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Abstract—In this paper, a fair scheme to allocate subcarrier,
rate, and power for multiuser orthogonal frequency-division
multiple-access systems is proposed. The problem is to maximize
the overall system rate, under each user’s maximal power and
minimal rate constraints, while considering the fairness among
users. The approach considers a new fairness criterion, which
is a generalized proportional fairness based on Nash bargaining
solutions and coalitions. First, a two-user algorithm is developed
to bargain subcarrier usage between two users. Then a multiuser
bargaining algorithm is developed based on optimal coalition
pairs among users. The simulation results show that the proposed
algorithms not only provide fair resource allocation among users,
but also have a comparable overall system rate with the scheme
maximizing the total rate without considering fairness. They also
have much higher rates than that of the scheme with max-min
fairness. Moreover, the proposed iterative fast implementation has
the complexity for each iteration of only ( 2 log

2
+ 4),

where is the number of subcarriers and is the number of
users.

Index Terms—Channel allocation, coalition, cooperative game,
Nash bargaining solution, orthogonal frequency-division multiple
access (OFDMA).

I. INTRODUCTION

ORTHOGONAL frequency-division multiple access
(OFDMA) is a promising multiple-access technique

for high-data-rate transmissions over wireless radio chan-
nels. Efficient resource allocation, which involves bit loading,
transmission power allocation, and subcarrier assignment,
can greatly improve system performance, and so draws great
attention in recent research.

The resource-allocation problem for a single user across par-
allel orthogonal channels is to maximize the total achievable
rate subject to a total power constraint, which can be optimally
solved by means of the waterfilling method [22]. The rate alloca-
tion in each subcarrier is then determined by the corresponding
power allocation. The waterfilling solution can also be applied
in single-cell multiuser systems with a given set of allocated
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subcarriers to each user, since, in that case, resource allocation
for each user can be considered independently.

However, if we consider the different users’ link qualities
and the discrete nature of the subcarrier-assignment problem,
it is more difficult to optimally assign the subcarriers to dif-
ferent users in a multiuser environment. By adaptively assigning
subcarriers of various frequencies, we can take advantage of
channel diversity among users in different locations, which is
called multiuser diversity. Such multiuser diversity stems from
channel diversity, including independent path loss and fading
of users. Most of the existing works focus on improving the
system efficiency by exploring multiuser diversity [1]–[7]. In
[1], the authors studied the dual problem, namely, to find the
optimal subcarrier allocation so as to minimize the total trans-
mitted power and satisfy a minimum rate constraint for each
user. The dual problem is further formulated as an integer pro-
gramming problem, and a suboptimal solution is found by using
the continuous relaxation. In [2], a low-complexity suboptimal
algorithm is proposed, which decouples the problem into two
subproblems, finding the required power and the number of sub-
carriers for each user, and finding the exact subcarrier and rate
allocation. In [3], the discrete subcarrier-allocation problem is
relaxed into a constrained optimization problem with contin-
uous variables. The problem is shown to belong to the class
of convex programming problems, thus allowing the optimal
assignment to be found with numerical methods. In [4], the
problem is formulated using a max-min criterion for downlink
application. The optimal channel-assignment problem is formu-
lated as a convex optimization problem, and a low-complexity
suboptimal algorithm is developed. Real-time subcarrier-allo-
cation schemes are studied in [5] and [6], which only use sub-
carrier allocation to enhance the performance while fixing mod-
ulation levels. The Hungarian method [17] can be used to solve
such problems with a high computational complexity of ,
where is the number of subcarriers. The suboptimal algo-
rithms are developed in [5] and [6] to simplify the Hungarian al-
gorithm and achieve similar performances. In [7], adaptive mod-
ulation is applied for an uplink OFDMA system.

Most of the previous approaches study how to efficiently
maximize the total transmission rate or minimize the total
transmitted power under some constraints. The formulated
problem and their solutions are focused on the efficiency issue.
But these approaches benefit the users closer to the base station
(BS) or with a higher power capability. The fairness issue has
been mostly ignored. On the other hand, as for the fairness
among users, the max-min criterion has been considered for
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channel allocation in multiuser orthogonal frequency-division
multiplexing (OFDM) systems [4]. However, by using this
criterion, it is not easy to take into account the notion that
users might have different requirements. Moreover, since
the max-min approach deals with the worst-case scenario, it
penalizes users with better channels and reduces the system
efficiency. In addition, most of the existing solutions have high
complexities, which prohibit them from practical implemen-
tation. Therefore, it is necessary to develop an approach that
considers altogether the fairness of resource allocation, system
efficiency, and complexity.

In daily life, a market serves as a central gathering point,
where people can exchange goods and negotiate transactions,
so that people can be satisfied through bargaining. Similarly,
in single-cell multiuser OFDMA systems, there is a BS that
can serve as a function of the market. The distributed users can
negotiate via the BS to cooperate in making the decisions on
the subcarrier usage, such that each of them can operate at its
optimum and joint agreements are made about their operating
points. Such a fact motivates us to apply the game theory [8], [9],
[11]–[14] and especially cooperative game theory, which can
achieve the crucial notion of fairness and maximize the overall
system rate. The concepts of the Nash bargaining solution (NBS)
and coalitions are taken into consideration, because they provide
a fair operation point in a distributed implementation.

Motivated by the above reasons, we apply the cooperative
game theory for resource allocation in OFDMA systems. The
goal is to maximize the overall system rate, under the constraints
of each user’s minimal rate requirement and maximal trans-
mitted power. First, we develop a two-user bargaining algorithm
to negotiate the usage of subcarriers. The approach is based on
NBS, which maximizes the system performance while keeping
the NBS fairness, where the NBS fairness is a generalized pro-
portional fairness. Then we group the users into groups of size
two, which is defined as a coalition. Within each coalition, we
use a two-user algorithm to improve the performance. In the next
iteration, new coalitions are formed, and subcarrier allocation
is optimized until no improvement can be obtained. By using
the Hungarian method, optimal coalitions are formed, and the
number of iterations can be greatly reduced. A significant point
for the proposed iterative algorithm is that the complexity for
each iteration is only , where is the
number of users. From the simulation results, the proposed al-
gorithms allocate resources fairly and efficiently, compared with
the other two schemes: maximal rate and max-min fairness. The
NBS fairness is demonstrated by the fact that a user’s rate is not
influenced by the interfering users.

This paper is organized as follows. In Section II, the system
model is given. In Section III, basics for the NBS of coopera-
tive game theory are presented. In Section IV, the optimization
problem is formulated. A two-user algorithm and a multiuser
algorithm are constructed. In Section V, simulations are devel-
oped, and in Section VI, conclusions are drawn.

II. SYSTEM MODEL AND DESCRIPTION

Consider an uplink scenario of a single-cell multiuser
OFDMA system. There are, in total, users randomly located

within the cell. The users want to share their transmissions
among different subcarriers. Each subcarrier has a band-
width of . The th user’s transmission rate is and is
allocated to different subcarriers as , where

is the th user’s transmission rate in the th subcarrier.
Define the rate-allocation matrix as . Define the
subcarrier-assignment matrix , where

if
otherwise.

(1)

For single-cell multiuser OFDMA, no subcarrier can support the
transmissions for more than one user, i.e., .

Adaptive modulation provides each user with the ability
to match each subcarrier’s transmission rate , according to
its channel condition. -ary quadrature amplitude modula-
tion (MQAM) is a modulation method with a high spectrum
efficiency, which is adopted in our system without loss of gen-
erality. In [16], the bit-error rate (BER) of MQAM as a function
of rate and signal-to-noise ratio (SNR) is approximated by

BER (2)

where , , and is the th user’s SNR at the
th subcarrier, given by

(3)

where is the subcarrier channel gain, and is the trans-
mitted power for the th user in the th subcarrier. The thermal
noise power for each subcarrier is assumed to be the same, and
equal to . Define power-allocation matrix . From
(2), without loss of generality, we assume a fixed and the same
BER for all users in all subcarriers. Then we have

(4)

where BER with BER BER .
We assume the slow-fading channel such that the channel is

stable within each OFDM frame. The channel conditions of dif-
ferent subcarriers for each user are assumed perfectly estimated.
There exist reliable feedback channels from BS to mobile users
without any delay. Moreover, for a practical system, the OFDM
frequency offset between the mobile user and the BS is around
several tenths of Hertz. The intercarrier interference caused by
the frequency offset may cause some error-floor increase. How-
ever, this is not the bottleneck limiting the system performance,
and this offset can be fed back to the mobile for adjustment. In
[15], a guard subcarrier is put at the edge of each subcarrier such
that multiple-access interference can be minimized, and a syn-
chronized algorithm is applicable for each subcarrier. So, in this
paper, we assume mobiles and the BS are synchronized.

In Fig. 1, an illustrative three-user example is given for the
system setup. The number of subcarriers for communication is
eight. Each subcarrier is occupied by one user. According to
the channel conditions, a user selects an adaptive modulation
level and adjusts its rate for this subcarrier. The conflicts are that
some subcarrier is good for more than one user, and the problem
is who this subcarrier should be assigned to. So our goal is to
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Fig. 1. System model.

assign the subcarriers by negotiating with other users via the BS,
so that each user can obtain its minimal rate while the system
overall performance is optimized. In the following sections, we
will discuss in detail how to implement the negotiation process.

III. BASICS FOR NASH BARGAINING SOLUTION

In this section, we will briefly review the basic concepts and
theorems for NBS. Then, we will give an overview on how to
apply these ideas to OFDMA resource allocation.

The bargaining problem of cooperative game theory can be
described as follows [8], [9], [11]. Let be
the set of players. Let be a closed and convex subset of to
represent the set of feasible payoff allocations that the players
can get if they all work together. Let be the minimal payoff
that the th player would expect; otherwise, he will not coop-
erate. Suppose is a nonempty
bounded set. Define , then the pair
( , is called a -person bargaining problem.

Within the feasible set , we define the notion of Pareto op-
timal as a selection criterion for the bargaining solutions.

Definition 1: The point is said to be Pareto
optimal, if and only if there is no other allocation such that

, and , , i.e., there exists no other alloca-
tion that leads to superior performance for some users without
inferior performance for some other users.

There might be an infinite number of Pareto optimal points.
We need further criteria to select a bargaining result. A pos-
sible criterion is the fairness. One commonly used fairness crite-
rion is max-min [4], where the performance of the user with the
worst channel conditions is maximized. This criterion penalizes
the users with good channels, and as a result, generates inferior
overall system performance. In this paper, we use the criterion
of fairness NBS. The intuitive idea is that after the minimal re-
quirements are satisfied for all users, the rest of the resources are
allocated proportionally to users according to their conditions.
We will discuss the proportional fairness concept, which is a
special case of NBS fairness, in the next section, and show the
fair results in the simulation section. There exist many kinds of
cooperative game solutions [11]. Among them, NBS provides

a unique and fair Pareto optimal operation point under the fol-
lowing conditions. NBS is briefly explained as follows.

Definition 2: is said to be an NBS in for , i.e.,
, if the following axioms are satisfied.

1) Individual Rationality: .
2) Feasibility: .
3) Pareto Optimality: For every , if

, then .
4) Independence of Irrelevant Alternatives: If ,

, then .
5) Independence of Linear Transformations: For any

linear scale transformation ,
.

6) Symmetry: If is invariant under all exchanges of agents,
.

Axioms 4–6 are called axioms of fairness. The irrelevant al-
ternative axiom asserts that eliminating the feasible solutions
that would not have been chosen should not affect the NBS so-
lution. Axiom 5 asserts that the bargaining solution is scale-in-
variant. Symmetry axiom asserts that if the feasible ranges for
all users are completely symmetric, then all users have the same
solution.

The following theorem shows that there is exactly one NBS
that satisfies the above axioms [11].

Theorem 1: Existence and Uniqueness of NBS: There is a
unique solution function that satisfies all six axioms
in Definition 1, and this solution satisfies [11]

(5)

As discussed above, the cooperative game in the multiuser
OFDMA system can be defined as follows. Each user has
as its objective function, where is bounded above and has
a nonempty, closed, and convex support. The goal is to maxi-
mize all simultaneously. represents the minimal per-
formance, and is called the initial agreement point. Define as
the feasible set of rate-allocation matrix that satisfies

. The problem, then, is to find a simple way to choose
the operating point in for all users, such that this point is op-
timal and fair.

IV. COOPERATIVE GAME APPROACHES

A. Problem Formulation

Since the channel conditions for a specific subcarrier may
be good for more than one user, there is a competition among
users for their transmissions over the subcarriers with large

. Moreover, the maximal transmitted power for each user
is bounded by the maximal transmitted power , and each
user has a minimal rate requirement if it is admitted to
the system. In this paper, the optimization goal is to determine
different users’ transmission function and for the different
subcarriers, such that the cost function can be maximized, i.e.,

subject to (6)
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Fig. 2. Two-user illustrative example.

where can have three definitions in terms of the objectives

Maximal Rate (7)

Max-min Fairness (8)

NBS (9)

For maximal rate optimization, the overall system rate is max-
imized. For max-min fairness optimization, the worst-case sit-
uation is optimized with strict fairness. In this paper, we pro-
posed the NBSs for the following two reasons. First, it will be
shown later that this form can ensure fairness of allocation in
the sense that NBS fairness is a generalized proportional fair-
ness. Second, cooperative game theories prove that there exists
a unique and efficient solution under the six axioms. The diffi-
culty in solving (6) by traditional methods lies in the fact that
the problem itself is a constrained combinatorial problem, and
the constraints are nonlinear. Thus, the complexities of the tra-
ditional schemes are high, especially with a large number of
users. Moreover, distributed algorithms are desired for uplink
OFDMA systems, while centralized schemes are dominant in
the literature. In addition, most of the existing work does not
discuss the issue of fairness. We will use the bargaining concept
to develop simple and distributed algorithms with limited sig-
naling that can achieve an efficient and fair resource allocation
in the rest of this section.

Fig. 2 illustrates a two-user example where is assumed
to be zero. Shaded area is the feasible range for and .
For the NBS cost function, the optimal point is at ( , )
with , where is the largest constant for the fea-
sible set . The physical meaning of this is that “after the users
are assigned with the minimal rate, the remaining resources are
divided between users in a ratio equal to the rate at which the
utility can be transferred” [11]. The geometrical interpretation
is that an isosceles triangle can be drawn with ( , )
as the apex, such that its one side is tangent to the set , and
the other side passes ( , ), i.e., the origin. Since line

is also tangent to curve , the ratio that two rates

can be exchanged within the set is equal to the ratio of the
two rates. The maximal-rate approach has the optimal point at

, which is the point within feasible set where
the sum of and is maximized. Compared with the
maximal-rate approach, the overall rate of the NBS solution is

, which is slightly smaller than . So, the NBS solution
has a small overall rate loss, but keeps the fairness. The max-min
approach considers the worst-case scenario and has the optimal
point with , where is the largest constant for
feasible set . The overall rate for the max-min approach is .
Compared with the max-min algorithm, the NBS solution has a
much higher overall rate, i.e., .

In addition, we will show in the following definition and the-
orem that proportional fairness [10], which is widely used in
wired networks, is a special case of the fairness provided by
NBS.

Definition 3: We say the rate distribution is proportionally
fair when any change in the distribution of rates results in the
sum of the proportional changes of the utilities being nonposi-
tive, i.e.,

(10)

where and are the proportionally fair rate distribution and
any other feasible rate distribution for the th user, respectively.

Theorem 2: When , the NBS fairness is the same
as the proportional fairness.

Proof: Since the function of is concave and monotonic,
when , the NBS in (5) is equivalent to

(11)

Define . The gradient of at the NBS point
is . Since the NBS point optimizes (11), for any
point deviating from the NBS point, the following optimality
condition holds:

(12)

The above equation means for all feasible that is
different from NBS point , the overall change of benefits is
negative, according to the gradients. Moreover, the above equa-
tion is the same as the proportional fairness definition in (10).
So the proportional fairness is a special case of the NBS fair-
ness when . Since the minimal-rate requirement is
necessary in practice, we apply NBS fairness in this paper.

Next, we want to demonstrate that there exists a unique and
optimal solution in (6) when the feasible set satisfying the con-
straints is not empty. We show the uniqueness and optimality
in two steps. First, we prove the uniqueness and optimality
with fixed channel-assignment matrix . Then, we prove that
the probability that there exists more than one optimal point
equalling zero for a different channel-assignment matrix .

First, under the fixed channel-assignment matrix , each user
tries to maximize its own rate under the power constraint inde-
pendently, because any subcarrier is not shared by more than one
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TABLE I
TWO-USER ALGORITHM

user. This is similar to the single-user case. We assume the fea-
sible set that satisfies the constraints in (6) is not empty. Within
the feasible set, each user can get its minimal rate requirement

by allocating its power to the assigned channel set. For all
three cost functions in (7)–(9), the problem in (6) is reduced to
the following problem:

subject to (13)

Obviously, the above problem is a waterfilling problem [22] and
has a unique optimal solution. Define

(14)

The unique optimal solution is

and (15)

where . Here, is the water level and can be
solved by a bisection search of

(16)

We have proved the optimality and uniqueness with fixed
channel assignment. The channel assignment is a combinatorial
problem with a finite number of combinations. For example, the
total number of combinations for the system with users and

subcarriers is . So, we can obtain the optimal solution by
solving the following problem:

(17)

where is obtained by solving (13) with respect to each .
The above problem can be solved by means of a full search

to get the optimal channel assignment and power allocation.
Among all the implementations of , we select the one that
generates the largest . Because the optimization goal , the

channel gains, and the rates are continuous random values, there
is zero probability of having two channel-assignment matrices
that generate the same value of optimization goal. So, with prob-
ability one, there exists a unique channel-assignment matrix that
generates the optimal solution in (6).

B. Bargaining Algorithm for Two-User Case

In this subsection, we consider the case when , and
we will develop a fast two-user bargaining algorithm. Similar
to bargaining in a real market, the intuitive idea to solve the
two-user problem is to allow two users to negotiate and ex-
change their subcarriers, such that mutual benefits can be ob-
tained. The difficulty is to determine how to optimally exchange
subcarriers, which is a complex integer-programming problem.
An interesting low-complexity algorithm was given in [3]. The
idea is to sort the order of subcarriers first, and then to use a
simple two-band partition for the subcarrier assignment. When
SNR is high, the two-band partition for two-user subcarrier as-
signment is near-optimal for the optimization goal of maxi-
mizing the weighted sum of both users’ rates.

We propose a fast algorithm between two users for the op-
timization goals by exchanging their subcarriers, as shown in
Table I. First, all subcarriers are initially assigned. Then, two
users’ subcarriers are sorted, and a two-band partition algorithm
is applied for them to negotiate the subcarriers. For the maximal
rate optimization goal, only one iteration is necessary. For the
NBS optimization goal, an intermediate parameter needs to be
updated for every iteration. From the simulations, the iterations
between Step 2 and Step 5 are converged within two to three
rounds. The algorithm has the complexity of for each
iteration, and can be further improved by using a binary search
algorithm with a complexity of only for each it-
eration. It is worth mentioning that all the iterations in Table I
happen within the BS, so there is no need for signaling between
users and BSs.

Proposition 1: The algorithm in Table I is near-optimal for
both the problem of maximal rate and NBS goals in (6) with the
number of users equal to two, when the SNR of each subcarrier
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for all users in (3) is much greater than one and there exists a
feasible solution.

Proof: In [3], the authors proved that if at the optimal sub-
carrier partition, the SNR is large in every subcarrier for all
users, and if the subcarriers are sorted according to the users’
subcarrier channel gain, then the optimal subcarrier partition
that maximizes consists of two contiguous fre-
quency bands with each user occupying one band. Here, and

are the two users’ rates, and and are the relative prior-
ities for both users. For the maximal rate optimization goal, the
theorem is proved by letting [3].

For NBS, the optimization goal is
, which contains a term of . Similar to the approach

in [3], we relax the channel-assignment matrix to continuous
values with . We write the Lagrangian func-
tion of (6) as a function of and

(18)

where , , , and are Lagrangian multipliers. By using
the Karush–Kuhn–Tucker (KKT) condition [23], we take the
derivative of (18) with respect to , and have

(19)

From (15), we have waterfilling results for discrete . Define
the positive weight factor as shown in (20) at the bottom of the
page, where is a small positive number, and is a small positive
value, to ensure the large weight for the user whose rate is less

than . We put (14), (15), and (20) into (19); at high
SNR, we have

(21)
If a subcarrier is used by user 1, i.e., and , the
left-hand side (LHS) should be strictly greater than the right-
hand side (RHS). At high SNR, the fraction on either
side of (21) can be approximated by zero. Let . Take
the difference between the LHS and the RHS of (19), and define
function as

(22)

We are able to decide whether a subcarrier is used by user 1
or user 2 by checking whether the function is greater than zero
or less than zero. We arrange the index of subcarriers to make

be decreased in . With fixed and , is
a monotony function of . Then (22) is similar to the weighted
maximization in [3], and the optimum partition is a two-band
solution.

The LHS and RHS of (21) illustrate the marginal benefits
of extra bandwidth for user 1 and user 2 on subcarrier , re-
spectively. Within each iteration, is fixed. Then the algorithm
achieves the boundary point of the feasible region [3]. Then, in
the next iteration, the new is updated. Remember that is
the NBS solution. If and , from (20),
is small and is large. Consequently, the marginal benefit of
user 1 will be reduced, and he/she will have a disadvantage for
channel allocation in the next iteration, and vice versa. This is
one explanation why the proposed scheme converges to the NBS
solution. The iterative algorithm converges when (19) is held. It
is worth mentioning that the proposed two-user algorithm might
not converge toward the NBS solution, because of the nonlinear
and combinatorial nature of the formulated problem.

C. Multiple-User Algorithm Using Coalitions

For the case where the number of users is larger than two,
most work in the literature concentrates on solving the OFDMA
resource-allocation problem for all users together in a central-
ized way [1]–[7]. Because the problem itself is combinatorial
and nonlinear, the computational complexity is very high with
respect to the number of subcarriers by the existing methods
[1]–[7]. In this paper, we propose a two-step iterative scheme.
First, users are grouped into pairs, which are called coalitions.
Then for each coalition, the algorithm in Table I is applied for
two users to negotiate and improve their performances by ex-
changing subcarriers. Further, the users are regrouped and rene-
gotiate again and again until convergence. By using this scheme,

otherwise

(20)
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TABLE II
MULTIUSER ALGORITHM

the computational cost can be greatly reduced. First, we give the
strict definition of “coalition” as follows.

Definition 4: For a -person game, any nonempty subset of
the set of players is called a coalition.

The question now is how to group users into coalitions with
size two. A straightforward algorithm is to form the coalition
randomly and let the users bargain arbitrarily. We call this algo-
rithm the random method, which can be described by the steps
in Table II. During the initialization, the goal is to assign all
subcarriers to users and try to satisfy the minimal rate and max-
imal power constraints. We develop a fast algorithm. Starting
from the user with the best channel conditions, if the user has
a rate larger than or equal to , it is removed from the as-
signment list. After every user has enough rate, the rest of the
subcarriers are greedily assigned to the users according to their
channel gains. Note that there is no need for the initial assign-
ment to satisfy all constraints. The constraints can be satisfied
during the iterations of negotiations.

We quantify the convergence speed by the round of negoti-
ations. The convergence speed of the random method becomes
slow with the number of users increasing. This is because the
negotiations within arbitrarily grouped coalitions are less ef-
fective, and most negotiations turn out to be the same as, or
have little improvement over, the performance of the channel
allocation before the negotiations. So, the optimal cooperation
grouping among subsets of the users should be taken into con-
sideration. In order to speed up convergence, each user needs to
carefully select who it should negotiate with.

Each user’s channel gains are varying over different subcar-
riers. A user may be preferred by many users to form coali-
tions with, while only a two-user coalition is allowed. Thus, the
problem to decide the coalition pairs can be stated as an assign-
ment problem [17]: “a special structured linear programming
which is concerned with optimally assigning individuals to ac-
tivities, assuming that each individual has an associated value
describing its suitability to execute that specific activity.”

Now, we formulate the assignment problem in detail. Define
the benefit for the th user to negotiate with the th user as .
Obviously, . For the other cases, from (6), each ele-
ment of the cost table can be expressed as

(23)

where and are the rates if the negotiation happens, and
and are the original rates, respectively. Obviously, is

also symmetric. The proposed two-user algorithm in the pre-
vious section can calculate each . The total complexity
is .

Define a assignment table . Each component rep-
resents whether or not there is a coalition between two users

if user negotiates with user
otherwise.

(24)

Obviously, matrix is symmetric, , and
.

So the assignment problem is how to select the pairs of nego-
tiations, such that the overall benefit can be maximized, which
is stated as

s.t. (25)

One of the solutions for (25) is the Hungarian method [17],
which can always find the optimal coalition pairs. The Hun-
garian method has the minimization optimization goal, so we
change the maximization problem in (25) into a minimization
problem by defining . The Hungarian
algorithm is briefly explained in Table III.

In each round, the optimal coalition pairs are determined
by the Hungarian method, and then the users are set to bargain
together using the two-user algorithm in Table I. The whole al-
gorithm stops when no bargaining can further improve the per-
formance, i.e., is equal to a zero matrix. Based on the above
explanations, we develop the multiuser resource allocation in
the multiuser OFDMA systems in Table II.

In each iteration, the optimization function is nondecreasing
in Steps 2 and 3, and the optimal solution is upper bounded. Con-
sequently, the proposed multiuser algorithm is convergent. How-
ever, because the proposed problem in (6) is nonlinear and non-
convex, and also because of the combinatorial nature of the for-
mulated problem, there might be some local optima that the pro-
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TABLE III
HUNGARIAN METHOD

posed scheme may fall into, even though the Hungarian method
canfindoptimal .Fromthesimulationresults,wewill showthat
the problem of local optima is not severe.

The complexity of the Hungarian method is , so the
overall complexity for each iteration of the proposed scheme
is . Since the number of users is much
less than the number of subcarriers, the complexity of the pro-
posed algorithm is much lower than the schemes that apply
the Hungarian method directly to the subcarrier domain. For
example, for IEEE 802.11a, there are 48 subcarriers. For the
schemes mentioned above, the complexity is .
When , the proposed scheme has the complexity of

. Suppose the number of iterations is
10; the complexity is only 0.86% of the complexity of .
Moreover, as shown in the simulation, the convergence is mostly
obtained within four to six rounds.

When we apply the algorithm in Table III to the system shown
in Fig. 1, each mobile unit tries to negotiate with other mobile
units to exchange resources via the BS, which serves as a medi-
ator. The whole system is similar to the market in the real world.
People (mobileunits)gather in the market place (BS) to exchange
their goods (resources such as subcarriers). Since the channel re-
sponses for each user over different subcarriers are known in the
BS, the bargaining process is performed within the BS without
costing bandwidth for signaling between the users and the BS.
The random method can be implemented in a distributed manner
with limited signaling to form the coalition pairs, while the Hun-
garian method needs some limited centralized control within the
BS to determine the optimal coalition pairs.

V. SIMULATION RESULTS

In order to evaluate the performance of the proposed
schemes, we consider two-user and multiple-user simulation
setups. Three different optimization goals (maximal rate,
max-min, and NBS) are compared.

First, a two-user OFDMA system is taken into consideration.
We simulate the OFDMA system with 128 subcarriers over the
3.2-MHz band. To make the tones orthogonal to each other, the
symbol duration is 40 s. An additional 10 s guard interval
is used to avoid intersymbol interference due to channel delay

spread. This results in a total block length of 50 s and a block
rate of 20 k. The maximal power is mW, and the de-
sired BER is (without channel coding). The thermal noise
level is W. The propagation loss factor is three.
The distance between user 1 and the BS is fixed at
m, while varies from 10 to 200 m. Kb/s .
Doppler frequency is 100 Hz.

To evaluate the performances, we have tested sets of fre-
quency-selective fading channels, which is simulated using a
four-ray Rayleigh model [24] with the exponential power pro-
file and 100 ns root mean square (RMS) delay spread. Thus, the
impulse response of the model can be represented as follows:

(26)

where , , and are the amplitude and time delay
for the th ray, respectively, is the channel gain of a flat
Rayleigh fading channel, which can be simulated using the
Jakes model [25]. Note that the simulated power of each ray is
decreasing exponentially according to its delay, and the total
power of all rays is normalized as one. The RMS delay spread
is the square root of the second central moment of the power
delay profile, which is defined as

(27)

where

and (28)

In Fig. 3, the rates of both users for the NBS, maximal rate,
and max-min schemes are shown versus . For the maximal-
rate scheme, the user closer to the BS has a higher rate, and the
rate difference is very large when and are different. For
the max-min scheme, both users have the same rate, which is
reduced when is increasing. This is because the system has
to accommodate the user with the worst channel condition. For
the NBS scheme, user 1’s rate is almost the same, regardless of
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Fig. 3. Each user’s rate (Mb/s) versus D .

Fig. 4. Fairness for three schemes.

, and user 2’s rate is reduced when is increasing. This
shows that the NBS algorithm is fair in the sense that the user’s
rate is determined only by its channel condition, and not by other
interfering users’ conditions.

In addition, the ratio of two users’ rates is shown in Fig. 4.
For the max-min scheme, the ratio is always equal to 1, which is
strictly fair but inefficient. For the maximal-rate scheme, the ratio
changes greatly for different , which is very unfair. The user
with the better channel condition dominates the resource alloca-
tion, while the other user has to starve. The channel gain is mainly
determinedbythedistanceandthepropagationlossfactor.For the
proposedNBSscheme, theratioof over
changes almost linearly with in log scale, which shows the
NBS fairness. After each user is assigned with the minimal rate
requirement, the rest of the resources are allocated to users pro-
portionally according to their channel conditions.1

1The bumpy part of the max-rate scheme curve whenD is small is due to the
minimal-rate constraint.

Fig. 5. Overall rate (Mb/s) R + R .

In Fig. 5, we show the overall rate of two users for three
schemes versus . Because the max-min algorithm is for the
worst-case scenario, it has the worst performance, especially
when the two users have the very different channel conditions,
because the user with worse channel conditions limits the usage
of the system resources. The NBS scheme has the performance
between the maximal-rate scheme and max-min scheme, while
the maximal-rate scheme is extremely unfair. Moreover, the per-
formance loss of the NBS scheme to that of the maximal-rate
scheme is small. As we mentioned before, the NBS scheme
maintains the fairness in a way where one user’s performance is
unchanged from the other user’s channel conditions. The pro-
posed algorithm is a good tradeoff between the fairness and the
overall system performance.

We set up the simulations with more users to test the proposed
algorithms. All the users are randomly located within the cell of
radius 200 m. One BS is located in the middle of the cell. Each
user has the minimal rate kb/s. The other settings
are the same as those of the two-user case simulations.

In Fig. 6, we show the sum of all users’ rates versus the
number of users in the system for three schemes. We can
see that all three schemes have better performances when the
number of users increases. This is because of multiuser diver-
sity, provided by the independent varying channels across the
different users. The performance improvement satiates gradu-
ally. The NBS scheme has a similar performance to that of the
maximal-rate scheme, and has a much better performance than
that of the max-min scheme. The performance gap between the
maximal-rate scheme and the NBS scheme reduces when the
number of users is large. This is because more bargaining pair
choices are available to increase the system performance.

In Fig. 7, we show the histogram of the number of rounds
that is necessary for convergence of the random method and the
Hungarian method with eight users. The Hungarian method con-
verges in about one to six rounds, while the random method may
converge very slowly. The average number of rounds for conver-
gence of the random method is 4.25 times that of the Hungarian
method. By using the Hungarian method, the best negotiation
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Fig. 6. Overall rate (Mb/s) versus number of users.

Fig. 7. Histogram for convergence.

pairs can be found. Consequently, the convergence rate is much
quicker, and the computation cost is reduced.

In Fig. 8, we show the probability density function of the ratio
of of the Hungarian method over that of the
random method with eight users. If the ratio is larger than one,
the Hungarian method converges to a better solution than the
random method. From the curve, the Hungarian method con-
verges to a better solution most of the time. This is because the
random algorithm finds an arbitrary path for convergence and
may fall into different local optima. Notice that for most of the
time, the ratio is a small number, so the problem of local op-
tima is not severe. On the other hand, there is a small probability
(shown as the shaded area) that the random algorithm has better
performance than the Hungarian method. This is because not
all six Nash axioms would be satisfied, and the two-user algo-
rithm is suboptimal under low-SNR conditions. Therefore, by
using the Hungarian method to find the optimal coalition, we
can achieve a better and faster NBS solution for the multiuser
situation. Note that the disadvantage of the Hungarian method
is that it needs a limited central control in the BS.

Fig. 8. Histogram for product ratio.

VI. CONCLUSIONS

In this paper, we use cooperative game theory, including NBS
and coalitions, to develop a fair algorithm for adaptive subcar-
rier, rate, and power allocation in multiuser OFDMA systems.
The optimization problem takes consideration of fairness and
the practical implementation constraints. The proposed algo-
rithm consists of two steps. First, a Hungarian method is con-
structed to determine optimal bargaining pairs among users.
Then a fast two-user bargaining algorithm is developed for two
users to exchange their subcarriers. The above two steps are
taken iteratively for users to negotiate the optimal resource al-
location. The proposed fast implementation has the low com-
plexity of for each iteration, which is
much lower than that of the existing schemes.

From the simulation results, the proposed algorithm shows
a similar overall rate to that of the maximal-rate scheme, and
much better performance than that of the max-min scheme. The
NBS fairness is demonstrated by the fact that a user’s rate is
not determined by the interfering users. The proposed algorithm
provides a near-optimal fast solution, and finds a good tradeoff
between the overall rate and fairness. The significance of the
proposed algorithm is the bargaining and NBS fairness that re-
sult in the fair individual performance and good overall system
performance.
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