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Abstract— A fair and simple scheme to allocate subcarrier,
rate, and power for multiuser OFDMA systems is considered. The
problem is to maximize the overall system rate, under each user’s
maximal power and minimal rate constraints, while considering
the fairness among users. The approach proposes the fairness
and low complexity implementation based on Nash Bargaining
Solutions and coalitions. First, a two-user algorithm is developed
to bargain subcarrier usage between both users. Based on this
algorithm, we develop a multiuser bargaining algorithm where
optimal coalition pairs among users are constructed. Simulation
results show that the proposed algorithms not only provide fair
resource allocation among users, but also have comparable over-
all system rate with the scheme maximizing the total rate without
considering fairness. They also have much higher rates than the
scheme with max-min fairness. The proposed algorithms have
complexity O(N log N), where N is the number of subcarriers.

I. INTRODUCTION

Orthogonal frequency division multiple access (OFDMA)
is a promising multi-access technique for high data rate
transmissions over wireless radio channels. Efficient resource
allocation, which involves bit loading, transmission power
control, and subcarrier assignment, can greatly improve system
performance and so draw a great attention in recent researches.

Most of previous resource allocation approaches [1]- [7]
study how to efficiently maximize the total transmission rate or
minimize the total transmitted power under some constraints.
The formulated problem and their solutions are focused on
the efficiency issue. But these approaches benefit the users
closer to the base station or with a higher power capability.
The fairness issue has been mostly ignored. On the other
hand, as for the fairness among users, max-min criterion has
been considered for channel allocation in multiuser OFDM
systems [4]. However, by using this criterion, it is not easy
to take into account of the notions that users might have
different requirements. Moreover, since the max-min approach
deals with the worst case scenario, it penalizes users with
better channels and reduces the system efficiency. In addition,
most of the existing solutions have high complexities, which
prohibit them from practical implementation. Therefore, it is
necessary to develop an approach that considers altogether
the fairness of resource allocation, system efficiency, and
complexity.

In daily life, a market is served as a central gathering point,
where people can exchange goods and negotiate transactions,
so that people will be satisfied through bargaining. Similarly,
in single cell multiuser OFDMA systems, there is a base sta-
tion that can serve as a function of the market. The distributed
users can negotiate via base station to cooperate in making the
decisions on the subcarrier usage, such that each of them will
operate at its optimum and joint agreements are made about
their operating points. Such a fact motivates us to apply the
cooperative game theory [8], [9], [11], [16], which can achieve

the crucial notion of fairness and maximize the overall system
rate. The concepts of Nash Bargaining Solution (NBS) and
coalitions are taken into consideration, because they provide
a fair operation point in a distributed implementation.

Motivated by the above reasons, we apply the cooperative
game theory for resource allocation in OFDMA systems. The
goal is to maximize the overall system rate, under the con-
straints of each user’s minimal rate requirement and maximal
transmitted power. First we develop a fast two-user bargaining
algorithm to negotiate the usage of subcarriers. The approach
is based on NBS which maximizes the system performance
while keeping the NBS fairness. Then we group the users into
groups of size two, which is defined as a coalition. Within
each coalition, we use two-user algorithm to improve the
performance. In the next iteration, new coalitions are formed
and subcarrier allocation is optimized until no improvement
can be obtained. By using Hungarian method, optimal coali-
tions are formed and the number of iterations can be greatly
reduced. A significant point for the proposed algorithm is that
the complexity is only O(N log N). Moreover, this approach
can also be applied to other formulated problems dealing with
multiuser communications with different optimization goals
and constraints. From the simulation results, the proposed
algorithms allocate resources fairly and efficiently compared
to the other two schemes: maximal rate and max-min fairness.

This paper is organized as follows: In Section II, the system
model is given. In Section III, basics for NBS of cooperative
game theory are presented. In Section IV, the optimization
problem is formulated. A two-user algorithm and a multiuser
algorithm are constructed. In Section V, simulations are de-
veloped. In Section VI, conclusions are drawn.

II. SYSTEM MODEL AND DESCRIPTION

Consider an uplink scenario of a single cell multiuser
OFDMA system. There are totally K users randomly located
within the cell. The users want to share their transmissions
among N different subcarriers. Each subcarrier has a band-
width of W . The ith user’s transmission rate is Ri and is
allocated to different subcarriers as Ri =

∑N
j=1 rij , where

rij is the ith user’s transmission rate in the jth subcarrier.
Define the rate allocation matrix r with [r]ij = rij . Define
the subcarrier assignment matrix [A]ij = aij , where aij =
1, if rij > 0; aij = 0, otherwise.. For single cell OFDMA, no
subcarrier can support the transmissions for more than one
user, i.e.,

∑K
i=1 aij = 1,∀j.

Adaptive modulation provides each user with the ability to
match each subcarrier’s transmission rate rij , according to
its channel condition. MQAM is a modulation method with
a high spectrum efficiency, which is adopted in our system
without loss of generality. In [13], bit error rate (BER) of
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MQAM as a function of rate and signal to noise ratio (SNR)

is approximated by BERij ≈ c1e
−c2

Γij

2
rij−1 , where c1 ≈ 0.2,

c2 ≈ 1.5, and Γij is the ith user’s SNR at the jth subcarrier:

Γij =
PijGij

σ2
(1)

where Gij is the subcarrier channel gain and Pij is the
transmitted power for the ith user in the jth subcarrier. The
thermal noise power for each subcarrier is assumed to be
the same and equal to σ2. Define power allocation matrix
[P]ij = Pij . Without loss of generality, we assume a fixed
and the same BER for all users in all subcarriers. We have

rij = W log2

(
1 +

PijGijc3

σ2

)
(2)

where c3 = c2/ ln(c1/BER) with BER = BERij ,∀i, j.
We assume the slow fading channel such that the channel

is stable within each OFDM frame. The channel conditions
of different subcarriers for each user are assumed perfectly
estimated. There exist reliable feedback channels from base
station to mobile users without any delay. Moreover for a prac-
tical system, the OFDM frequency offset between the mobile
user and the base station is around several tenth Hz. The inter-
carrier-interference caused by the frequency offset may cause
some error floor increase. However this is not the bottleneck
limiting the system performance and this offset can be feed
back to the mobile for adjustment. In [12], guard subcarrier
is put at the edge of each subcarrier such that multiple access
interference can be minimized and synchronized algorithm is
applicable for each subcarrier. So in this paper, we assume
mobiles and base station are synchronized.

III. BASICS FOR NASH BARGAINING SOLUTION

The bargaining problem of cooperative game theory can be
described as follows [8], [9], [11]: Let K = {1, 2, . . . ,K}
be the set of players. Let S be a closed and convex subset
of �K to represent the set of feasible payoff allocations that
the players can get if they all work together. Let Ri

min be the
minimal payoff that the ith player would expect; otherwise, he
will not cooperate. Suppose {Ri ∈ S|Ri ≥ Ri

min,∀i ∈ K} is
a nonempty bounded set. Define Rmin = (R1

min, . . . , RK
min),

the pair (S, Rmin) is called a K-person bargaining problem.
Within the feasible set S, we define the notion of Pareto

optimal as a selection criterion for the bargaining solutions.
Definition 1: The point (R1, . . . RK) is said to be Pareto

optimal, if and only if there is no other allocation R′
i such

that R′
i ≥ Ri,∀i, and R′

i > Ri,∃i, i.e. there exists no other
allocation that leads to superior performance for some users
without inferior performance for some other users.

There might be infinite number of Pareto optimal points. We
need further criteria to select a bargaining result. A possible
criterion is the fairness. One commonly used fairness criterion
is max-min [4], where the performance of the user with worst
channel conditions is maximized. This criterion penalizes the
users with good channels and as a result generates inferior
overall system performance. In this paper, we use the criterion
of fairness NBS. The intuitive idea is that, after the minimal
requirements are satisfied for all users, the rest resources are

allocated proportionally to users according to their conditions.
We will discuss the proportional fairness concept which is a
special case of NBS fairness in the next section and show the
fair results in the simulation section. There exist many kinds of
cooperative game solutions [11]. Among them, NBS provides
a unique and fair Pareto optimal operation point under the
following conditions. NBS is briefly explained as follows:

Definition 2: r̄ is said to be a Nash Bargaining Solution
1 in S for Rmin, i.e., r̄ = φ(S, Rmin), if the following
Axioms are satisfied: Individual Rationality, Feasibility,
Pareto Optimality, Independence of Irrelevant Alternatives,
Independence of Linear Transformations, and Symmetry [11]

Theorem 1: Existence and Uniqueness of NBS: There is
a unique solution function φ(S, Rmin) that satisfies all six
axioms in Definition 1. And this solution satisfies [11]

φ(S, Rmin) ∈ arg max
r̄∈S,R̄i≥Ri

min
,∀i

K∏
i=1

(
R̄i − Ri

min

)
. (3)

As discussed above, the cooperative game in the multiuser
OFDMA system can be defined as follows: Each user has
Ri as its objective function, where Ri is bounded above and
have a nonempty, closed, and convex support. The goal is to
maximize all Ri simultaneously. Rmin represents the minimal
performance and is called the initial agreement point. Define
S as the feasible set of rate allocation matrix r that satisfies
Ri ≥ Ri

min,∀i. The problem, then, is to find a simple way
to choose the operating point in S for all users, such that this
point is optimal and fair.

IV. COOPERATIVE GAME APPROACHES

A. Problem Formulation

Since a channel for a specific subcarrier may be good
for more than one user, there is a competition among users
for their transmissions over the subcarriers with large Gij .
Moreover the maximal transmitted power for each user is
bounded by the maximal transmitted power Pmax and each
user has a minimal rate requirement Ri

min if it is admitted to
the system. In this paper, the optimization goal is to determine
different users’ channel assignment matrix A and power matrix
P such that the cost function will be maximized, i.e.,

max
A,P

U (4)

subject to




∑K
i=1 aij = 1,∀j;

Ri ≥ Ri
min,∀i;∑N

j=1 Pij ≤ Pmax,∀i.

where U can have three definitions in terms of the objectives:

Maximal Rate: U =
N∑

i=1

Ri, (5)

Max-min Fairness: U = min Ri, (6)

Nash Bargaining Solutions: U =
K∏

i=1

(
Ri − Ri

min

)
. (7)

For maximal rate optimization, the overall system rate is
maximized. For max-min fairness optimization, the worst case

1Because of length limitation of the paper, the detailed descriptions of the
definition are omitted.

Globecom 2004 3727 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society



situation is optimized with strict fairness. In this paper, we
proposed the Nash Bargaining Solutions with the following
two reasons. First, it will be shown later that this form will
ensure fairness of allocation in the sense that NBS fairness is
a generalized proportional fairness. Second, cooperative game
theories prove that there exists a unique and efficient solution
under the six axioms. The difficulty to solve (4) by traditional
methods lies in the fact that the problem itself is a constrained
combinatorial problem and the constraints are nonlinear. Thus
the complexities of the traditional schemes are high especially
with large number of users. Moreover, distributed algorithms
are desired for uplink OFDMA systems, while centralized
schemes are dominant in literature. In addition, most of the
existing work doesn’t discuss the issue of fairness. We will
use the bargaining concept to develop simple and distributed
algorithms that can achieve an efficient and fair resource
allocation in the rest of this section.

We will show in the following definition and theorem that
proportional fairness [10], which is widely used in wired
networks, is a special case of the fairness provided by NBS.

Definition 3: We call the rate distribution is proportionally
fair, when any change in the distribution of rates will result
in the sum of the proportional changes of the utilities to be
non-positive, i.e.,

∑
i

Ri − R̃i

R̃i

≤ 0, ∀Ri ∈ S. (8)

where R̃i and Ri are the proportionally fair rate distribution
and any other feasible rate distribution for the ith user,
respectively.

Theorem 2: When Ri
min = 0,∀i, the NBS fairness is the

same as the proportional fairness.
Proof: Since the function of ln is concave and monotonic, the
NBS in (3) is equivalent to

max
r∈S

K∑
i=1

ln (Ri) , (9)

when Ri
min = 0,∀i. Define Ûi = ln(Ri). As shown in [15],

the following optimality condition holds for all feasible Ri ∈
S,∀i: ∑

i

∂Ûi

∂Ri
|R̃i

(Ri − R̃i) ≤ 0. (10)

The above equation is the same as the proportional fairness
definition in (8). So the proportionally fair is a special case
of NBS fairness when Ri

min = 0,∀i. Since minimal rate
requirement is desired in practice, we apply NBS fairness in
this paper. QED

Next, we want to demonstrate that there exists a unique
and optimal solution in (4), when the feasible set satisfying
the constraints is not empty. We show the uniqueness and
optimality in two steps. First, we prove the uniqueness and
optimality with fixed channel assignment matrix A. Then,
we prove that the probability that there exists more than one
optimum is zero for different channel assignment matrix A.

First, under fixed channel assignment matrix A, each user
tries to maximize its own rate under the power constraint

independently, because any subcarrier is not shared by more
than one users. This is similar to the single user case. Since we
assume the feasible set that satisfies the constraints in (4) is not
empty. Within the feasible set, each user can get its minimal
rate requirement Ri

min by allocating its power to the assigned
channel set. For all three cost functions in (5), (6), and (7),
the problem in (4) is reduced to the following problem:

max
P

Ui = Ri (11)

subject to
N∑

j=1

Pijaij ≤ Pmax,∀i.

Obviously, the above problem is a water filling problem [17]
and has a unique optimal solution. Define

Iij =

{
σ2

c3Gij
, if aij = 1;

∞, otherwise.
(12)

The unique optimal solution is

Pij = (µi − Iij)+ and rij = W log2(1 +
Pijaij

Iij
), (13)

where y+ = max(y, 0). Here µi is the water level and can be
solved by bisection search of

∑N
j=1 Pijaij = Pmax.

We have proved the optimality and uniqueness with fixed
channel assignment. The channel assignment is a combinato-
rial problem with finite number of combinations. For example,
the total number of combinations for the system with K users
and N subcarriers is KN . So, we can obtain the optimal
solution by solving the following problem

arg max
A

U, (14)

where U is obtained by solving (11) with respect to each A.
The above problem can be solved by means of full search

to get the optimal channel assignment and power allocation.
Because the optimization goal U , the channel gains, and the
rates are continuous random values, it has zero probability to
have two channel assignment matrices that generate the same
optimization goal. So there exists a unique channel assignment
matrix that generates the optimal solution in (4).

B. Bargaining Algorithm for Two-user Case

In this subsection, we consider the case when K = 2
and we will develop a fast two-user bargaining algorithm.
Similar to bargaining in a real market, the intuitive idea to
solve the two-user problem is to allow two users to negotiate
and exchange their subcarriers such that mutual benefits will
be obtained. The difficulty is to determine how to optimally
exchange subcarriers, which is a complex integer programming
problem. An interesting low complexity algorithm was given
in [3]. The idea is to sort the order of subcarriers first and then
to use a simple two-band partition for the subcarrier assign-
ment. When SNR is high, the two-band partition for two-user
subcarrier assignment is near optimal for the optimization goal
of maximizing the weighted sum of both users’ rates.

We propose a fast algorithm between two users for the
optimization goals by exchanging their subcarriers as shown
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TABLE I: Two-user Algorithm
1. Initialization:

Initialize subcarrier assignment with minimal rate requirements.
For Maximal Rate, �1 = �2 = 1;
For NBS, calculate �i = 1/(Ri − Ri

min).
If Ri = Ri

min, assign a big number to �i.

2. Sort the subcarriers: Arrange index from largest to smallest
g

�1
1j

g
�2
2j

.

3. For j=1,. . . , N-1
User 1 occupies and water-fills subcarrier 1 to j;
User 2 occupies and water-fills subcarrier j+1 to N.
Waterfill both users to assigned subcarrier sets.
Calculate U .

End
4. Choose the two-band partition (the corresponding j)

that generates the largest U satisfing the constraints.
Calculate A, P, R1, and R2.

5. Update channel assignment
-Maximal Rate: Return
-NBS: If U can not be increased by updating �i, exit;
otherwise, update �i; go to Step 2.

in Table I. First all subcarriers are initially assigned. Any
heuristical or greedy approaches can be applied to have
subcarriers assigned while the system is still feasible. Then,
two users’ subcarriers are sorted and a two-band partition
algorithm is applied for them to negotiate the subcarriers. For
maximal rate optimization goal, only one iteration is necessary.
For NBS optimization goal, an intermediate parameter needs
to be updated for every iteration. From the simulations, the
iterations between Step 2 and Step 5 is converged within 2
to 3 rounds. The algorithm has the complexity of O(N2) and
can be further improved by using a binary search algorithm
with a complexity of only O(N log N).

Theorem 3: The algorithm in Table 1 is near optimal for
both the problem of maximal rate and NBS goals in (4) with
the number of users equal to two, when SNR of each subcarrier
for all users in (1) is much greater than 1 [20].

C. Multiple-User Algorithm Using Coalitions

For the case where the number of users is larger than
two, most work in literature concentrates on solving the
OFDMA resource allocation problem for all users together
in a centralized way [1]- [7]. Because the problem itself is
combinatorial and nonlinear, the computational complexity is
very high with respect to the number of subcarriers by the
existing methods [1]- [7]. In this paper, we propose a two-step
iterative scheme: First, users are grouped into pairs, which
are called coalitions. Then for each coalition, the algorithm
in Table 1 is applied for two users to negotiate and improve
their performances by exchanging subcarrier sets. Further, the
users are regrouped and renegotiates again and again until
convergence. By using this scheme, the computational cost
can be greatly reduced. First, we give the strict definition of
coalition as follows.

Definition 4: For a K-person game, any nonempty subset
of the set of players is called a coalition.

The question now is how to group users into coalitions with
size 2. A straightforward algorithm is to form the coalition
randomly and let the users bargain arbitrarily. We call this
algorithm random method, which can be described by the steps
in Table II. During the initialization, the goal is to assign
all subcarriers to users and try to satisfy the minimal rate

and maximal power constraint. We develop a fast algorithm.
Starting from the user with the best channel conditions, if the
user has rate larger than or equal to Ri

min, it is removed from
the assignment list. After every user has enough rate, the rest
of subcarriers are greedily assigned to the users according to
their channel gains. Note that there is no need for the initial
assignment to satisfy all constraints. The constraints will be
satisfied during the iterations of negotiations.

We quantify the convergence speed by the round of negotia-
tions. The convergence speed of the random method becomes
slow with the number of users increasing. This is because
the negotiations within arbitrarily grouped coalitions are less
effective and most negotiations turn out to be the same as
or little improvement than the performance of the channel
allocation before the negotiations. So the optimal cooperation
grouping among subsets of the users should be taken into
consideration. In order to speed up convergence, each user
needs to carefully select who it should negotiate with.

Each user’s channel gains are varying over different sub-
carriers. A user may be preferred by many users to form
coalitions, while only two-user coalition is allowed. Thus,
the problem to decide the coalition pairs can be stated as an
assignment problem [14]: “a special structured linear program-
ming which is concerned with optimally assigning individuals
to activities, assuming that each individual has an associated
value describing its suitability to execute that specific activity”.

Now, we formulate the assignment problem in details.
Define a K × K assignment table X. Each component rep-
resents whether or not there is a coalition between two users.
Xij = 1, if user i negotiates with user j;Xij = 0, otherwise.
Obviously matrix X is symmetric,

∑K
i=1 Xij = 1,∀j, and∑K

j=1 Xij = 1,∀i.
Define the benefit for the ith user to negotiate with the jth

user as bij . Obviously bii = 0,∀i. For the other cases, from
(4), each element of the cost table b can be expressed as:

bij = max(U(R̃i, R̃j) − U(R̂i, R̂j), 0), (15)

where R̃i and R̃j are the rates if the negotiation happens, and
R̂i and R̂j are the original rates, respectively. Obviously b is
also symmetric.

So the assignment problem is how to select the pairs of
negotiations such that the overall benefit will be maximized,
which is stated as:

max
X

K∑
i=1

K∑
j=1

Xijbij (16)

s.t.




∑K
i=1 Xij = 1 j = 1 . . . K,∀i;∑K
j=1 Xij = 1 i = 1 . . . K,∀j;

Xij ∈ {0, 1} ∀i, j.

One of the solutions for (16) is Hungarian method [14]
which can always find the optimal coalition pairs. In each
round, the optimal coalition pairs are determined by Hungarian
method and then the users are set to bargain together using
the two-user algorithm in Table I. The whole algorithm stops
when no bargaining can further improve the performance, i.e.,
b is equal to a zero matrix. Based on the above explanations,
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TABLE II: Multiuser Algorithm
1. Initialize the channel assignment:

Assign all subcarriers to users.
2. Coalition Grouping:

If the number of users is even, the users are grouped into coalitions;
otherwise, a dummy user is to make the total number of users even.
No user can exchange its resource with this dummy user.
- Random Method: Randomly form 2-user coalition.
- Hungarian Method: Form user coalitions by Hungarian algorithm.

3. Bargain within Each Coalition:
Negotiate between two users in all coalitions to exchange subcarriers
using the two-user algorithm in Table I.

4. Continue:
Repeat Step 2 and Step 3, until no improvement can be achieved.

we develop the multi-user resource allocation in the multiuser
OFDMA systems in Table II.

In each iteration, the optimization function U is nondecreas-
ing in Step 2 and Step 3 and the optimal solution is upper
bounded. Consequently the proposed multiuser algorithm is
convergent. The complexity of Hungarian method is O(K4).
Since the number of users is much less than the number
of subcarriers, the complexity of the proposed algorithm is
much lower than the schemes that apply Hungarian method
directly to the subcarrier domain [5], [6]. Since the channel
responses for each user over different subcarriers are known
in the base station, the random method can be implemented in
a distributed manner, while the Hungarian method needs some
limited centralized control within base station. The signaling
overhead for such schemes are negligible because the channel
responses are obtained by the base station anyway and the
information for channel assignment matrix only cost N bit
per user.

V. SIMULATION RESULTS

In order to evaluate the performance of the proposed
schemes, we consider a two-user and a multiple user simula-
tion setups. Three different optimization goals (maximal rate,
max-min, and NBS) are compared.

First, a two-user OFDMA system is taken into considera-
tion. We simulate the OFDMA system with 128 subcarriers
over 3.2 MHz band. To make the tones orthogonal to each
other, the symbol duration is 40µs. An additional 10µs guard
interval is used to avoid inter-symbol-interference due to
channel delay spread. This results in a total block length
as 50µs and a block rate as 20k. The maximal power is
Pmax = 50mWatts, and the desired BER is 10−2 (without
channel coding). The thermal noise level is σ2 = 10−11Watts.
The propagation loss factor is 3. The distance between user 1
and base station is fixed at D1 = 50m, while D2 is varying
from 10m to 200m. Ri

min = 100Kbps,∀i. Doppler frequency
is 100Hz.

To evaluate the performances, we have tested 105 sets of
frequency selective fading channels, which is simulated using
four-ray Rayleigh model [19] with the exponential power
profile and 100ns root-mean-square (RMS) delay spread.

In Fig. 1, the rates of both users for the NBS, maximal rate,
and max-min schemes are shown vs. D2. For the maximal
rate scheme, the user closer to the base station has higher rate
and the rate difference is very large when D1 and D2 are
different. For the max-min scheme, both users have the same
rate which is reduced when D2 is increasing. This is because
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the system has to accommodate the user with the worst channel
condition. While for the NBS scheme, user 1’s rate is almost
the same regardless D2 and user 2’s rate is reduced when D2

is increasing. This shows that the NBS algorithm is fair in the
sense that the user’s rate is determined only by its channel
condition and not by other interfering users’ conditions.

In Fig. 2, we show the overall rate of two users for three
schemes vs D2. Because the max-min algorithm is for the
worst case scenario, it has the worst performance, especially
when the two users have the very different channel conditions,
because the user with worse channel conditions will limit
the usage of the system resources. The NBS scheme has the
performance between the maximal rate scheme and max-min
scheme, while the maximal rate scheme is extremely unfair.
Moreover, the performance loss of NBS scheme to that of
the maximal rate scheme is small. As we mentioned before,
the NBS scheme maintains the fairness in a way that one
user’s performance is unchanged to the other user’s channel
conditions. So the proposed algorithm is a good tradeoff
between the fairness and the overall system performance.

We setup the simulations with more users to test the
proposed algorithms. All the users are randomly located within
the cell of radius 200m. One base station is located in the
middle of the cell. Each user has the minimal rate Ri

min =
25kbps. The other settings are the same as those of the two-
user case simulations.

In Fig. 3, we show the sum of all users’ rates vs. the number

Globecom 2004 3730 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society



2 3 4 5 6 7 8

12

14

16

18

20

22

24

26

Overall Rate vs. Number of Users

Number of Users

O
ve

ra
ll 

R
at

e 
(M

bp
s)

Maximal Rate
NBS
Max Min

Fig. 3: Overall Rate (Mbps) vs. No. of Users

of users in the system for three schemes. We can see that all
three schemes have better performances when the number of
users increases. This is because of multiuser diversity, pro-
vided by the independent varying channels across the different
users. The performance improvement satiates gradually. The
NBS scheme has a similar performance to that of the maximal
rate scheme and has a much better performance than that of the
max-min scheme. The performance gap between the maximal
rate scheme and the NBS scheme reduces when the number
of users is large. This is because more bargain pair choices
are available to increase the system performance.

In Fig. 4, we show the histogram of the number of rounds
that is necessary for convergence of the random method
and Hungarian method with eight users. Hungarian method
converges in about 1 to 6 rounds, while the random method
may converge very slowly. The average converge rounds for
the random method is 4.25 times to that of Hungarian method.
By using Hungarian method, the best negotiation pairs can be
found. Consequently, the convergence rate is much quicker
and the computation cost is reduced.

VI. CONCLUSIONS

In this paper, we use cooperative game theory including
NBS and coalitions to develop a fast and fair algorithm for
adaptive subcarrier, rate, and power allocation in the uplink
multiuser OFDMA systems. The optimization problem takes
consideration of fairness and the practical implementation
constraints. The proposed algorithm consists of two steps.
First a Hungarian method is constructed to determine optimal
bargaining pairs among users. Then a fast two-user bargain-
ing algorithm is developed for two users to exchange their
resources. The above two steps are taken iteratively for users
to negotiate the optimal resource allocation. The approach can
also be applied to other optimization goals. The computation
complexity can be greatly reduced.

From the simulation results, the proposed algorithm shows
similar overall rate to that of the maximal rate scheme and
much better performance than that of the max-min scheme.
The NBS fairness is demonstrated by the fact that a user’s
rate is not determined by the interfering users. The proposed
algorithm provides a near optimal fast solution and finds
a good tradeoff between the overall rate and fairness. The
significance of the proposed algorithm is the bargaining and

Fig. 4: Histogram for Convergence

NBS fairness that result in the low complexity of O(N log N)
with fair individual performance and good overall system
performance.
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