(N−1)(A−NBλ∗).

(45)
By substituting (39), (41), and (42) into (37), we have

λ∗ =
A

2NB

(
N + η + (N + 1)μa/A

N + 1 + η

)
. (46)

Substituting (39), (40), and (43) into (38) and using (30) and
(46), we get that P ∗ can be calculated by

f(φ∗)
F (φ∗)

φ∗ − f ′(φ∗)
f(φ∗)

φ∗ = 1. (47)

Thus,

η∗ =
f(φ∗)
F (φ∗)

φ∗. (48)

Putting η∗ into (46), the optimal transmission rate for each
user is

λ∗ =
A

2NB

(
N + η∗ + (N + 1)μa/A

N + 1 + η∗

)
, (49)

where η∗ > 0, λ∗ > s/N from Proposition 3. Also, λ∗ ≤ s
yields η∗ ≥ η0, where

η0 =
(N + 1)[(N + 1)(μa/A) − N ]

(N − 1)
. (50)

If η∗ < η0, then λ∗ > s, but it has been shown in (11)
that the transmission packet rate s̄ yields a better performance
since it is an equilibrium. Considering λ∗ is a non-increasing
function of η∗, the optimal transmission packet rate for each
user is determined by

λ∗ =

{
A

2BN (N+η∗+(N+1)(μa/A)
N+1+η∗ ), if η∗ > η0,

s, otherwise.
(51)

Then, we further explore the properties of the cooperation rate
λ∗ obtained above.

Further, λ∗ satisfies the first-order conditions for P ∗ and
T , which ensures that our cooperation strategy is the optimal
PPE based on our game rule. Finally, the optimal value of T ,
say T ∗, can be calculated by substituting the values of P ∗ and
λ∗ acquired from (47) and (49) into the first-order necessary
condition (30), which can be represented as follows

T ∗ =
1

ln β
(52)

ln{β − (1 − β)[A − (N + 1)Bλ∗]
f(φ∗)(bφ∗/P (λ∗))Δ − F (φ∗)[A − (N + 1)Bλ∗]

}

where Δ = πi(λ̄∗)−πi(s̄). So the optimal parameters can be
obtained by (47), (51), and (52).

V. SIMULATION RESULTS

In this section, simulations are carried out to analyze the
effectiveness of the proposed scheme. We assume the number
of users is 10 if it is not specified in the simulation. The
discounting factor β is selected to ensure the Fork Theorem
is held. β has to be sufficiently large to have solutions for
(47), (51), and (52). In our case, β = 0.9999. The slotted
1-persistent CSMA [16][17] is employed as the multi-access

protocol for distributed users to the access point. The linear
approximation of the successful transmission probability per
packet is shown in Figure 2. Here the ratio of the one-
way propagation delay to packet transmission time is 0.01
and the approximation parameters a and b in (6) are 1.0368
and 0.4804, respectively. As the figure shows, the linear
approximation is good within a reasonable working range.

The wireless channel between the access point and the
destination is modeled as a shadowing fading channel2. The
path loss variation caused by the shadowing effects can be
modeled using a log-normal variable  [18]. Let dB =
10 log10 , where dB is a zero-mean normal variable. We
consider the quadrature phase shift keying (QPSK) modulation
and employ the approximation of the corresponding bit error
rate in [20]. The successful reception probability θ can be
approximated as

θ = 1 − κ1 exp (
−κ2γ

2k − 1
), (53)

where κ1 and κ2 are 0.2 and 1.6, respectively, γ is the signal
to noise ratio (SNR) and k = 2, indicating QPSK modulation.
Further, (53) can be rewritten as

θ = 1 − κ1 exp (
−κ2e

ln10
10 ·�dBγ

2k − 1
), (54)

We can see from (54) that θ is a function of another random
variable dB . Considering dB is a zero-mean normal variable,
the distribution f of θ can be obtained as [19]

f(θ) =

⎧⎨
⎩ exp (

− ln2(
ln(κ1/(1−θ))

γ′ )

2σ′2 )
√

2πσ′2(1−θ) ln(cκ1/(1−θ))
, 1 − κ1 < θ < 1;

0, otherwise.
(55)

where γ′ = κ2·γ
2k−1

and σ′2 =
(

ln 10
10

)2
σ2. The corresponding

CDF F and first derivative of PDF are shown as follows.

F (θ) =

{
0, θ ≤ 1 − κ1;
1 − G

(
ln(ln(κ1/(1−θ))/γ′)

σ′

)
, 1 − κ1 < θ < 1,

(56)
and

f ′(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(θ)
(1−θ) ln((1−θ)/κ1)

(
κ1 ·

ln(
ln(κ1/(1−θ))

γ′ )

σ′2

+ ln(1−θ
κ1

) + κ1

)
, 1 − κ1 < θ < 1;

0, otherwise,
(57)

where function G(x) is the CDF function of a zero-mean
normal variable with unit variance.

In Figure 3, we compare the overall profits of the non-
cooperation scheme, centralized scheme, and repeated game
scheme versus different variances of the log-normal shadow-
ing. The performance is evaluated for two SNR values, 15dB
and 10dB, respectively. Here c0 = 0.001 and c1 = 0.2. It
can be seen from Figure 3 that the proposed repeated game
scheme can achieve much better performance than the non-
cooperative scheme. As the log-normal variance increases, the
performance of the proposed scheme decreases accordingly.
It is because the successful transmission probability depends
not only on the system loads but also on the variations of

2Other fading models can be studied in a similar way
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Fig. 3. System throughput of the non-cooperation, centralized, and repeated
game schemes.
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Fig. 4. Successful probability and trigger probability for different schemes.

channels. As the users act only according to their obser-
vations of the successful probabilities, they are not able to
distinguish these two factors of the competitions among users
or the channel variations. Consequently, they will consider
a low realization of channel gain as a result of possible
cheating actions of the other users and employ punishment.
The performance loss compared to the centralized scheme is
the expense for the distributed implementation, while there are
still large performance gains compared to the non-cooperative
scheme. Noting that the mean value of θ changes slightly
with the variance of log-normal shadowing, the expected profit
of non-cooperative and centralized schemes remains almost
unchanged. Considering the channel variations also depend
on the SNR at the receiving destination, we show the system
throughput for different SNR values. The proposed scheme
achieves higher throughput for higher SNR values, since the
successful transmission probability is high when SNR is high.

In Figure 4, we compare the successful probability of
transmitting per packet for different schemes. We also show
the trigger threshold of the successful probability. Note that the
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Fig. 5. Punishment for deviation.

simulation setups of this figure are the same as those of Figure
3. We can see from Figure 4 that larger channel variations
result in a lower trigger threshold and a larger gap between
the trigger threshold and the successful probability, which
indicates that the users need to tolerate certain variations of
their observations to prevent over-punishment as the channel
variations increase.

In Figure 5, the punishment procedure of our scheme is
shown to enforce the greedy user to cooperate. Here the
variance of the log-normal shadowing is 10dB and the SNR
is 15dB. Let c0 and c1 be 0.001 and 0.2, respectively. We
assume one user deviates from the optimal λ∗ and transmits
at a higher packet rate λε, while the others transmit at λ∗.
We show the profit of this deviating user over time. For
comparison, we also show the average profits when no user
deviates and when all users play non-cooperation. Considering
the cheating user can also observe the successful transmission
probability, it will transmit at s if others play punishment.
We can see that the deviated user’s utility, which corresponds
to the top of the bars, is greater than that of the proposed
scheme. However, punishment phases will be triggered due
to the cheating behavior. Thus, the deviated user’s current
cheating gain will soon be outweighed by future punishments.
The utility of the deviated user during punishment period
corresponds to the bottom of the bars. In a long-run scenario,
the average profit without deviating user is greater than that
with the deviating user. Such facts deprive the greedy user
of the cheating incentive. Consequently, the greedy users are
enforced to cooperate with each other by the punishment
threat. It is worthy mentioning that the utility of the punishing
users during the punishment phase is low. But this short term
utility loss can ensure no deviation. As a result, the utility in
the cooperative phase can be enhanced, and

Considering the cost of transmission, Figure 6 shows the
overall profit as a function of the cost coefficient c1. Here,
the received SNR and σ2 are 15dB and 10dB, respectively.
Note that c1 indicates the unit cost of transmitting each
packet and let c0 be 0.001. By employing larger c1, the users
intend to transmit at a lower rate to reduce their costs and
hence maximize their profits. We can see that our proposed
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Fig. 6. Overall profit as a function of the cost coefficient c1.
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Fig. 7. Overall profit as a function of the received SNR.

scheme achieves much higher profits than the non-cooperation
scheme for different cost coefficients and performs close to the
centralized scheme.

In Figure 7, we show the overall profit as a function
of the received SNR. Here, c1 and σ2 are set as 0.2 and
10dB, respectively. Since the mean value of θ increases with
the increment of the received SNR, the overall profits of
the non-cooperation and centralized schemes become higher
accordingly. As for the repeated game scheme, there are
fewer punishments triggered due to the low realizations of the
log-normal shadowing (false pricing war) for higher SNR’s.
Hence, the performance of the proposed scheme approaches
that of the centralized scheme with the increase of the received
SNR.

In Figure 8, the overall profit is shown as a function of
the number of users. Note that c1, σ2 and SNR are 0.3,
10dB, and 15dB, respectively. From the figure, we can see that
the overall profit decreases as the number of users increases.
It is not only because the competitions for the resource
become more severe for more users, but also because more
punishments are required to remove the deviation incentive.
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Fig. 8. Overall profit as a function of the number of users.

Moreover, considering the extreme cases, when the number of
users approaches 1, the performance of our scheme is close
to the that of the centralized scheme; when the number of
users becomes very large, the performance of the scheme
approaches that of the non-cooperative scheme. From Figure
6, 7, and 8, the gaps between the centralized scheme and the
proposed scheme are due to possible “false wars” triggered
by factors such as the poor wireless channel. This gap is the
cost of distributed implementation.

the average utility can be improved.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we develop a Cartel Maintenance repeated
game framework to enhance collaboration among greedy users
and improve the performances. In the traditional static game,
the users’ only concern is the current value of the utility
function. These users are unable to consider the consequences
of their actions in future. So the greediness can reduce the
overall performances. In order to achieve cooperation among
users, we construct the Cartel Maintenance repeated game
framework. The benefits of cheating will be punished by the
cartel formed by the other users, so that there is no incentive
for any user to defect. In the proposed framework, we also
develop an optimal trigger punishment game rule with the
theoretical analysis.

The proposed framework is further employed to a wireless
network in which users have their own authorities and central-
ized control is difficulty to be implemented. Each user controls
its packet transmission rate so as to compete for the wireless
radio resources. The proposed framework enforces cooperation
among the greedy users for packet transmission in a distrib-
uted manner. As the simulation shows, the proposed scheme
performs close to the centralized scheme and much better than
the non-cooperative scheme, since enough punishment threat
is maintained to prevent the selfish users from deviating from
cooperation.
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