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Abstract—In multiaccess wireless networks, dynamic allocation
of resource such as link qualities and transmitted powers is an
important means to combat time-varying fading environments
and cochannel interferences (CCIs). In most prior work, every
link’s quality is maintained by having a fixed signal-to-interfer-
ence-noise-ratio (SINR) requirement. We discover that such a
constraint is too strong and can degrade the performance of entire
wireless networks, because a user with a bad channel response
requires too much transmitted power and, therefore, causes
unnecessary CCI to other users. In this paper, we alleviate this
constraint and explore the time and multiuser diversity. For each
user, the time-average link quality is maintained as a constant to
ensure fairness. For the whole system, we want to minimize the
overall transmitted power. In order to solve this problem, each
user provides the system with a SINR range that is acceptable,
according to the channel conditions and transmission history.
Then, the system allocates the resources according to these ranges,
channel conditions, and other practical constraints. Each time,
some users may sacrifice their performances to reduce the overall
network transmitted power. These users’ temporary sacrifices
will improve the system performance and will be paid back in the
long term. This scheme can be conceived of as “water filling” the
wireless network resources to different users at different times. In
addition, by combining the proposed scheme with beamforming,
we can have one more degree of freedom to combat CCIs in
different directions of arrivals and different channel conditions
over time.

Index Terms—antenna arrays, communication networks, diver-
sity methods, power control, resource management.

I. INTRODUCTION

TWO KEY challenges for mobile wireless networks are the
time-varying nature of the channels and cochannel inter-

ferences (CCIs). Because of the effects such as cochannel users,
multipath fading, shadowing, path losses, directions of arrivals
(DOA), and noise levels, the signal-to-interference-noise ratio
(SINR) at the output of the receiver can fluctuate in the order of
tens of decibels. A common strategy to combat these detrimental
effects is the dynamic allocation of resources such as link qual-
ities and transmitted powers based on the channel conditions.
Link qualities such as bit-error rate (BER), transmission rate,
distortion, or other quantities of quality of service (QoS) can
be closely related to the received SINR level. The system can
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determine a targeted SINR (threshold) for each user to ensure
his link quality. In power control, the goal is to assign the min-
imal transmitted power levels to the mobile units and at the same
time to manage the mutual interferences, so that each mobile
unit can meet its SINR requirement for the desired link quality.
Such a process improves the qualities of weak links, but at the
same time increases CCIs during the deep fading. All these re-
sources are interrelated and there are tradeoffs to allocate them
in the interference limited wireless networks. Moreover, there
are other constraints, such as fairness and practical implemen-
tation constraints, so how to optimally allocate these resources
has become an important wireless research issue.

Resource allocation for the wireless networks has been exten-
sively studied in the literature. In [1]–[7], classical power-control
algorithms are presented and their convergence is proved. In
[8]–[15], the authors study combining rate adaption and power
control to optimize the system performance. In [16]–[19], beam-
forming, power control, multiuser detection, and base station
assignment are combined for cellular wireless communication
system. In [20] and [21], the problem of optimal resource
allocation is considered from the information theoretic point
of view. Throughput capacity and delay-limited capacity are
extensively studied. In [22]–[24], dynamic programming is
considered for integrating link adaptation and power control
to improve the overall throughput. In [25] and [26], game
theory is introduced to the power-control problem. The utility
functions are designed for users to compete with each other
for resources. The system is balanced in some equilibrium.

In the traditional power control, the overall transmitted power
is minimized, while each user modifies his transmitted power,
so that his received SINR is larger than or equal to a fixed and
predefined targeted SINR threshold that required maintaining
his link quality. However, a user with a bad channel response
will transmit a very high power; therefore, he can cause unnec-
essary CCI to other users. As a result, the overall network per-
formance is degraded. In this paper, by alleviating the fixed link
quality constraint and exploring the time and multiuser diver-
sity, we develop adaptive joint link quality and power-manage-
ment schemes with fairness constraint for both the uplink and
the downlink. These schemes encourage some users to sacrifice
their performances in a short period, with the incentive that the
overall network transmitted power can be reduced and the users’
temporary sacrifices will be paid back in the long term.

In the proposed schemes, each user provides the system with
a SINR range that he can accept each time. Then, the system
employs adaptive algorithms to assign different users their
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targeted SINRs, according to their acceptable SINR ranges,
channel conditions, and other practical constraints. Different
users may have different assigned SINRs each time, while
each user’s time-average SINR is maintained as a constant to
ensure fairness for the link quality for which the user has paid.
In order to ensure fairness, users adjust their acceptable SINR
ranges, according to their channel conditions and transmission
histories. If a user has a smaller assigned SINR now, he will
provide the system with a higher acceptable SINR range in the
future, such that the system has to assign a higher SINR to him.
The scheme can be conceived as “water filling” the wireless
network resources to different users at different times, according
to their channel conditions. Moreover, the joint consideration
of the proposed scheme and beamforming can be interpreted
as to combat CCIs in different DOAs and different channel
conditions over time. As will be shown in the simulation
results, the proposed schemes reduce up to 60% of the overall
transmitted power and increase the maximal achievable SINR
by up to 6 dB, compared with the previous work [16], [17];
thus, the schemes greatly increase the network performance.

This paper is organized as follows. In Section II, we present
the system model and, in Section III, we first explain the tra-
ditional power-control problem and note its shortcomings. We
develop adaptive algorithms to reduce the overall transmitted
power by alleviating the fixed link quality constraint and ex-
ploring time diversity. We discuss downlink cases and note the
differences from the uplink cases. In Section IV, joint beam-
forming and our proposed scheme is presented and, in Section V,
we have simulation studies. In Section VI, we have conclusions.

II. SYSTEM AND CHANNEL MODELS

Consider cochannel links that may exist in distinct cells
of multicell networks. Each link consists of a mobile user and
his assigned base station. Assume that coherent detection is pos-
sible, so that it is sufficient to model this system by an equiva-
lent baseband model. Each link is affected by propagation loss,
shadowing fading, and multipath Rayleigh fading. For uplink,
the output signal at the th base station can be expressed as

(1)
where is the maximal number of multipath, is the th
user’s transmitted power, and are the path loss and the
log-normal shadow fading from the th user to the th base sta-
tion, respectively, is the Rayleigh fading for the th path,

is the shaping function, is the mobile’s message
symbol, is the transmission delay, and is the thermal
noise. We assume that the channels change slowly and are stable
over a frame with hundreds of symbols. We also assume that the
multipath delay is far less than one symbol duration, i.e.,

(the delay from the mobile user to his assigned base sta-
tion), and the delay from the user to any other cell is
uniformly distributed in , where is the sample duration.

Define the impulse response from the th mobile user to the
th base station by

(2)

where includes the effects of transmission delay, transmitter
filter, receiver filter, and shaping function. Then, we can express
the sampled received signal at time as

(3)

where is the sampled thermal noise. The th user’s SINR
can be written as

(4)

where .
Now we discuss the downlink cases. One issue that compli-

cates the downlink problem is the possible lack of direct mea-
surements of downlink channel responses at the base stations,
especially for frequency-division-duplex (FDD) systems. The
other issue is the lack of efficient downlink algorithms, even
though the downlink channel responses are available. To obtain
the optimal power control involves a complicated multivariable
optimization. In this paper, we use the virtual uplink power-con-
trol technique [17], which just involves simple computations.
The received signal at the th mobile receiver is given by

(5)

where is the message signal transmitted from the th base
station to its associated mobile user; is the thermal noise at
the th mobile user; is the signal power; and , , ,

, and have the same definitions as those of the uplink
cases. The impulse response from the th base station to the th
mobile user is defined as

(6)

where includes the effects of receiver matched filter,
shaping function, and transmitter filter. Then, the sampled
received signal vector is given by

(7)

The SINR at the th mobile receiver can be expressed as

(8)

where is the thermal noise power at the th mobile user.
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III. JOINT ADAPTIVE LINK QUALITY

AND POWER MANAGEMENT

In this section, we will first review the traditional power-
control problem and indicate the disadvantages of this kind of
approach. Then, we give the reformulated problems for both
uplink and downlink cases. Adaptive algorithms are developed
to solve the problems.

A. Traditional Power Control

In the traditional uplink power control, the transmitted power
of each mobile user is selected, so that each user has for

, while the overall transmitted power used by all
mobile users is minimized. Here, is a fixed and predefined
targeted SINR threshold to maintain the required link quality.
Given that the path gains and the transmitted powers are non-
negative, the matrix version of the traditional power-control for-
mulation with the fixed link quality is given by

subject to (9)

where with ,
, , and

if ,

if . (10)

If the spectral radius of , , i.e., the maximal eigen-
value of , is inside the unit circle, the system has feasible so-
lutions, i.e., there exists a positive power allocation that
for . By the Perron–Frobenius theorem [35], the
optimum power vector for this problem is .
The optimal solution of the power vector is achieved when the
equations of the constraint are held, i.e., . It has
been shown that this is a nondeterministic polynomial (NP) hard
problem [36]. Many adaptive algorithms [1], [4], [5], [16] have
been developed to decrease the system complexity by updating
the transmitted powers in a distributed manner.

In the traditional power-control scheme mentioned above,
each user adjusts his transmitted power to maintain the fixed
and predefined SINR thresholds. When these targeted SINR
thresholds are small and CCIs are minor, the system works
perfectly well. However, when the targeted SINR thresholds
become large, each user transmits a higher power and causes
higher CCI to other users. The overall transmitted power will
start to increase rapidly. If the targeted SINR thresholds are
larger than some specific levels, CCIs will be so large that no
feasible solutions exist, i.e., no matter how large the transmitted
powers are, the receivers cannot get enough SINR levels. The
reason for such a problem is that the user with the bad channel
condition transmits too much power and, thus, introduces
unnecessarily high CCI to other users. Consequently the overall
system performance is reduced. Therefore, having the fixed and
predefined targeted SINR thresholds constraint as the problem
defined in (10) is not a good approach for wireless resource
allocations.

B. Proposed Approach for Uplink

In this paper, we alleviate the constant SINR constraint
by allowing users to have the time-varying SINR thresholds,
according to their channel conditions. We assume that the th
user can accept the instantaneous SINR threshold within a
range from to , according to his channel condition,
while the overall network link quality is kept higher than or
equal to a value for adequate overall network performances.
Each time, the users with bad channel conditions sacrifice
their SINRs (because such levels of SINRs may not improve
anything for these users significantly) and are assigned with
lower SINR thresholds. At the same time, the users with good
channel conditions get higher SINRs. Consequently, they
have better link qualities. For each user, the time average link
quality is kept as a constant to ensure the fairness for which
the user has paid. Each time, some users may sacrifice their
performances to reduce the overall network transmitted power.
These users’ temporary sacrifices will be paid back in the long
term. The scheme can be conceived as “water filling” wireless
network resources in the time domain and to the different users,
according to users’ channel conditions. The user’s link quality
can have different definitions for different scenarios. For
example, for adaptive modulation systems, the throughput and
BER can be approximated by simple exponential expressions
in [8] and [10]. For adaptive coding systems and multimedia
transmissions, the coding performance and distortion can also
be approximated as functions of [29]. In this paper, we define
the link quality as directly, which fits the situations such as
power-limited communications [4]. For the other link quality
functions, the schemes described in the rest of this paper can be
easily extended in the similar way. The matrix version of this
problem formulation can be expressed as

subject to (11)

where is the time average th link’s quality and is the
network overall link quality that our system needs to guarantee,
which is at least as large as that of the traditional power control
in (9) and is also the sum of time average throughput, i.e.,

.
It is worthwhile to emphasize that the inequality

is a bilinear matrix inequality (BMI)
[30]. If we fix the powers, the targeted SINRs are linearly
constrained; if we fix targeted SINRs, the powers are linearly
constrained. However, if both are considered, it is a BMI
problem. In the previous works [1], [16], each user’s targeted
SINR is the same; thus, the inequality constraint is linear. While
in the proposed scheme, users can select different , so the
constraint is not linear any more. A BMI problem is nonconvex
and can have multiple local optima.

The time-diversity fairness constraint in (11)
involves optimizations at different times. The difficulties to
solve it analytically by techniques such as dynamic program-
ming lie in how to represent the channel models with CCIs and
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TABLE I
ADAPTIVE ALGORITHM FOR MOVING ACCEPTABLE SINR RANGE

the computational complexity with a large number of users.
In this paper, we develop a moving SINR window algorithm
and a projected gradient algorithm to heuristically solve (11).
The basic idea is to first change the acceptable SINR ranges,
according to the transmission histories and channel conditions,
so that the fairness constraint is satisfied. Then, within these
SINR ranges, a projected gradient algorithm finds the allocation
that produces the minimal overall transmitted power.

Instead of having fixed and , we assume that the
th user can select SINR level at

time and the targeted time average SINR is . Each time,
and are modified by the current .

When is smaller than , and
are increased, so that there is a higher probability that
is larger than ; otherwise, and are
decreased. and are bounded by
and , which are the minimal and maximal SINRs that are
fixed and predefined by the system. In order to track the history
of , we define

(12)

where is a delay sensitive factor. If a user’s payload is a voice
traffic and cannot suffer much delay, should select a relatively
larger number, such that the link quality will be compensated
quickly. If a user’s payload is a data traffic and can suffer some
delay, can select a relatively small number, so that the user
can wait until the channel becomes better to transmit. When

, the time average SINR requirement is satis-
fied. Each time, , , and are updated by
each user in Table I.

When is continuously less than for some time,
is increased to . Then, the next ,

consequently, stops increasing. The same analysis can
be applied to . Since and are bounded
and linearly modified by , is also bounded. Re-
arrange in (12) and average over times, we have

(13)

Since is bounded, the second term on the right-hand
side decreases to zero as , so we prove that

, i.e., the proposed algorithm
guarantees fairness.

Now, we can construct the adaptive algorithm to adjust each
user’s targeted SINR threshold to reduce the overall transmitted
power. We need to find out which users cause larger CCIs and
contribute more to the overall transmitted power. If these users

can sacrifice their targeted SINRs a little bit, the overall trans-
mitted power will be reduced significantly. can be written
as . From [28], we know that is
a convex and increasing function of , when the other

are fixed. Take derivatives of of ; then we
have the th element of gradient of the overall
uplink transmitted power as

(14)

where is a matrix, is a vector, and

if
otherwise.

if
otherwise.

Reorder (14) and we have

(15)

where is the SINR detected at the base station’s antenna
output for the th user, , and ,
if , otherwise. reflects te severeness of CCIs
and tells which user causes more CCI to other users. When CCIs
are small, . Since we only care about the direction
of the gradient and do not care about the amplitude, we can ig-
nore the value of when CCIs are small. By using this gradient,
we know how to reduce the overall transmitted power.

Since each user can have his targeted SINR threshold in a
range from to at time , if we do not
have any more constraint, every user will have as his
targeted SINR threshold, so that the transmitted powers are
minimized. However, the network performance is consequently
degraded, so we assume the overall link quality of the network

. Because we optimize the overall transmitted
power , which is an increasing function of [28], the op-
timal solution will occur when . If we change
each user’s targeted SINR according to (15), the constraint

will not hold. We have to modify the gradient
by projecting the gradient onto the plane where the constraint
holds. Define the modified gradient as . By
the definition of a projection, vector is the vector closest
to in space , where , i.e.,
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TABLE II
ADAPTIVE ALGORITHM FOR UPLINK

, where is a vector in and
. The distance between and is given by

(16)

We take derivatives with respect to each argument for (16).
Then, we set these derivatives to zeros to get the optimal pro-
jection of onto . We write the equations in matrix form as

and

...
...

...
. . .

...

...
(17)

Now we can construct an adaptive algorithm to move along
the projected gradient to reduce the overall transmitted
power, as summarized in Table II. We initialize the algorithm
with . The initialization is
assumed to be feasible. is a small constant, whose value
decides the rate of convergence and the variance of the final
result. The convergence criteria for the adaptive algorithm can
be implemented according to the Karush–Kuhn–Tucker(KKT)
conditions [40]. For the specific problem in (11), the KKT
conditions are given by the following theorem.

Theorem 1: The convergence criteria of the proposed algo-
rithm in Table II is: when hits the boundary, the projected
gradient will point inside the range; otherwise, , i.e.,

if
if
otherwise.

(18)

Under such conditions, the algorithm cannot further decrease
the overall transmitted power and falls into a local minimum.

Proof: Each time, we know the acceptable SINR ranges
for different users and the fact that the optima occur when

. We can rewrite the optimization problem in (11) as

subject to (19)

Write the Lagrange multiplier for this constrained optimization
problem as

(20)

where , , and are the Lagrange coefficients. Assume
that the local minimum occurs at . The KKT con-
ditions are that there are , , and , such that the following
conditions hold at :

(21)

where and , . We have
at point . When , we select

and . Under this condition, needs to be zero. If
, we select . Because and

, we can have . If , we select .
Because and , we can have . So we
prove that the equations in (18) satisfies the KKT conditions in
(21).

The power-update step in Table II can be implemented in a
distributed iteration manner as in [1], which only needs local
channel information. In each update, the targeted SINRs are
calculated at the base station and then the powers are updated
according to the targeted SINRs in the distributed iterations [1],
[4], [5], [16]. The power-update equation in the algorithm in
Table II has been proved [16] to fit the standard function [1].
The power-update step converges to a unique solution when the
targeted SINRs are feasible. In the proposed algorithm, the tar-
geted SINRs are selected, so that the overall transmitted power
is reduced. Starting from any feasible initialization, is always
within the feasible range , so the power update step
converges.
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TABLE III
ADAPTIVE ALGORITHM FOR DOWNLINK

C. Proposed Approach for Downlink

Similar to the uplink cases, we develop the proposed link
quality and power-management algorithm for the downlink
cases. Define as the downlink transmitted power. The
optimization problem is

subject to (22)

where with ,
, , and

if ,

if . (23)

Similar to the uplink cases, the overall transmitted power
is a convex and increasing function of if

is fixed [28]. By using the similar
deductions of the overall transmitted power as those in the up-
link cases, the th gradient element of the overall downlink
transmitted power is given by

(24)

where is the SINR detected at the th mobile user and
.

For the discussion of downlink in this section, we still as-
sume that the SINR as the link quality index and the overall
network link quality is greater than or equal to each time.
We can use (17) to get the projection of the gradient, such that

holds. For each user, we use the same moving
SINR window algorithm to ensure fairness as that for the uplink
cases.

If the uplink and downlink are reciprocal, such as time-di-
vided-duplex (TDD) systems, we can use uplink channel re-
sponses as downlink channel responses and construct a virtual
uplink [17] whose channel responses are similar to those of
the downlink. Then, we find the powers and targeted SINRs
at the base stations of the virtual uplink. Finally, we use the
same powers and targeted SINRs for the real downlink. In order

to update the transmitted power, we use the algorithm in [17]:
downlink SINR is measured in each mobile user; knowing his
previous transmitted power and targeted SINR, the mobile user
uses a feedback channel to update the transmitted power from
the base station. The algorithm is summarized in Table III.

IV. JOINT CONSIDERATION WITH BEAMFORMING

The antenna array-processing techniques, such as beam-
forming, can efficiently improve the received SINRs and
system performances [16], [17], [19]. The antenna arrays point
their beams toward the directions of the desired signals while
trying to null the CCIs. In this section, we jointly consider the
proposed schemes in the previous section with beamforming
and explain why such joint schemes are superior to the tra-
ditional joint power-control and beamforming schemes [16],
[17].

We consider a system with antenna arrays at the base stations
only. There are elements for each antenna array. For uplink,
the sampled received signal vector can be expressed as

(25)

where , ,
is the th antenna element response to the signal from

the direction , and is the sampled thermal noise vector.
With adaptive beamforming, the output of each antenna array

element is combined together with beamforming weight vector
. The aim is to adjust the weight vector to achieve the max-

imal SINR at the output of the combiner. If the channel response
from the desired user is known, the minimal variance distortion
response (MVDR) solution to this problem can be used to min-
imize the total interferences at the output of beamformer, while
the gain for the desired user is kept as a constant [34]. For up-
link, the MVDR problem can be defined as

Define the correlation matrix as . The optimal
weight vector is given by

(26)
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TABLE IV
JOINT BEAMFORMING AND PROPOSED RESOURCE ALLOCATION

Assuming that the transmitted signals from different sources
are uncorrelated and zero mean and that the additive noise is
spatially and temporally white, we can write the th user’s power
at the beamformer output of the th base station as

(27)

where is the noise correlation matrix. The effective SINR at
the th base station’s beamformer output is given by

(28)

For the downlink case, the complexity of beamforming may
increase because the calculations for the beamformer weight
vectors need the knowledge of downlink channel responses for
the whole network. This requires channel measurements at the
mobile users and feedback mechanisms to send the information
to the base stations, which will cost too much overhead and
reduce the capacity. In order to calculate the downlink beam-
forming weight vectors, we can only measure the channel re-
sponse from the base station to its assigned mobile user. We try
to maximize the received power at the desired mobile user with
a fixed norm downlink beamforming vector as

subject to (29)

where is the downlink beamforming weight vector for the
th user and with as the

channel response from the th antenna.
It is well known that the beamforming can effectively reduce

CCIs in different DOAs. However, if the desired users are al-
most at the same direction, the beamforming is less effective,
because the beam pattern cannot distinguish the desired signals
from the undesired interferences. Under this condition, some
of the cochannel users will cause severe CCIs to the others. In
the traditional joint power-control and beamforming schemes
with the fixed link quality requirement, in order for the system
to operate well all the time, the worst case scenario has to be
considered to choose the users’ link qualities. In our proposed
joint schemes, each user’s time average link quality is main-
tained instead. When beamforming cannot improve SINRs of
some users, these users can sacrifice their temporary link qual-
ities with the incentive that their link qualities can be compen-
sated back, when the DOAs change better and beamformers
become more effectively. Consequently, the overall transmitted
power can be reduced a lot. It can be interpreted as the system

to “water-fill” the users’ link qualities, according to the dif-
ferent channel conditions, as well as the different DOA’s over
time. Therefore, our proposed schemes have one more degree of
freedom to reduce the overall transmitted power. The proposed
joint beamforming and resource-allocation scheme is shown in
Table IV.

In the rest of this section, we will analyze a two-user example
to illustrate the underlying reason for the performance improve-
ments. Consider a network with two users and one base station.
For the uplink, the two users’ SINRs are given by

where , , , and are the power, shadow fading, prop-
agation gain, and thermal noise matrix, respectively; is the
th user’s beamforming weight vector; and is the fading and

array response for the th user. The overall transmitted power
can be written as

where and represent the effects of beam-
formers to suppress the interferences. In the previous joint
power-control and beamforming scheme [16], . Under
this condition, in order to have a feasible solution of positive
power allocation, the following condition must be satisfied at
any time:

(30)

Because the channel responses and change randomly,
the beamformers cannot be very effective for some channel
responses at some time. Consequently, the system has to be
designed for the worst case situation, the overall transmitted
power cannot be reduced, and the maximal achievable targeted
SINR is low. The underlying reason is that there is no freedom to
optimize the overall transmitted power by adjusting each user’s
targeted SINR. In the proposed scheme, over
time. When the beamformers cannot reduce the interferences
well, i.e., the term is large, our proposed
algorithm cleverly reduces the targeted SINRs (the value of

will be reduced), so that the overall transmitted power is
reduced. The DOAs are frequently changed by the reflections
around the moving users. The algorithm waits to increase the
targeted SINRs and compensate the previous losses, until the



HAN AND LIU: JOINT LINK QUALITY AND POWER MANAGEMENT OVER WIRELESS NETWORKS 1145

Fig. 1. Overall transmitted power as a function of average targeted SINR.

beamformers become more effectively for distinguishing the
interfering users. This is why the joint schemes can be used
to combat CCIs more efficiently, which will be shown in the
simulation results in the next section.

V. SIMULATION RESULTS

In order to evaluate the performances of the proposed algo-
rithms, a network with 50 hexagonal cells is simulated. The ra-
dius of each cell is 1000 m. Two adjacent cells do not share the
same channel. One base station is placed at the center of each
cell and one user is located randomly within the cell with the
uniform distribution. The uplink and downlink work in TDD. In
the simulations, we consider three multipath Rayleigh fadings
with equal powers. The delay spread between different paths
is far less than one symbol duration. The angle of arrival for
each path is a uniform random variable in . Each base
station has one traditional antenna or four-element antenna ar-
rays. and . The channel fading is stable
within each frame and is independent between frames. We have
10 000 simulation runs to ensure an accurate enough confidence
interval.

Path loss is due to the decay of the intensity of a propagating
radio wave. In the simulations, we use the two-slope path-loss
model [32], [33] to obtain the average received power as a func-
tion of distance. According to this model, the average path loss
is given by

(31)

where is a constant, is the distance between the mobile user
and the base station, is the basic path-loss exponent,

is the additional path loss component, is the base
station antenna height, is the mobile antenna height, and
is the wavelength of the carrier frequency. We assume that the

mobile antenna height is 2 m and the base station antenna height
is 50 m. The carrier frequency is 900 MHz.

In the urban microcell system, the link quality is also affected
by the shadowing of the line-of-sight path from terrain, build-
ings, and trees. The shadowing is generally modeled as log-
normal distribution[41]. The probability density function (pdf)
is given by

pdf (32)

where is related to the path loss and is the shadow stan-
dard deviation. In the simulation, for each link, 3-dB log-normal
shadow fading is considered.

Fig. 1 illustrates the overall transmitted power as a func-
tion of the average targeted SINR and Fig. 1(a) shows the
uplink case. We compare performances of the fixed SINR
assignment algorithm [16] and those of the proposed adap-
tive-resource management, with and without beamforming.
Here, we assume that each user has the same desired time
average SINR threshold . For the
SINR range, we assume and

, where is defined as window
size and . The solid curve (NB-fixed) shows the
algorithm with the fixed SINR assignment and without beam-
forming [16]. The dashed-dotted curve (NB-adapt) shows
the adaptive link quality and power management without
beamforming. The dashed curve (B-fixed) shows the algorithm
with the fixed SINR assignment and with beamforming [16].
The dotted curve (B-adapt) shows the adaptive link quality
and power management with beamforming. The simulation
results show that, compared with the fixed SINR assignment
algorithm [16], the proposed algorithms significantly reduce
the overall transmitted power by 60% and extend the maximal
achievable SINR by 6 dB by using the adaptive link quality and
power management alone. Beamforming can further reduce
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Fig. 2. Effects of window size.

the overall power by 60% and the maximal achievable SINR
is improved by another 7 dB. Joint beamforming and our
proposed algorithms can further reduce CCIs, especially at the
higher SINR area, where CCIs become more severe. Fig. 1(b)
shows the downlink case. We compare the performances of
the adaptive downlink algorithm and those of the fixed SINR
assignment [17] with beamforming and without beamforming.
Here, similar as the uplink, we select dB. We use
the simplifications mentioned in the previous section. From
Fig. 1(b), we can see that the adaptive SINR threshold alloca-
tion can have 60% reduction of the overall transmitted power,
which in turn reduces CCIs and increases the network capacity.
Furthermore, the feasible SINR areas are extended by 4 dB.
The beamforming can further reduce the overall power by
40%, but at the higher SINR area, because of the simplification
of downlink beamforming algorithm, the advantage of beam-
forming is decreasing. From the simulation results, we can see
that it is an efficient method to combat the time-varying nature
of channel and CCIs by dynamically allocating resources.

In Fig. 2, we show the effects of window size on the per-
formance of the proposed algorithms in uplink. In Fig. 2(a),
we normalize the overall transmitted power with the previous
scheme [16] and compare that for various window sizes. We can
see that the proposed algorithm can reduce about 4 dB of the
overall transmitted power. When the window size increases, the
speed of power reduction decreases and power stops decreasing,
after the window size is greater than some value. This is be-
cause of the constraint that each user’s time-average SINR is
a constant. A user with a good channel condition now gets a
higher SINR. In the future, the user has to pay back and be as-
signed with a lower SINR. When the proposed algorithm is com-
bined with beamforming, the point where the overall transmitted
power stops decreasing moves to a higher . In Fig. 2(b), we
compare the maximal SINR improvement versus window size.
We can see that the proposed algorithm can increase the max-
imal SINR by up to 6 dB. The increasing speed of the maximal

Fig. 3. Simulation system setup 2.

achievable SINR is reduced as the window size increasing. Here,
again, joint beamforming and the proposed resource-allocation
algorithm has a better performance.

In order to further show that joint beamforming and the pro-
posed resource allocation can combat CCIs in different DOAs
and different channel conditions over time, an uplink network
with two mobile users and one base station is set up as shown in
Fig. 3. The distances between the two mobile users and the base
station are and , respectively. The difference between two
users’ DOAs is and the multipath fading is modeled by Jakes
model [42]. Three multipath discrete scatterers are uniformly
randomly placed on a disk with radius m centered at
each mobile user. We select dB and . The other
settings are the same as before.
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Fig. 4. Performance improvement by joint considering beamforming.

In Fig. 4(a), we compare the overall transmitted power versus
DOA. Here, the first user is located at 90 and m. The
second user is located in different DOA and m. We can
see that even when DOAs for the two users are almost the same
(the second user is located from 85 to 95 ), the proposed algo-
rithm can still reduce the overall transmitted power by about 5
dB. When DOAs are different, the joint beamforming and pro-
posed resource allocation can further reduce the overall trans-
mitted power. In Fig. 4(b), we compare the maximal achievable
SINR versus the relative distance ( ). Here, the first user is lo-
cated at 90 and m. The second user is located at 90
and varies from 10 to 1000 m. In this situation, both users
suffer severe CCIs from each other’s transmitted powers. The
maximal achievable SINR reduces sharply with increasing of

. When is small, the proposed algorithm can improve the
performance by 6 dB, compared to the fixed SINR assignment
algorithm. When is almost equal to , the proposed algo-
rithm can still improve the performance by about 2 dB, which
is due to the constantly changing DOAs of the multipath.

VI. CONCLUSION

In summary, by adaptively managing the link quality and
transmitted power, we minimize the overall transmitted power
while each user’s time-average link quality is maintained as a
constant to ensure fairness. We develop the schemes to ensure
fairness and to encourage some users to sacrifice their resource
demands in a short period of time, with the incentive being that
the system performance can be improved and their sacrifices can
be compensated in the future. It can be conceived that the wire-
less network resources are “water filling” in time domain and
are allocated for different users to reduce the overall network
transmitted power.

In uplink cases, the proposed adaptive algorithm for uplink
reduces 60% of the overall transmitted power of mobile users,
compared with that of the fixed SINR threshold scheme [16],

which is very critical in terms of battery lives in mobile sets. In
downlink cases, the proposed adaptive algorithm significantly
saves the overall transmitted power of base stations by 60%,
compared with that of the algorithms in [17], which in turn in-
creases the capacity of wireless networks. The maximal achiev-
able SINR is extended by 4–6 dB toward higher SINR areas
with better link qualities. When combining with beamforming,
our scheme can combat CCIs in different DOAs and different
channel conditions over time, which leads to a better utilization
of the space–time characteristics of wireless communication.
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