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Abstract— For the networks with packet forwarding, dis-
tributed control to enforce cooperation for nodes’ packet for-
warding probabilities is essential to maintain the connectivity of
networks. In this paper, we propose a novel self-learning repeated
game framework to optimize packet forwarding probabilities of
distributed users. The framework has two major steps: First, an
adaptive repeated game scheme ensures the cooperation among
users for the current cooperative packet forwarding probabilities.
Second, a self-learning scheme tries to find better cooperation
probabilities. Some special cases are analyzed to evaluate the
proposed framework. From the simulation results, the proposed
framework demonstrates the near optimal solutions in both
symmetry and asymmetry network.

I. INTRODUCTION

Recent advances in wireless communication have made
possible the large-scale deployment of wireless ad-hoc and
sensor networks, which consist of small, low-cost nodes with
simple processing and networking capabilities. The nodes in
the scenarios mentioned above may not be willing to fully
cooperate. And in fact, it is reasonable to assume that the
nodes are selfishly maximizing their own benefits for the
following reason. From the node perspective, forwarding the
arriving packets consumes its limited battery power. Therefore,
it may not be of the node’s interest to forward all the arriving
packets. In contrast, reject forwarding other’s packets will
adversely affect the network connectivity. Hence, it is very
crucial to design a distributed control mechanism that enforces
cooperation among participating nodes.

Since the distributed nodes don’t have information of others,
they act selfishly to optimize their own performances. This
motivates us to apply Game Theory approach [1] to packet
forwarding problem. In [2], repeated game theory was applied
to routing problems. In [3], multiple access resource allocation
was studied using game theory approach. In [4], repeated game
was further applied to physical layer problems. The distributed
control mechanism enforces collaboration/cooperation has also
been studied within the context of game theory in several
existing literatures. Srinivasan et al. [5] provide a mathematical
framework for cooperation in ad-hoc networks, which focuses
on the energy-efficient aspects of cooperation. In [6], the
authors focus on the properties of the cooperation enforcement
mechanisms used to detect and prevent selfish behavior of
nodes in ad-hoc network. They show that the formation
of large coalitions of cooperating nodes is possible when
mechanism similar to CORE [7] is used. In [8], the authors
consider a less aggressive punishment policy. In this scheme,
the node uses the minimum forwarding probability among
its neighborhood as its forwarding probability after detecting
the misbehavior. Felegyhazi et al. [9] considers a model to

show cooperation among participating nodes and provides
sufficient condition on the network topology under which each
node employing the punishment strategy results in a Nash
Equilibrium. In [7] and [10], the authors define protocols that
are based on a reputation system. In [11], the authors propose
a repeated game framework for multiple-access using Cartel
maintenance. Other work of applying cooperative game theory
and noncooperative game theory to OFDMA networks can be
found in [12] [13].

In this paper, we propose a self-learning repeated game
framework for users to obtain the optimal packet forwarding
probabilities distributively. The framework has two major
steps. First, to ensure cooperation among users, the users
apply adaptive repeated game scheme to punish the greedy
users from deviation and play non-cooperatively. Second, the
users try to learn the better packet forwarding probabilities that
generate better performances. From the simulation results, the
proposed scheme can find the optimal solutions or near optimal
solutions in both symmetry network and asymmetry network.

The proposed scheme has an analogy to the human society.
Before the civilization, there were no rules in the society to
enforce cooperation. People fought each other greedily and
non-cooperatively. The consequences were low social produc-
tivity and low living standards for the people themselves. Then
through revolutions, new relationships among human beings
were proposed such as slavery, feudalism, and capitalism, etc.
In order to maintain the new relationship, rules such as laws
are defined to enforce people for cooperation under the new
relationship. Similarly in packet forwarding network, it has
been proved from previous works that the network perfor-
mance will degrade to zero asymptotically if no cooperation is
enforced. If we can enforce the cooperation among distributed
and greedy users and if we can find the better relationship that
users forward others’ packets, the system efficiency as well as
all users’ performances can be improved.

This paper is organized as follows: In Section II, the system
model is given and the problem is formulated. In Section III,
we proposed the self-learning repeated game framework for
packet forwarding networks. In Section IV, we analyze some
special cases to evaluate the performance of the proposed
scheme. In Section V, conclusions are drawn.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In packet forwarding networks, packet forwarding problem
is essential for distributed users to get connected to the
destinations. Suppose there are a total of K users. The kth

user has a total of Nk routes for its packet transmission. In
this paper, we assume the routes have been determined and
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known. Let’s define Iik as the set of the nodes on the ith route
for the kth user. Suppose each user has the willingness to
forward other user’s packet with probability of αi. For each
user, the successful transmission or reception of one packet
will have the benefit of G and forwarding others’ packet will
cost F per packet. Suppose the kth user transmits its packet
with probability of P i

k to the ith route. Obviously, we have∑Nk

i=1 P i
k = 1. So the utility function Uk for the kth user can

be expressed as:

Uk =
Nk∑
i=1

P i
kGΠ(αj , j ∈ Iik) − FαkBk, (1)

where Π is the successful transmission probability which is a
function of packet forwarding probabilities along the routes.
Bk is the forward request probability from other users. The
first term on the right hand side of above equation is the
average benefit for the kth user, which depends on other users’
willingness for forwarding. The second term means the cost
of forwarding other users’ packet which depends on its own
willingness for packet forwarding.

Since an individual user in networks has less information
about others and may selfishly optimize its own performance,
the packet forwarding problem is, in some sense, analogous to
the economy system of the human society. Game theory is a
successful economy approach, which studies the mathematical
models of conflict and cooperation between intelligent and
rational decision makers. In this paper, we can formulate this
problem as a noncooperative game problem where each user
adjusts its forward probability to maximize its own utility
function:

max
0≤αk≤1

Uk(αk, α−k) (2)

where α−k = [α1, . . . , αk−1, αk+1, αK ]T is the other users’
behaviors of packet forwarding. To analyze the outcome of the
game, Nash Equilibrium is a well-known concept, which states
that in equilibrium every user will select a utility-maximizing
strategy given the strategy of every other user.

Definition 1: Define feasible range Ω as [0, 1]. Nash Equi-
librium [α̂1, . . . , α̂K ]T is defined as:

Uk(α̂k, α−k) ≤ Uk(α̃k, α−k), ∀k, ∀α̃k ∈ Ω, α−k ∈ ΩK−1. (3)

i.e., given the other users’ packet forward probability, no
user can increase its utility alone by changing its own packet
forward probability.

Unfortunately, the Nash equilibrium for the packet forward-
ing game in (3) is usually α̂k = 0, ∀k, because each user’s
benefit depends on other users’ willingness for forwarding and
does not depend on its own behavior, while the user’s cost
solely depends on its willingness for packet forwarding. So
each user will greedily drop its packet forwarding probability
to reduce the cost and increase the utility. However, if all users
don’t forward, the successful packet transmission probabilities
might become zero. Consequently the benefits for users are
zeros and the whole system turns down. So if the users play
noncooperatively and have the Nash equilibrium, all users’
utility might be zero. On the other hand, if the users can co-
operate and have some positive packet forwarding probability,
all users can have benefits.

So the problem can be formulated as to design a method to
enforce cooperation among users in packet forwarding. First,
we want to find the best packet forwarding vector such that
the utilities of all users are strictly better than those of Nash
equilibrium. Moreover, we want to design a mechanism to
enforce such cooperation among users. Since this problem is
very similar to some problems in the human society, in the
next section, we use the economy approach called repeated
game to solve the proposed problem.

III. SELF-LEARNING REPEATED GAME FRAMEWORK

A. Repeated Game Basic

In order to solve the proposed problem, we apply the re-
peated game approach to packet forwarding problem. Repeated
game is a special case of dynamic game (a game that is played
multiple times). When players interact by playing a similar
static game which is played only once like (2) numerous times,
the game is called a repeated game. Unlike a game played
once, a repeated game allows a strategy to be contingent on
past moves, thus allowing reputation effects and retribution,
which give possibility for cooperation.

Definition 2: For T-period repeated game, at each period
t, the moves during periods 1, . . . , t − 1 are known to every
player. β is the discount factor. The total discounted payoff
for each player is computed by

T∑
t=1

βt−1Uk(t) (4)

where Uk(t) denotes the payoff to player k in period t. If
T = ∞, the game is referred as the infinitely-repeated game.
The average payoff to player k is then given by:

Ūk = (1 − β)
∞∑

t=1

βt−1Uk(t) (5)

From the game theory literature, the repeated game can
enforce the greedy user to show cooperation. This is because
the user will get punishment from other users in the near future
if it acts greedily. The benefit of greediness will be eliminated
by the loss of punishment in the future. So the users would
rather act cooperatively. So the remaining problem is how
to define a good rule to enforce the cooperation. From Folk
Theorem, we know that in an infinitely repeated game, any
feasible outcome that gives each player better payoff than the
Nash equilibrium can be obtained.

Theorem 1: Folk Theorem [1]: Let (α̂1, . . . , α̂n) be the
payoffs from a Nash equilibrium of G and let (α1, . . . , αn)
be any feasible payoffs. There exists an equilibrium of the
infinitely repeated game that attains (α1, . . . , αn) for αi >
α̂i,∀i as the average payoff, provided that β is sufficiently
close to 1.

Now, we know that by using the repeated game, the greedy
users can be forced to cooperate and have better payoffs.
So the remaining problem is defining a good mechanism to
enforce the cooperation, which we will show in the next
subsection.
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B. Self-learning Cooperation Enforcing Framework

The basic idea for the proposed algorithm is to let dis-
tributed users learn the optimal packet transmission probability
step by step, while within each step, the strategy of repeated
game is applied to ensure the cooperation among users. For
simplicity, we omit the user index in this subsection. The
block diagram of the algorithm is shown in Figure 1 and detail
descriptions are as follows:

During Initialization, all users play noncooperative game
and all user are balanced in an inefficient Nash equilibrium α̂.
We set the time counter n = 0, the punishment time T = 0,
and trigger threshold V = α̂.

In the next step, we play repeated game strategy. If all
users play cooperatively, every user will have some benefits.
However, from (1), if any user deviates from cooperation by
playing noncooperatively and other users still play coopera-
tively, this user will have more benefits, while others suffer
with lower benefits because of this user’s greediness. In order
to prevent users from deviation, the repeated game strategy
provides a punishment mechanism. The basic idea is that each
user sees if the utility function is lower than the threshold V .
If so, that means some user may have deviated, then this user
also plays noncooperatively for a period of time T . By doing
this, the greedy user’s short term benefit will be eliminated by
the long term punishment. If all users concern the long term
payoff such as (5), which is true by the assumption of rational
users, then all users will have no incentive to deviate from
cooperation.

In details, the repeated game scheme with parameter (V, T ),
for all users is explained as follows: Each user’s utility U
is compared with the threshold V . If U < V , i.e., someone
deviates, the time counter n is set to zero, punish time is
increased by one, and the user plays noncooperatively for a
T period of time. Since we assume all users are rational,
with increasing of T , the benefit of one time deviation will
be eliminated out sooner or later. So finally, no user wants
to deviate and U ≥ V . At this time, the counter n starts
increasing. If the system is stable in the cooperation for
a period of time N , where N is a predefined constant,
the algorithm assumes that the cooperation is enforced, and
changes to the next step to improve the current cooperation.

In the next step, the algorithm tries to self-learn the optimal
forward probabilities by modifying α with the goal to optimize
the performances. The simplest way is to randomly generate
α ∈ [0, 1], where different users may have different α. In
the next time slot, all users observe if their performances
become better. If not, the α is changed to the previous value.
Otherwise, each user selects its packet forwarding probability
as α, updates its threshold to current benefit V = U , calculates
the difference of cooperation and noncooperation for the utility
∆U as

∆U = U(new α) − U(α̂), (6)

and calculates the deviation benefit ∆D. If the network is
symmetry, the optimal punishment time can be written as:

T =
∆D

∆U
, (7)

Fig. 1: Proposed self-learning repeated game framework

where T is the estimated punish time that prevents the users
from deviation. Then the algorithm goes back to the repeated
game case to update the punishment time T such that all users
are willing to cooperate.

Notice that during the first time slot after α is modified,
all users will act cooperatively, because of the rationale that
deviation eliminates the chance of utility improvement in the
future. In the repeated game step, the benefit of instantaneous
deviation is eliminated sooner or later as long as the discount
factor β is close enough to 1. So the T will converge to some
value. In the self-learning step, if the new sets of α are not
good for all users, the original value of α will be restored. If
the new sets of α are good, the cooperation can be enforced by
the future repeated game step. So the framework will converge.

In summary, the framework uses the threat of punishment
to maintain the cooperation for the current α and try to learn
if there is a better α for cooperation. In the next section, we
will give some cases to analysis and evaluate the behaviors of
the proposed framework.

C. Discussions of Asynchronous Networks

In the previous analysis, we assume the networks are
synchronous, i.e., each user’s utility can be observed instan-
taneously whenever other users deviate. This might not be
true in the real networks. In this subsection, we will discuss
the problem introduced by asynchronous networks and some
possible solutions.

When the network is asynchronous, the deviation of users
will be detected by other users with some time delay. This
is not the problem. The problem is when the punishment
period is over, the users may return to the cooperation phase
in different time. This may trigger some users to continue
punishment because they cannot distinguish if the users are
deviating or the users are still in the punishment phase. The
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Fig. 2: Modified Repeated Game Step

problem will make the network fluctuating and the punishment
time T cannot converge. In order to solve such a problem, we
propose the following modification to the repeated game step
of the proposed framework.

The modified repeated game step is shown in Figure 2,
where an extra step is added at the end of punishment
period. After switching back to cooperation, the user will wait
for time T ′ and then observe if others deviate. This time
T ′ is reserved for the other users to return to cooperation.
This value is determined by the scale and topology of the
networks. If the value of T ′ is too small, the network will
not be stable and punishment period is always prevail because
some users’ delayed return to cooperation triggers others’ new
punishment periods. If the value of T ′ is too large, it gives the
opportunities for greedy users to deviate to gain the benefits
without detecting from other users. There are tradeoffs for
selection of the value for T ′.

The other concern is during the step when α is modified
after the system is stable n > N . The message for all users to
modify α can be implemented by the protocol like flooding.
This message will take times to arrive every node. So to judge
if the system becomes better, a user needs to wait for a period
of time that may be similar to T ′.

IV. CASES ANALYSIS AND PERFORMANCE EVALUATIONS

In the following subsections, we analyze two cases: sym-
metry networks and asymmetry networks. Some simple ex-
amples are given and analytical optimal results are deduced.
Simulation results of the proposed framework are conducted
to evaluate the performances.
A. Symmetry Networks

First we analyze the characteristic of the symmetric net-
work. The topology of such a network is symmetry, conse-
quently, the resulting Nash equilibrium and the optimum of
the packet forwarding probabilities should be the same for all
users, i.e. α̂k = α̂j , αk = αj , ∀k, j. In general, the networks
are asymmetry. However at the edges of networks where some
nodes may equally access the networks, symmetry topology
may exist and symmetry analysis can be applied.

In this subsection, we give an example on the analysis of
the synchronous symmetry networks. Suppose the considered
network is shown in Figure 3. In this network, there are six
fixed routes: 1 � 4, 2 � 5, and 3 � 6. All the destinations are
3 hops away from the source. We consider the node’s utility
function as the reward obtained from successfully transmit-
ting or receiving a packet. We also assume the forwarding
others’ packets consume resources such as energy, therefore
forwarding contributes a cost (negative reward) to the utility

Fig. 3: Example of symmetric network

function. The utility functions for each of the node in Figure
3 are represented as follow:

U1 = 2G[1 − (1 − α2α3)(1 − α5α6)] − F [α1 + α1α2]
U2 = 2G[1 − (1 − α1α6)(1 − α3α4)] − F [α2 + α2α3]
U3 = 2G[1 − (1 − α1α2)(1 − α4α5)] − F [α3 + α3α4]
U4 = 2G[1 − (1 − α2α3)(1 − α5α6)] − F [α4 + α4α5]
U5 = 2G[1 − (1 − α1α6)(1 − α3α4)] − F [α5 + α5α6]
U6 = 2G[1 − (1 − α1α2)(1 − α4α5)] − F [α6 + α1α6]

where αi is the probability that node i is willing to forward
others’ packets, G is the reward for successfully transmitting
and receiving a packet, and F is the cost for forwarding
others’ packet. We also assume that nodes are greedy and
rational but not malicious, that is every node decides its
forwarding probability to maximize its own utility function. If
we consider the Nash equilibrium obtained noncooperatively
from (2), obviously, to the best of each node’s interest, every
node selects zero forwarding probability (i.e. αk = 0, ∀k) to
minimize its forwarding cost in the utility function. However,
the overall network becomes disconnected as all the nodes act
in noncooperative manner.

Note that due to the symmetry property of the network
in Figure 3, the optimal forwarding probability and the cor-
responding utility of each node will be the same. We omit
the subscript for simplicity. Consider the system-wide optimal
solution to maximize everybody’s utility, we can formulate the
problem as:

max
α

U = 2G(2α2 − α4) − F (α + α2)

s.t. 0 ≤ α ≤ 1. (8)

By differentiating the above equation, we obtain

∂U

∂α
= 8G(α − α3) − F (1 + 2α) = 0, (9)

α3 −
(

1 − F

4G

)
α +

F

8G
= 0. (10)

The optimal forwarding probability in the symmetry net-
work can be obtained by solving (10). Figure 4 shows the
effects of forwarding probability α on the utility function for
different normalized forwarding costs, F/G. We also show
the optimal forwarding probabilities for different cases. It is
obvious that as the cost for forwarding, F is smaller compared
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to the transmitting/receiving reward, G, the optimal forwarding
probability will approach the unity forwarding probability and
the corresponding utility is also high. On the other hand, when
F/G is large then every node has lower incentive to forward
the others’ packet and utility is low. This phenomenon is
reasonable since when the cost for forwarding is very large,
it is better for the node to save the energy for its own trans-
mission. The goal of the cooperation mechanism design is to
design the incentive for the nodes to avoid the noncooperative
solution and to result in the system-wide optimal forwarding
probability. It also worthy to mention that not every positive
packet forwarding probability will generate the larger utility
than full noncooperation case where the packet forwarding
probability is zero. For example, when F/G = 1, the utility
is higher than 1 only when α ≥ 0.37. So in the self-learning
step, if α is modified less than 0.37, the system will have
worse performance than noncooperation. As a result, the new
α will be discarded and the original α is restored.

In Figure 5, we show the simulation results of the proposed
framework for utility and packet forwarding probability over
time. Here F/G = 1 and N = 200. Initially, α = 0, because
of the noncooperation transmission. Then the system tries to
find a better packet transmission rate. When it finds a better
solution, all users adopt its α to the value. However, because
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of the punishment period T is not adjusted to an optimal value,
the deviation can have benefits. So there exists a period that
the utility and α switch from cooperation to noncooperation.
In this period, T is increased until everybody realize that
there is no benefit for deviation because of the long period
of punishment. If the system is stable for time N , a new α
is attemped to see if the performance can be improved. If
yes, the new value is adopted, otherwise the original value is
restored. So the packet forwarding probability is adjusted until
the optimal solution is found, and the learned utility function
is nondecreasing function. Notice that users are less reluctant
to deviate when α is close to the optimal solution. This is
because the benefit of deviation becomes smaller and users
already have the estimated punishment time according to (7).

Figure 6 and Figure 7 show the packet forwarding proba-
bility and utility vs. normalized packet forwarding cost F/G
for the optimal solutions and the solutions studied by the
proposed framework, respectively. Here the system tries to
find the new α for only 250 times. From the simulation
results, we can see that the proposed framework can find the
optimal packet forwarding probability and the optimal utility
with maximum of 0.7% and 0.04% difference, respectively.
This proves that the proposed framework can find the optimal
packet forwarding probability very efficiently.
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Fig. 8: Example of asymmetry network

B. Asymmetry Networks
Practical networks are generally asymmetry in nature. In this

subsection, we turn our attention to analyze the performance
of the proposed framework over the asymmetry networks.
An example of synchronous asymmetry networks is shown
in Figure 8. In this case, the node 1 and 6 act as the sinks of
the information. The red arrows indicate the flows direction of
routes where node 6 is the sink. In this case, node 1 to node 5
want to transmit to node 6. Similarly, the blue arrows indicate
the flows direction where node 1 is the sink. In this case, node
2 to node 6 want to transmit to node 1. Notice that node 2
and node 3 are asymmetry. We formulate the utility function
for node 1 to 6 as follows

U1=2Gα2α3α4α5

U2=G[1 + α3α4α5] − F [2α2 + α2α3 + α2α3α4 + α2α3α4α5]

U3=G[α2 + α4α5] − F [2α3 + α2α3 + α3α4 + α3α4α5]

U4=G[α5 + α2α3] − F [2α4 + α3α4 + α4α5 + α2α3α4]

U5=G[1 + α2α3α4] − F [2α5 + α4α5 + α3α4α5 + α2α3α4α5]

U6=2Gα2α3α4α5

We can see that the noncooperative solution for each node
is to use zero forwarding probability. Notice that due to the
symmetry in the network flow, node 2 and node 5, node 3
and node 4 have the same forwarding probability, respectively.
Moreover node 1 utility and node 6 utility are totally depended
on other nodes’ packet forwarding probability. So the opti-
mization parameters are α2 (α2 = α5) and α3 (α3 = α4)
only. Since node 2 and node 4 have their own optimization
goals, for system optimization point of view, this is a multiple
objective optimization. To quantify the optimality, we need to
define the following concept:

Definition 3: Pareto optimality is a measure of optimality.
An outcome of a game is Pareto optimal if there is no other
outcome that makes every node at least as well off and at least
one node strictly better off. That is, a Pareto Optimal outcome
cannot be improved upon without hurting at least one node.
Often, a Nash Equilibrium is not Pareto Optimal implying that
the players’ payoffs can all be increased.

In Figure 9, we show the Pareto optimal region and the
simulated results obtained by the proposed framework. The x-
axis and y-axis are α2 and α3, respectively. Here the system
tries to find new packet forwarding probability for 250 times.
Any point within the shades area is Pareto optimal. Most of
the simulated points are within this region. Very few points
are located outside. This is due to the failure of searching the
optimal packet forwarding probability within 250 times. We
can see that the proposed framework is effective to find the
Pareto optimum for asymmetry networks.

V. CONCLUSIONS

In this paper, we proposed a self-learning repeated game
framework for packet forwarding networks. The cooperation

Fig. 9: Pareto optimal region and the simulated results

within users for packet forwarding is obtained by threat of
punishment in the future, while the optimal packet forwarding
probability of each user can be studied distributively. From the
simulation results for symmetry and asymmetry networks, we
can see that the proposed framework can effectively find the
solutions very close to the optimal solutions in a distributed
way. The proposed framework can have impacts on the designs
of future communication networks such as wireless networks,
wired networks, Ad hoc networks, sensor networks, etc.
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