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Abstract—In downlink of code-division multiple-access (CDMA)
networks, the maximal number of real-time calls can be increased
by smoothly increasing the end-to-end distortions. In this paper, a
cross-layer optimization system is developed to control each user’s
distortion by adapting source coding rates, channel coding rates,
and transmit powers. In addition, the channel-induced distortion
is controlled to be only a small proportion of the total end-to-end
distortion, such that the subjective quality of the received signal is
high. The formulated problem is to reduce the overall end-to-end
distortion in downlink single-cell systems, under the constraints of
users’ maximal acceptable distortions and maximal total transmit
power from the base station. To solve this problem, a near-optimal
algorithm is constructed to allocate resources. A performance
upper bound is developed and compared with the performance
of the proposed algorithm. A dynamic system considering speech
activities and different offered loads is also analyzed. From the
simulation results, the proposed algorithm significantly reduces
distortion and the necessary maximal transmit power when the
number of users is large, compared with the traditional voice over
CDMA schemes.

Index Terms—Channel coding, communication networks, com-
munication protocols, resource management, speech communica-
tion.

I. INTRODUCTION

I N CODE-DIVISION multiple-access (CDMA) systems,
all users transmit simultaneously over the same frequency

band using different spread-spectrum codes. Because perfect
separation between codes is not achievable for real wireless
channels, even for downlink transmission, the capacity and
the maximal number of users are limited by interferences
among codes. Resource allocation, such as rate adaptation and
power control, is an important means to combat interferences,
increase the number of users, and maintain the received signals’
qualities. For speech data employing joint source and channel
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coding, rate adaptation by modifying the source and channel
coding rates can adjust the source encoders’ output qualities
and the protections against channel errors. Consequently, the
reconstructed signals’ qualities can be carefully controlled ac-
cording to channel conditions. In addition, power control can be
used to maintain the received signal-to-interference-plus-noise
ratio (SINR). So the problem is how to increase the system
performance by effectively allocating the resources among
users.

Distortion-based resource allocation is an important research
issue for wireless multimedia transmission. In [1]–[3], a source-
encoding-assisted multiple-access protocol was developed to
selectively drop source packets and increase the system capacity
during congestion. In [4], the problems of resource allocation in
CDMA were studied for different performance goals. In [5], the
overall power was minimized for uplink multicell multimedia
systems. In [6] and [7], the system was optimized by defining
a utility which was maximized by dynamic pricing and coop-
eration between mobiles and base stations. In [8], the problem
was formulated as a constrained optimization problem using
approximations to find a simple solution. In [9], multiple an-
tennas are considered for CDMA multimedia services. There
are few existing works for modeling joint source-channel coding
and power control in wireless networks to fully use the mul-
tiuser diversity. Moreover, most solutions are either based on
nonlinear integer optimization or convex optimization methods
using convex/linear approximations. These solutions have very
high complexity, or the performance highly depends on the ac-
curacy of the approximations. Therefore, it is necessary to de-
velop a simple algorithm with relatively good performance.

From subjective tests using speech sequences, we notice that
channel-induced distortions are subjectively more annoying
than source coder-induced distortions [10], [11]. In contrast to
other joint source and channel coding work, such as [13] and
[14] where the overall end-to-end distortion (source-induced
distortion plus channel-induced distortion) is minimized, the
proposed design goal is to allow the channel-induced distor-
tions to contribute only a small proportion of overall end-to-end
distortions, so as to ensure high subjective reconstructed speech
quality.

In this paper, we construct a distortion management system
for wireless voice communications and develop a near-optimal
resource-allocation algorithm in a power-limited downlink
single-cell CDMA system. The system is optimized to reduce
the overall end-to-end distortion, with the additional constraints
of maximal transmit power from the base station, maximal
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distortion that each user can accept, and subjectively better
reconstruction quality. Because of the nonlinearity, noncon-
vexity, and integer properties of the parameters, the formulated
problem is NP-hard. Inspired by a daily event, we develop a
simple resource-allocation algorithm to manage each user’s
discrete rates and limited transmit power from the base station.
We also develop a tight performance upper bound to evaluate
the proposed algorithm. In addition, we explore a dynamic
system scenario considering speech activities and different
offered loads. From the simulation results, the proposed algo-
rithm significantly reduces the distortions and the necessary
maximal transmit power when the number of users is large,
compared with the traditional voice over CDMA schemes (with
no distortion control). The proposed algorithm has near-optimal
performances, compared with a tight upper bound.

The organization of this paper is as follows. In Section II,
the system model is given. In Section III, the cross-layer system
for voice transmission is described. In Section IV, the problem
is formulated and the proposed algorithm is developed. A tight
performance upper bound is also developed. In Section V, we
evaluate the performance for dynamic systems. In Section VI,
simulations studies are presented. And in Section VII, conclu-
sions are drawn.

II. SYSTEM MODEL

We consider a system with users and total bandwidth
for the downlink of a single-cell CDMA system with a fixed
transmission rate . The system is assumed to be synchronous,
and each user is assigned a unique pseudorandom code within
each cell. Because of the multipath environment, the orthogo-
nality between different codes may not be guaranteed [16], [17].
Each mobile user is subject to intracell interferences from the
other users. Over one bit period, the received signal at the th
mobile is given by

(1)

where is the transmit power from the base station for the th
mobile, is the path loss to the th user, is the th multipath
fading to the th user, is the corresponding delay, is the
transmit bit, is the signature of the th user, and is the
noise plus intercell interference.

A matched filter is applied with sampling at the chip rate. A
Rake receiver is used with finger weights equal to the complex
conjugates of each multipath fading. The sum of multipath
fading powers is assumed to be unity. The mobiles’ thermal
noise plus intercell interference are assumed to be white
Gaussian with the same variance for all users. The SINR of
mobile at the output of Rake receiver is given by

(2)

where is the orthogonality factor which represents the frac-
tion of the received downlink power that is converted by mul-
tipath into the intracell interference. The higher the value, the

more the orthogonality loss. An accurate instant value for is
impossible to obtain in practice. We assume the fading profiles
for all users are the same. In [17], for the independent Rayleigh
fading, the average orthogonality factor is approximated by

(3)

III. SYSTEM DESCRIPTION

Fig. 1 shows the block diagram of the proposed cross-layer
system which is located at the base station. Among users, the
system is optimized to fully use the multiuser diversity and
to manage interferences by controlling different users’ source
rates, channel coding rates, and transmit powers. For each user,
the system is operated in such a way that the distortion due
to channel-induced errors should be a small proportion of the
overall distortion, so that the system will behave according to
the rate-distortion curve of the speech encoder. In doing so, the
system considers the effects on the reconstructed signal quali-
ties, and takes into consideration the subjectively more annoying
nature of channel-induced random errors. For example, when
the channel is bad, there are more transmitted bits assigned to
channel protection and fewer bits for source coding. This re-
duces the channel errors, but increases source-coding distor-
tions. For the reconstructed received voice, this kind of source-
coder-induced distortion is subjectively better compared with
channel-induced distortions, behaves according to the rate-dis-
tortion curve, and can be predictably controlled by the proposed
system. Such a dynamic nature is the main difference of the
proposed scheme from the traditional joint source and channel
coding that minimizes the end-to-end distortion without consid-
ering the subjective quality of reconstructed speech. In the rest
of this section, we discuss two main modules of the proposed
system in detail.

A. Source-Coder Module

In the proposed system, the real-time source encoder has the
key property that the output rate can be externally controlled.
This can be implemented by using either variable-rate or em-
bedded encoders. In the first case, the coder generates one bit
stream for each of the possible encoding rates. Only one of these
will be selected and transmitted based on the rate assignment.
Using embedded encoders presents the advantage that only one
bit stream is generated, making the rate adaptation simply by
dropping as many bits as necessary from the end of the bit
stream, where less important data are located. Although the
“bit dropping mechanism” is exclusive to the embedded stream,
this term is used loosely to represent a reduction in the source
rate, regardless of the particular source encoder implementation.
The source coder is assumed to have the maximal output rate

b/s. The source rate controller has the output rate b/s
, where is the variable channel coding rate and

is the fixed CDMA transmit rate. Then the data streams are
encoded by the channel-coding module. The processing gain for
the CDMA spreader is . Binary phase-shift keying (BPSK)
modulation is applied with power control at the amplifier.
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Fig. 1. Block diagram for the proposed system.

Define as the distortion-rate function of the user’s
source encoder transmitting at rate . In most well-designed
encoders, is a convex and decreasing function. The min-
imum distortion occurs at maximum source rate . Further-
more, the source codec distortion-rate function [23], [24] is ap-
proximated by

(4)

where is the minimal distortion and is a parameter depending
on the encoder. This is a very general form that applies to the
case of Gaussian source with mean squared error (MSE) distor-
tion or when the high-rate approximation holds. In the case of
realistic encoders, we find that (4) constitutes a good and tight
upper bound on the real distortion-rate curve.

B. Variable-Rate Channel-Coder Module

We use channel codecs with adjustable rates, in order to
jointly adjust rates in both source and channel codecs according

to the needs for distortion controls and channel protections. In
this paper, a rate-compatible punctured convolutional (RCPC)
code [12] is applied for channel coding, because of its wide
range of channel-coding rates and simplicity. A family of
RCPC codes is described by the mother code of rate .
The output of the coder is punctured periodically, following
puncture tables. The puncturing period determines the range
of channel-coding rates
between and with different channel error-pro-
tection abilities. Moreover, only one Viterbi receiver is needed
for the RCPC codes with different rates, which reduces the
system complexity.

For simplicity, all transmitted bits are assumed equally impor-
tant for error-protection purposes. Unequal error protection can
be applied in a similar way. Because channel-induced errors are
perceptibly more annoying than source-encoding distortions,
the design goal is that channel-induced errors would account for
less than a small proportion of the overall end-to-end distortion.
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To meet the design goal, the received SINR should be no less
than a targeted SINR. At constant transmission rate, a reduction
in source-encoding rate allows for a decrease in channel-coding
rate, and as a result, increases the channel protection. Thus, the
targeted SINR is also a function of the source-encoding rate, or
equivalently, a function of the channel-coding rate. In the rest of
this subsection, we develop a model for this targeted SINR as a
function of rate subject to the design goal.

In order to develop a relation between channel-coding rate
and targeted SINR, we analyze a uniform scalar quantizer en-
coding a uniform source with a random index assignment as an
example. In order to keep the analysis mathematically tractable,
we only consider two sources of distortions: source encoding
(compression) and channel-induced distortions. We will study
more complicated and practical encoders through the later sim-
ulations. Suppose the input vector , where is the
number of samples for each quantization. The output of the
source encoder has bits which determine the source-encoding
rate. The source-encoder quantizer distortion can be written as

(5)

where is the partition of into disjoint regions, is
the quantized vector with index , and is the probability
density function of . From [23], the source-encoding distortion
of such a quantizer is given by . Define

as the probability that the decoded vector index
is , while the transmitted vector index is . Suppose channel
errors happen randomly and independently with respect to the
source-encoder index. The probability of decoding error is

, which is the same for all . The overall distortion
after the channel decoding at the receiver can be written as

(6)

From [13] and (6), the expected MSE of the uniform scalar
quantizer for a uniform source with a random index assignment
is

(7)

where the second term is the channel-induced distortion which
is defined as .

Define as the proportion of channel-induced distortion over
the overall distortion. In order to implement the design goal

, we need to let the system achieve some targeted
error probability . Obviously, when the system con-
verges. From (7), we can write as

(8)

Next, we briefly analyze the actual error probability for
RCPC codes. is determined by the channel condition, coding
structure, and SINR at the receiver. For the channel model in
(1), with BPSK modulation and Hamming distance , the con-
ditional pairwise error probability conditioned on the fading pa-
rameters in (1) is given by [15]

(9)

where is the SINR. Then the average error probability over
fading channel statistics is given by

(10)

where . When , the above equation can
be simplified as

(11)

From [14], a tighter upper bound for any coded frame lengths
larger than the constraint length is given by

(12)

where is the information frame size, is the number of
branches of the trellis that are in a frame, and the values of
and can be found in [12] and [14].

The system will allocate resources such that the actual bit-
error rate (BER) is the same as the targeted BER, i.e.,

. Since is a function of SINR in (2), and is a func-
tion of in (8), we can get the relation between the SINR and
channel-coding rate. We plot the relation of in decibels versus
channel-coding rate in Fig. 2, for an RCPC code with memory 4,
puncture period 8, where there are 20 information bits per frame,
the transmit rate is 24.4 kb/s, , and . The
curve shows an almost linear relation. This is because (8) is an
exponential form of , and consequently, an exponential form
of channel-coding rate , while (12) is a sum of polynomials
in . Furthermore, through simulations using different config-
urations of RCPC codes and practical source encoders (one of
which is shown in Fig. 2),1 the targeted SINR as a function of
channel-coding rate, when the design goal is achieved, can be
approximated accurately by

(13)

where is the required targeted SINR, and and are fixed
parameters of the error-control coding and . The received SINR
should be no less than this targeted SINR, i.e., .

1Notice that two sets of curves have similar linearity but different values,
because the source coders are different.
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Fig. 2. Required SINR versus RCPC rate with � = 0:03.

IV. REAL-TIME DISTORTION MANAGEMENT

A. Problem Formulation

In practice, the transmit power from the base station is
bounded, because of limitations of the power amplifier and
concerns for co-channel interference to other cells. When the
system is loaded, even with the maximal transmit power, the
system cannot allow every user to operate at their minimal dis-
tortions. Under this condition, it is necessary to have a graceful
distortion control: the users with relatively low distortions, in
bad channel conditions, or generating too much interference
to others, need to sacrifice their performances slightly by
increasing their distortions in a controlled way. By doing so,
the system will use the limited transmit power to reduce the
interferences, optimize the overall system performance, and
increase the total number of users. The problem is to decide
who will be sacrificed and how to minimize the distortions.

In the rest of this paper, we normalize each user’s distortion
with the minimal distortion without channel-induced errors. The
th user’s normalized distortion is denoted as . The goal is

to minimize the overall system distortion, under the constraints
that each user’s distortion is smaller than a maximal accept-
able value , the overall transmit power
from the base station is bounded by the maximal transmit power

, and channel-induced distortion is less than of total dis-
tortion. Define , and as the overall end-to-end distor-
tion, source-induced distortion, and channel-induced distortion
for user , respectively. The problem is formulated as

(14)

subject to
Distortion range
Transmit power

Without loss of generality, all users are assumed to have the
same for simplicity. Here is implicitly constrained by
the combination of (4) and the above distortion-range constraint.

The optimization variables ’s are discrete. The optimization
goal and the constraints in (14) are nonlinear and nonconvex. So
there might be many local minima, and no Lagrangian-based
solution is available in the literature. Moreover, the computa-
tion complexity will grow quickly with the number of users,
if the solutions are based on nonlinear integer programming.
The problem can be reformulated as a knapsack problem [31],
which is known to be NP-hard. In order to implement an efficient
solution with less computational burden in a real-time CDMA
system with a large number of users, it is necessary to develop
a fast algorithm with a relatively good performance.

B. Pizza Party Algorithm

The intuitive idea to develop a fast algorithm comes from a
daily event. For example, in a pizza party with limited avail-
able pizzas, if the number of people is small, everybody should
have enough pieces and there might be some pizzas left. How-
ever, if the number of people is large and there is no way that
everybody will be well satisfied, it is necessary to decide how
to allocate the pizzas such that overall, people’s satisfactions
are high. The problem is similar to (14) in that represents
a user’s dissatisfaction level and is similar to the overall
amount of pizzas. A person will increase his/her satisfaction by
getting more pizzas, like a user will decrease its distortion by
consuming more power. A possible solution for pizza allocation
is to first let everybody eat the minimal piece. (We assume there
are enough pizzas for this requirement.) Then, for example, we
will let kids eat one more slice of pizza, because they can eat less
pizza and get satisfied more easily. If there are any pizzas left,
we will give one slice per time to the people who can be satisfied
most easily then. (Probably elder people will get pizzas next,
then ladies, and finally young gentlemen.) By allocating pizzas
in such a way, we can use the limited pizzas to let the overall
satisfaction be high. We believe this approach can also be ap-
plied to solve the proposed problem in (14) with high efficiency
and optimality. In the rest of this section, we will quantify the
pizza party allocation idea using mathematical representations.

The criterion for pizza party allocation is to find the person
who can eat less while becoming satisfied easily. Similarly, we
need to find the user who can demand less power while reducing
its distortion most. To quantify this, we need to find the differ-
ential of the overall transmit power with respect to each
user’s distortion. Since the constraint is satisfied
by the approximation in (13), the optimization goal in (14) is
equal to minimize . From (2), the overall power that
satisfies can be written in a matrix form [5]

(15)

where is an identity matrix,
with , and

if
if
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where

(16)

If the processing gain is large, i.e., is large, is a small
number. Since is also a small number. A
simple approximation for is thus given by

(17)

The gradient of the overall transmit power with respect to
each user’s source-encoding distortion can be written as a func-
tion of the following three differentials:

(18)

where

(19)

(20)

(21)

So the final gradient can be written as

(22)

where is a negative constant. The absolute value of is de-
termined by three factors: the current rates (the factor before the
parentheses); the channel gain (the first term inside the paren-
theses); and the interferences to others (the second term inside
the parentheses).

Similar to the pizza allocation method we mentioned above,
we allocate the rates and powers in the following way. If
is large enough for every user in the cell to have the minimal
distortion, is assigned to everybody and there might be
some overall transmit power left.

If is not large enough for everybody to have the min-
imal distortion, will be initially assigned. If the
power is still not enough, it means that there is not enough power
to satisfy the group’s minimal needs and an outage is reported.
If there is some power left, we will see who can reduce its dis-
tortion more and consume less transmit power by determining
the absolute value of the gradient . For such a selected user,
from (22), its current rate is low (i.e., the distortion is high), its
channel gain is good, or its interferences to others are small.
Consequently, this user deserves a smaller distortion. In other
words, this user can reduce its end-to-end distortion while cre-
ating the smallest strain on the available resources. So a higher

TABLE I
PIZZA PARTY ALGORITHM

source rate (higher ) is assigned to this user to let the distor-
tion become small. Then the gradient is estimated and the rate
is assigned again. This process is continued until the power is
used up; i.e., no user can increase its rate without making the
overall power in the base station greater than . By doing
this, the distortions are reduced by consuming the minimal re-
sources step by step.

On the whole, the proposed algorithm is given in Table I.
As mentioned before, to solve the NP-hard problem in (14) by
means of traditional methods, such as the branch-and-bound
algorithm [31], the complexity grows fast with the number of
users increasing. In the proposed algorithm, the complexity
lies in calculating the overall transmit power in (17) and com-
puting the gradients in (22). The complexity is , and so
the proposed algorithm can be easily implemented in practice.
In addition, we can apply the average orthogonality factor in
(3) to all in the pizza party algorithm, so that there is no need
to estimate the real-time orthogonality factor, which is a com-
plex task.

C. Performance Upper Bound

In order to evaluate the optimality of the proposed algorithm,
we provide a performance upper bound. This bound has a better
result than the optimal solution of (23) and is computable. How-
ever, it cannot be implemented in practice, and can only serve to
compare with the proposed scheme. If the proposed algorithm
has a similar performance to that of the bound, we can conclude
that the proposed algorithm is at least near-optimal and the per-
formance upper bound is also tight. To obtain the upper bound,
the channel-coding rate is relieved to be a continuous variable,
so that the problem in (14) becomes a nonlinear constrained
problem and has a better performance than the optimal solution
of (23). Then some nonlinear optimization methods can be used
to solve it. The modified problem definition with the continuous
relaxation of (14) can be expressed as

subject to (23)

where and are the minimal/maximal channel-coding
rate that generates the maximal/minimal distortion, respec-
tively. From (16) and (17), the power constraint is a nonlinear
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function of . is equal to the maximal RCPC coding rate
which generates the minimal distortion, and

(24)

which generates the maximal distortion .
In order to solve (23), a barrier method combined with the

Newton method [18] is applied. The approach for the barrier
method is to add barrier functions to the optimization goal such
that the constrained optimization problem becomes the uncon-
strained optimization problem. The sum of optimization goal
and barrier function approaches infinity if the constraints are
not satisfied. On the other hand, if the constraint is satisfied, the
barrier function does not affect the optimization goal. The bar-
rier function is commonly approximated by logarithmic barrier
functions [18]. In the proposed problem, the barrier function is
composed of three elements, and is given by

(25)

where is for minimal channel-coding rate, is for maximal
channel-coding rate, and is for maximal overall power. They
have the forms of

otherwise
(26)

otherwise
(27)

otherwise.
(28)

The basic idea of the barrier-method approach is to solve
the constrained optimization problem by a sequence of uncon-
strained problems. First, an unconstrained optimization problem
is formulated as the optimization goal plus the barrier func-
tion. The solution can be found by a standard solution, such as
the Newton method [18]. Then, in the next iteration, the bar-
rier function is modified such that it is closer to the real con-
straints. The new unconstrained optimization problem is formed
using this modified barrier function. The unconstrained opti-
mization is initialized by the results in the previous iteration.
This sequence of optimizations is continued until convergence.
In each iteration, rewrite (23) as the unconstrained optimization
problem as

(29)

where is a value that increases from iteration to iteration.
The barrier functions become more and more like the ideal
barrier function as increases. So the solution is more and
more optimal. Define ; the algorithm is given
in Table II, where is the iteration number for the barrier
method, determines the accuracy of the proposed algorithm,

is the optimal step for the Newton method, is the initial
value for the barrier function whose value determines the

TABLE II
BARRIER METHOD FOR PERFORMANCE BOUND

convergence rate of the first iteration, and is the constant
that multiplies in each iteration.

The performance bound algorithm in Table II cannot be im-
plemented in practice. This is because the rate is assumed to be
continuous, which is not true in a real channel codec. In addition,
the complexity of this algorithm is much higher than the pro-
posed algorithm in Table I. The complexity lies in that in order to
find the solution, one iteration is needed for the Newton method
and another iteration is needed for the barrier method. More-
over, because the problem in (23) is nonlinear and nonconvex,
there might be many local optima. Multiple initializations or
even annealing are necessary to find the global optimum. Never-
theless, the algorithm in Table II can be used to compare the per-
formance of the proposed fast algorithm in Table I. Because of
the continuous channel-rate assumption, the performance bound
has a better performance than the real optimal solution in (14),
while the real optimal solution has a better performance than
the proposed algorithm. In the simulations in Section VI, we
will show that the proposed algorithm has similar performances
to the performance bound. So not only is the proposed greedy
algorithm near-optimal, but also, the performance upper bound
is tight.

V. DYNAMIC SYSTEM

In the previous sections, the resource-allocation algorithm is
developed to reduce the overall distortions with a fixed number
of users in the system. In this section, the dynamic traffic case
is considered, where the number of admitted calls changes and
the different speech activities are considered. Finally, a Monte
Carlo method is constructed to analyze the system performance.

We assume that users arrive at random following a Poisson
distribution, with average arrival rate . The holding time for
each call is modeled as an exponential random variable with
parameter . The number of admissible users is bounded by
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TABLE III
MONTE CARLO METHOD FOR DYNAMIC SYSTEM

the processing gain. In order to determine the maximal number
of admitted users , we use the average distortion per call

. Specifically, the call admission policy is that is
selected such that , where is a given threshold.
Moreover, is less than or equal to the processing gain,
which is the maximal number of available spreading codes.

Suppose is the number of users in the system. From [19],
is a truncated Poisson random variable, where

. For , the stationary probability that the
system has ongoing users is given by

(30)

By the Poisson arrivals see time averages (PASTA) property
[19], the blocking probability is given by .

From the previous section, the overall distortion with a fixed
number of users is known, i.e., . By using the
distribution in (30), the average distortion per call is expressed
as

(31)

In addition to considering that the number of users changes
over time, we also take into account that the level of speech ac-
tivity changes during a conversation. For example, it has been
observed that silence periods account for approximately 65%
of all time of a two-way communication [21]. Based, on this
observation, in this paper, we will model speech as a two-state
Markov chain [22]. In this model, one state will represent the si-
lence status, and the other, a talk spurt. The transition probability
from talk state to silence state is , and the transition probability
from silence state to talk state is . The transition probability

and , where is the frame du-
ration, is the average talk spurt duration, and is the average
silence duration.

Because each state represents different levels of speech
activity (or energy), the bit rate necessary during encoding to
achieve some level of distortion also differs. During a silence
period, it is not efficient to encode speech at high bit rates.
Moreover, those users in a period of silence could be assigned
the lowest possible amount of resources without affecting the
perceptual quality. At the same time, this assignment would
reduce the overall load on the network. Therefore, we adapted
the algorithm described in the previous sections to use these
observations to increase efficiency. In the improved algorithm,
we only adapt those users in a talk spurt, while those in a silence
period are always assigned with the minimum source-encoding
rate.

As mentioned in the previous subsection, it is impossible to
find an analytical expression for . In order to eval-
uate the system performance, a Monte Carlo method is shown in
Table III. The simulation is run for a sufficiently large number
of runs so that stable performance results are obtained with suf-
ficient accuracy.

VI. SIMULATION RESULTS

To simulate the real-time wireless voice communications, we
use 18 sequences, both male and female speakers, from the
National Institute of Standards and Technology (NIST) speech
corpus [25]. These sequences are encoded using the GSM adap-
tive multirate (AMR) narrowband (NB) speech encoder [26].
This encoder operates with 20 ms frames, 5 ms lookahead, and
includes an error-concealment mode. Of the eight possible en-
coding rates, 12.2, 10.2, 7.95, 7.4, 6.7, 5.9, 5.15 and 4.75 kb/s,
the six highest ones are used.

To determine the end-to-end distortion, we choose a percep-
tually weighted log-spectral distortion measure [28] calculated
by numerical approximation of the function

(32)

where and are the fast Fourier transform (FFT)-ap-
proximated spectra of the original and the reconstructed speech
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Fig. 3. Normalized distortion versus number of users.

frames, and is the subjective sensitivity weighting func-
tion [27]

(33)

This distortion is measured on a frame-by-frame basis and then
averaged over all frames, including outliers to further capture
the effects of channel errors. This measurement is chosen not
only because of its good mathematical properties, but also be-
cause of its good correspondence to subjective measures.2 To
report results, we use a normalized distortion measure, which
is computed as the ratio of the spectral distortions to that of the
speech sequence encoded at the highest rate ( kb/s)
without channel noise.

Also, for the proposed system, BPSK modulation is assumed.
For the RCPC channel codec, a memory 4, puncturing period
8, mother code rate-1/4 RCPC code in [12] is decoded with a
soft Viterbi decoder. The total bandwidth is 1.5616 MHz.
The channel is assumed to be affected by normalized Rayleigh
fading (average power loss equal to 1), and normalized path loss
(with propagation constants assumed equal to 1) with a path-loss
exponent of 3. The cell radius is 500 m. Background noise level
was assumed equal to mW. . Processing
gain is 64. The transmit rate is 24.4 kb/s. We apply an average
orthogonal factor equal to 0.9, as shown in [32].

Fig. 2 shows the targeted SINR, in scale, as a function
of the RCPC channel-encoding rate, where the channel-induced
distortion is less than 3% of that of the end-to-end distortion, i.e.,

. The figure shows the different operation modes for
the GSM-AMR NB coder in the proposed system. In order to
achieve the design goal, the required SINR is a function of the
RCPC channel-coding rate. As we can see from the figure, the
approximation in (13) is a good approximation for the qualita-
tive behavior of the practical voice encoder, as well. Notice that
the curve of the GSM-AMR NB coder simulations differs from

2It is worthy of mention that the encoders in transmitters still encode ac-
cording to the distortion defined in (5).

that of the analysis results in Section II. This quantitative dif-
ference is due to, in part, not including modeling and error-con-
cealment distortion in the analysis results. Nevertheless, both
results suggest that the linear approximation in log scale is a
good choice for the relation in (13).

For comparison, we set up a traditional CDMA system [29]
which shares the same configurations as the proposed scheme,
but operates without changing mode, i.e., all users operate in
the mode with 12.2 kb/s source-coding rate and channel-coding
rate 1/2. From the samples obtained by the simulations available
from [30], we observe that the proposed system presents a better
performance, in terms of perceived voice quality, than the tradi-
tional system with no adaptation. This is because the channel-in-
duced distortion in the proposed system is limited by design to
a small proportion of the end-to-end distortion, making the re-
duction in the source-encoding rate the dominant phenomena
in increasing distortion. Therefore, in the proposed system, the
increase in distortion subjectively manifests as a smooth degra-
dation of voice quality that hardly affects intelligibility. In con-
trast, the traditional system with no adaptation is unable to main-
tain channel-induced distortion at small values. As the system
becomes highly loaded, the channel-induced distortion becomes
the dominant phenomena in increasing distortion. Subjectively,
this is perceived as speech deformation, artifacts, and phantom
tones that tend to be annoying and affect intelligibility.3 We se-
lect in the simulations, because channel-induced dis-
tortions are limited to a subjectively acceptable range.

Fig. 3 shows the normalized distortion versus the number of
users with different transmit powers for the proposed and tradi-
tional schemes. When the number of users is small, all schemes
with different power have similar normalized distortions. This
is because there is enough power for everybody to operate at
the minimal distortion. When the number of users is increased,
the proposed scheme can reduce the normalized distortion sig-
nificantly, when compared with the traditional system. This is
because the proposed scheme controls the distortion smoothly
by adapting the source and channel coding rates. In particular,
if, for example mW, the proposed system can sup-
port 30 users with 6% less distortion, 40 with 12%, and 50 users
with 37% less distortion. When the transmit power is increased,
the distortion will be reduced. In Fig. 4, we compare the nor-
malized distortion as a function of the maximal available power
for a fixed number of users in the system ( , re-
spectively) that represents different network loading conditions.
It shows the proposed system can deliver the same level of av-
erage end-to-end distortion at a much lower maximum transmit
power, especially when the number of users is large.

In order to evaluate the performance of the proposed fast al-
gorithm, we compare the results with the performance of the
upper bound in Table II. We define the relative difference as the
absolute value of the difference between the average distortion
of the proposed algorithm and the upper bound divided by the
average distortion of the upper bound. In Fig. 5, we show the
relative difference versus the number of users. We apply mul-
tiple initializations to get the global optimization by the upper

3For traditional joint source-channel coding, this problem may also exist,
since there is no design constraint for channel-induced errors.
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Fig. 4. Normalized distortion versus P .

Fig. 5. Relative difference versus number of users.

bound algorithm in Table II. Since the channel rate is assumed
continuous for the algorithm in Table III, the global optimum
is always better than the global optimum defined in (14). Our
proposed algorithm is suboptimal. But when we compare the
performance of the proposed algorithm and the upper bound,
the difference is less than 0.5%. This proves that the proposed
algorithm is at least near-optimal, and the performance upper
bound is tight. The performance gets worse when the number of
users increases, because of two reasons. First, with an increasing
number of users, there exist more and more local optima and the
proposed algorithm may fall into some local optimum. Second,
in practice, the adaptation changes in the proposed algorithm is
limited to a discrete number of possibilities; as the system be-
comes increasingly loaded, it becomes harder to find adaptations
that would reduce distortion while not exceeding the constraints.
This is not the case for the upper bound, since the coding rates
are assumed continuous.

Fig. 6. Dynamic system: Normalized distortions with d = 1:2.

For the dynamic system, the offered load is defined as
, where s. The average talkspurt duration is 1 s,

and the average silence duration is 1.35 s. Frame duration is
20 m. kb/s. The admission policy is . This
distortion value was chosen after simulations so as to ensure
that speech subjective quality remained acceptable. In Fig. 6,
we show the normalized distortion versus the offered load. We
compare the proposed algorithm versus the fixed algorithm for

150, 200, and 350 mW, respectively. We can see that the
normalized distortions increase with the offered load growing,
while the proposed algorithm provides much lower distortions.
Compared with the static results in Fig. 3, the distortions are
greatly reduced by exploiting system dynamics and speech dy-
namics.

VII. CONCLUSIONS

In this paper, we develop a system to smoothly control
each user’s distortion by varying the source-coding rate,
channel-coding rate, and transmit power in a downlink
single-cell CDMA system. We propose a design goal that
ensures a better subjective reconstruction quality. Then we
develop a fast algorithm to reduce the system overall distortion
under the maximal transmit power, maximal user’s distortion,
and subjective quality constraints, according to different users’
current rates, channel conditions, and interference to others.
The proposed algorithm is near-optimal, compared with a tight
performance upper bound. We also explore the dynamics of
system and speech activity. Compared with the traditional voice
over CDMA scheme without distortion control, the proposed
scheme can greatly reduce the distortion and the required
power, which, in turn, will increase the maximal number of
admissible users.
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