
0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2940317, IEEE
Transactions on Automatic Control

1

Dynamic Sharing Through the ADMM
†Xuanyu Cao, and ∗K. J. Ray Liu, Fellow, IEEE

Email: †xyc@illinois.edu, ∗kjrliu@umd.edu
†Coordinated Science Lab, University of Illinois at Urbana-Champaign, Urbana, IL

∗Department of Electrical and Computer Engineering, University of Maryland, College Park, MD

Abstract—In this paper, we study a dynamic version of the sharing
problem, in which a dynamic system cost function composed of time-
variant local costs of subsystems and a shared time-variant cost of the
whole system is minimized. A dynamic alternating direction method of
multipliers (ADMM) is proposed to track the varying optimal points of
the dynamic optimization problem in an online manner. We analyze the
convergence properties of the dynamic ADMM and show that, under
several standard technical assumptions, the iterations of the dynamic
ADMM converge linearly to some neighborhoods of the time-varying
optimal points. The sizes of these neighborhoods depend on the drifts
of the dynamic objective functions: the more drastically the dynamic
objective function evolves across time, the larger the sizes of these
neighborhoods. We also upper bound the limiting optimality gaps of
the dynamic ADMM explicitly, and analyze its regret and constraint
violation. Finally, two numerical examples are presented to corroborate
the effectiveness of the proposed dynamic ADMM.

Index Terms—Dynamic optimization, the sharing problem, alternating
direction method of multipliers

I. INTRODUCTION

Many resource allocation problems can be posed as an optimization
problem which aims at minimizing a system cost consisting of local
costs of subsystems and a shared cost of the whole system. This can
be described as the following sharing problem [1]:

Minimize
n∑
i=1

f (i)
(
x(i)
)

+ g

(
n∑
i=1

x(i)

)
, (1)

with variables x(i) ∈ Rp, i = 1, ..., n, where f (i) : Rp 7→ R is the
local cost function of subsystem i and g : Rp 7→ R is the global cost
function of some commonly shared objective of all subsystems. The
global cost function g takes the sum of all x(i) as its input argument.
One implicit assumption of the conventional sharing problem (1) is
that both the local cost functions f (i) and the global cost function
g are static, i.e., they do not vary with time. However, in practice,
the cost or utility functions in many applications are intrinsically
time-varying. For example, in power grids, the utility functions of
the subsystems vary across time as the users’ demands evolve, e.g.,
the demands climax during evening and decline between midnight
and early morning. The generation cost of the power system also
varies with time owing to the intermittent renewable energy sources
and the fluctuation of the market prices of energy. Therefore, we
are motivated to study the following dynamic version of the sharing
problem in this paper:

Minimize
n∑
i=1

f
(i)
k

(
x(i)
)

+ gk

(
n∑
i=1

x(i)

)
, (2)

where k is the time index. f (i)
k : Rp 7→ R is the local cost function

of subsystem i at time k and gk : Rp 7→ R is the global cost
function of the shared objective at time k. We assume that all the
cost functions f (i)

k , gk are strongly convex and gk has Lipschitz
continuous gradient.

In the literature, dynamic optimization problems arise in various
research fields and have been studied from different perspectives.
In adaptive signal processing such as the recursive least squares

(RLS), the input/output data arrive sequentially, resulting in a time-
varying objective function (the discounted total squared errors) to be
minimized [2]. Another line of research for dynamic optimization is
online convex optimization (OCO) [3]–[7]. In OCO, the time-varying
cost functions are unknown a-priori and the goal is to design online
algorithms with low (e.g., sublinear) regrets, i.e., the solution from
the algorithms are not too worse than the optimal offline bench-
marks. More broadly speaking, online learning (e.g., the weighted
majority algorithm and the multiplicative weight update method) [8]–
[11] and (stochastic) dynamic control/programming (e.g., Markov
decision processes) [12], [13] also lie in the category of dynamic
optimizations, though their problem formulations are very distinct
from that of this paper.

To solve the dynamic sharing problem in an online manner, in this
paper, we present a dynamic ADMM algorithm. As a primal-dual
method, the ADMM is superior to its primal domain counterparts
such as the gradient descent method in terms of convergence speed. In
fact, recent research has shown that ADMM is among the fastest first-
order methods [14], [15]. Due to its broad applicability, the ADMM
has been exploited in various signal processing and control problems.
A few recent studies have investigated the performance of ADMM
in dynamic scenarios. In particular, an online ADMM algorithm is
proposed in [16], while a distributed online ADMM algorithm is
developed in [17] for decentralized optimization over networks. [16]
and [17] are focused on regret analysis and the benchmark used to
define the regret is the best fixed point in hindsight. This hinders
their applications to problems in which the underlying systems
are intrinsically time-varying and the best fixed point may not be
very meaningful, e.g., tracking a moving object. In contrast, the
tracking errors of the dynamic optimal points are adopted as the
performance measure in this paper. For dynamic sharing problem,
this is more meaningful than the best fixed point, since the underlying
systems (e.g., power systems) may vary intrinsically (e.g., varying
renewable generation and market prices of energy). Additionally,
several stochastic ADMM algorithms [18]–[20] have been proposed
to solve stochastic programs iteratively using sequential samples.
Though the stochastic ADMM operates in an online manner as
new samples arrive sequentially, the statistical characteristics of the
stochastic program and the optimal solution do not change over
time, which makes the problem setup very distinct from the dynamic
sharing problem considered here. A more closely related work is [21],
in which a dynamic ADMM algorithm is applied to the consensus
optimization problems. However, the convergence analysis of the
dynamic ADMM in [21] significantly relies on the special structure
of the consensus optimization problems, in which all agents share the
same decision variable. This leaves the performance of the dynamic
ADMM in other optimization scenarios largely unknown. In fact,
abundant existing works have dealt with various aspects of static
ADMM for distributed consensus problems, e.g., distributed ADMM
[22], linearized ADMM for composite consensus [23], impact of net-
work topology [24], and weighted ADMM [25]–[27]. Nevertheless,
none of them can be directly applied to the dynamic sharing problem
in this paper.

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2940317, IEEE
Transactions on Automatic Control

2

Our goal in this work is to investigate the convergence behaviors
of the dynamic ADMM for the dynamic sharing problem both
theoretically and empirically. Specifically, A dynamic ADMM al-
gorithm (Algorithm 1) is proposed for a more general dynamic
optimization problem (Problem (6)), which encompasses the dynamic
sharing problem as a special case. The dynamic ADMM can adapt
to the time-varying cost functions and track the optimal points in
an online manner. We analyze the convergence properties of the
proposed dynamic ADMM algorithm. We show that, under standard
technical assumptions, the gaps between the algorithm iterates and
the time-varying optimal points converge linearly to some neighbor-
hoods of zero. The sizes of the neighborhoods are related to the
drifts of the dynamic optimization problem: the more drastically
the dynamic problem evolves with time, the larger the sizes of the
neighborhoods. We also upper bound the limiting optimality gaps of
the dynamic ADMM explicitly. Additionally, regret and constraint
violation bounds of the dynamic ADMM are established in terms of
the cumulative drift of the dynamic problem.

The remaining part of this paper is organized as follows. In
Section II, the dynamic ADMM algorithm is proposed. In Section
III, theoretical analysis of the convergence properties of the dynamic
ADMM is presented. Two numerical examples are shown in Section
IV, following which we conclude this work in Section V.

II. ALGORITHM DEVELOPMENT

In this section, we first give an application of the dynamic sharing
problem in power systems to justify its usefulness. Then, we develop
a dynamic ADMM algorithm for a more general dynamic optimiza-
tion problem, which encompasses the dynamic sharing problem as a
special case.

A. Application of the Dynamic Sharing Problem

The dynamic sharing problem in (2) can be applied to many
dynamic resource allocation problems. For example, consider a power
grid which is divided into n power subsystems. If subsystem i
receives x(i) amount of power supplies at time k, then it gains
a utility of −f (i)

k

(
x(i)
)

by consuming the supplies. The utility
function is time-variant because users often have different power
demands at different time, e.g., 6-11pm may be the peak demand
period while 2-6am may be a low demand period. On the other hand,
the generation of the total power supplies of

∑n
i=1 x(i) can incur

a cost of gk
(∑n

i=1 x(i)
)

for the power generator due to resource
consumptions and pollution. The generation cost function gk also
varies across time owing to factors such as the intermittent renewable
energy generation and the varying market prices of the traditional
energy sources. Thus, the overall social cost minimization problem
can be posed as a dynamic sharing problem as in (2).

Furthermore, one can consider the more general dynamic op-
timization problem of minimizing

∑m
j=1 h

(j)
k

(
x(Sj)

)
, in which

x(Sj) is the concatenation of all x(i) for i ∈ Sj and h
(j)
k is a

time-varying function. The sets {Sj}j=1,...,m capture the general
dependence structure between the terms in the objective function and
the optimization variables, which encompasses the dynamic sharing
problem as a special case. In principle, the analysis presented in
this paper can be extended to this general problem, since it is also
amenable to ADMM after some problem reformulation. Details are
left as future work.

B. Development of the Dynamic ADMM

Define x =
[
x(1)T, ...,x(n)T

]T
, A = [Ip, ..., Ip], and

fk(x) =

n∑
i=1

f
(i)
k

(
x(i)
)
. (3)

Then, the dynamic sharing problem (2) can be reformulated as:

Minimizex∈Rnp,z∈Rp fk(x) + gk(z) (4)

s.t. Ax− z = 0. (5)

In the remaining part of this paper, we study the following more
general dynamic optimization problem:

Minimizex∈RN ,z∈RM fk(x) + gk(z) (6)

s.t. Ax + Bz = c, (7)

where fk : RN 7→ R and gk : RM 7→ R are two functions; A ∈
RM×N ,B ∈ RM×M are two matrices; c ∈ RM is a vector.. The
problem (4) is clearly a special case of the problem (6) by taking
N = np,M = p,B = −I, c = 0 and fk decomposable as in (3).
To apply the ADMM, we form the augmented Lagrangian of the
problem (6):

Lρ,k(x, z,λ) =fk(x) + gk(z) + λT(Ax + Bz− c)

+
ρ

2
‖Ax + Bz− c‖22, (8)

where λ ∈ RM is the Lagrange multiplier and ρ > 0 is some
positive constant. Applying the traditional static ADMM [1] to the
dynamic augmented Lagrangian Lρ,k, we propose a dynamic ADMM
algorithm, as specified in Algorithm 1. The main difference between
the dynamic ADMM in Algorithm 1 and the traditional static ADMM
described in subsection II-B is that the functions fk and gk varies
across iterations of the ADMM. The aim of this paper is to study the
impact of these varying functions on the ADMM algorithm. Further,
we note that one can conduct multiple ADMM iterations in each time
k, i.e., multiple rounds of the updates (9)-(11) for each time k. This
will potentially improve the performance of dynamic ADMM at the
cost of higher computational complexity. In this paper, we focus on
the case of single ADMM iteration per time slot and the analysis can
be extended to the case of multiple iterations straightforwardly. In
the following, we introduce two linear convergence concepts.

Definition 1. A sequence sk is said to converge Q-linearly to s∗

if there exists some constant θ ∈ (0, 1) such that |sk+1 − s∗| ≤
θ|sk − s∗| for k sufficiently large.

Definition 2. A sequence vk is said to converge R-linearly to v∗

if there exists a positive constant τ > 0 and some sequence sk
Q-linearly converging to some number s∗ such that |vk − v∗| ≤
τ |sk − s∗| for k sufficiently large.

We remark that these linear convergence notions are widely
adopted in the literature [25], [26], [28].

III. CONVERGENCE ANALYSIS

In this section, convergence analysis for the dynamic ADMM
algorithm, i.e., Algorithm 1, is conducted. We first make several
standard assumptions for algorithm analysis. Then, we show that
the gaps between the algorithm iterates and the dynamic optimal
points converge linearly (either Q-linearly or R-linearly) to some
neighborhoods of zero (Theorem 1 and 2). The sizes of these
neighborhoods depend on the drift (to be formally defined later) of
the dynamic optimization problem (6). Further, we upper bound the
limiting optimality gaps of the dynamic ADMM explicitly. Finally,

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2940317, IEEE
Transactions on Automatic Control

3

Algorithm 1 The dynamic ADMM for problem (6)
1: Initialize x0 = 0, z0 = λ0 = 0, k = 0
2: Repeat:
3: k ← k + 1
4: Update x according to:

xk = arg min
x
fk(x) + λT

k−1Ax +
ρ

2
‖Ax + Bzk−1 − c‖22. (9)

5: Update z according to:

zk = arg min
z
gk(z) + λT

k−1Bz +
ρ

2
‖Bz + Axk − c‖22. (10)

6: Update λ according to:
λk = λk−1 + ρ(Axk + Bzk − c). (11)

regret and constraint violation bounds of the dynamic ADMM are
established in terms of the cumulative drift of the dynamic problem.

A. Assumptions

Throughout the convergence analysis, we make the following
standard assumptions on the functions fk and gk [28]–[30].

Assumption 1. For any k, gk is strongly convex with constant m > 0
(m is independent of k), i.e., for any k and any z, z′ ∈ RM :(

∇gk(z)−∇gk(z′)
)T

(z− z′) ≥ m‖z− z′‖22. (12)

Assumption 2. For any k, fk is strongly convex with constant m̃ > 0
(m̃ is independent of k), i.e., for any k and any x,x′ ∈ RN :(

∇fk(x)−∇fk(x′)
)T

(x− x′) ≥ m̃‖x− x′‖22. (13)

Assumption 3. For any positive integer k, ∇gk is Lipschitz con-
tinuous with constant L > 0 (L is independent of k), i.e., for any
positive integer k and any z, z′ ∈ RM :

‖∇gk(z)−∇gk(z′)‖2 ≤ L‖z− z′‖2. (14)

We note that when fk is decomposable as in (3) of the dynamic
sharing problem, if for any i = 1, ..., n and positive integer k, f (i)

k

is strongly convex with constant m̃i > 0, then Assumption 2 holds
with m̃ = mini=1,...,n m̃i > 0. We further assume that the matrix
B ∈ RM×M is nonsingular.

Assumption 4. B is nonsingular.

B. Convergence Analysis

In this subsection, we study the convergence behavior of the
proposed dynamic ADMM algorithm under the Assumptions 1-4.
Before formal analysis, we note that if multiple ADMM iterations
per time slot are allowed, exisitng results on static ADMM can be
applied to show small optimality gaps of the dynamic ADMM in
each time slot seperately. One drawback of this approach is high
computational burden, which renders it not suitable for many real-
time applications with low computational capabilities, e.g., cheap
sensors processing real-time data stream. In contrast, Algorithm 1
conducts only one single ADMM iteration per time slot and thus
enjoys low computational overhead. Due to this single iteration, new
analysis is needed to establish convergence in the dynamic setting in
which the underlying optimization problem is varying.

Owing to the strong convexity assumption in Assumptions 1 and 2,
there is a unique primal/dual optimal point pair (x∗k, z

∗
k,λ

∗
k) for the

dynamic optimization problem (6) at time k. Denote uk =
[
zT
k ,λ

T
k

]T
and u∗k =

[
z∗Tk ,λ

∗T
k

]T
. Since B is a square matrix, the eigenvalues of

BBT are the same as those of BTB. Denote the smallest eigenvalue
of BBT, which is also the smallest eigenvalue of BTB, as α.

According to Assumption 4, B is nonsingular, so BBT and BTB
are positive definite and α > 0. Define matrix C ∈ R2M×2M to be:

C =

[ρ
2
BTB

1
2ρ

IM

]
(15)

Since B is nonsingular (Assumption 4), we know that C is positive
definite. Therefore, we can define a norm on R2M as ‖u‖C =√

uTCu. Define t to be any arbitrary number within the interval
(0, 1). A positive constant δ > 0 is defined as:

δ = min

{
2mt

ρ‖B‖22
,

2αρ(1− t)
L

}
, (16)

where ‖B‖2 is the spectral norm, i.e., the maximum singular value.

Proposition 1. For any positive integer k, we have:

‖uk − u∗k‖C ≤
1√

1 + δ
‖uk−1 − u∗k‖C. (17)

Proof. The updates of x and z can be rewritten as:

∇fk(xk) + ATλk−1 + ρAT(Axk + Bzk−1 − c) = 0, (18)

∇gk(zk) + BTλk−1 + ρBT(Axk + Bzk − c) = 0. (19)

Combining (19) and (11) yields:

∇gk(zk) + BTλk = 0. (20)

Combining (18) and (11) gives:

∇fk(xk) + AT(λk + ρB(zk−1 − zk)) = 0. (21)

According to Assumptions 1 and 2, the problem (6) is a convex
optimization problem. Thus, Karush-Kuhn-Tucker (KKT) conditions
are necessary and sufficient for optimality. Hence,

∇fk(x∗k) + ATλ∗k = 0, (22)

∇gk(z∗k) + BTλ∗k = 0, (23)

Ax∗k + Bz∗k = c. (24)

Because of the convexity of gk (Assumption 1) and Lipschitz
continuity of its gradient (Assumption 3), we have [31]:

‖∇gk(zk)−∇gk(z∗k)‖22
≤ L(zk − z∗k)T(∇gk(zk)−∇gk(z∗k)). (25)

Further using (23) and (20), we obtain:

(zk − z∗k)TBT(λ∗k − λk) ≥ 1

L

∥∥∥BT(λk − λ∗k)
∥∥∥2
2
. (26)

According to the strong convexity of gk (Assumption 1), we have:

m‖zk − z∗k‖22 ≤ (∇gk(zk)−∇gk(z∗k))T(zk − z∗k)

=
(
−BTλk + BTλ∗k

)T
(zk − z∗k). (27)

Combining (26) and (27), we know that for any t ∈ (0, 1):

(zk − z∗k)TBT(λ∗k − λk)

≥ tm‖zk − z∗k‖22 +
1− t
L

∥∥∥BT(λk − λ∗k)
∥∥∥2
2
. (28)

According to the convexity of fk (Assumption 2), we have:

0 ≤ (xk − x∗k)T(∇fk(xk)−∇fk(x∗k)). (29)

Further making use of (21) and (22), we get:

0 ≤ (xk − x∗k)TAT(λ∗k − λk + ρB(zk − zk−1)). (30)

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2940317, IEEE
Transactions on Automatic Control

4

Adding (28) and (30) leads to:

(zk − z∗k)TBT(λ∗k − λk)

+ (xk − x∗k)TAT(λ∗k − λk + ρB(zk − zk−1))

≥ tm‖zk − z∗k‖22 +
1− t
L

∥∥∥BT(λk − λ∗k)
∥∥∥2
2
. (31)

From (11) and (24), we get:

A(xk − x∗k) + B(zk − z∗k) =
1

ρ
(λk − λk−1). (32)

Making use of (32), we derive:

(zk − z∗k)TBT(λ∗k − λk)

+ (xk − x∗k)TAT(λ∗k − λk + ρB(zk − zk−1)) (33)

= (λ∗k − λk)T[B(zk − z∗k) + A(xk − x∗k)]

+ ρ(xk − x∗k)TATB(zk − zk−1) (34)

=
1

ρ
(λ∗k − λk)T(λk − λk−1) + ρ(A(xk − x∗k))TB(zk − zk−1)

=
1

ρ
(λk−1 − λk)T(λk − λ∗k)

+ (λk − λk−1 − ρB(zk − z∗k))TB(zk − zk−1). (35)

Rearranging (35), we obtain

1

ρ
(λk−1 − λk)T(λk − λ∗k) + ρ(zk − z∗k)TBTB(zk−1 − zk)

= (λk − λk−1)TB(zk−1 − zk) + (zk − z∗k)TBT(λ∗k − λk)

+ (xk − x∗k)TAT(λ∗k − λk + ρB(zk − zk−1)). (36)

Noting that the last two product terms of the R.H.S. of (36) are the
same as the L.H.S. of (31), we get

1

ρ
(λk−1 − λk)T(λk − λ∗k) + ρ(zk − z∗k)TBTB(zk−1 − zk)

≥ (λk − λk−1)TB(zk−1 − zk) + tm‖zk − z∗k‖22

+
1− t
L

∥∥∥BT(λk − λ∗k)
∥∥∥2
2
, (37)

which is equivalent to:

1

ρ
(λk−1 − λk)T(λk − λk−1 + λk−1 − λ∗k)

+ ρ(zk−1 − zk)TBTB(zk − zk−1 + zk−1 − z∗k) (38)

≥ (λk − λk−1)TB(zk−1 − zk) + tm‖zk − z∗k‖22

+
1− t
L

∥∥∥BT(λk − λ∗k)
∥∥∥2
2
. (39)

This can be further rewritten as:
1

ρ
(λk−1 − λk)T(λk−1 − λ∗k) + ρ(zk−1 − zk)TBTB(zk−1 − z∗k)

≥ 1

ρ
‖λk−1 − λk‖22 + ρ‖Bzk−1 −Bzk‖22

+ (λk − λk−1)TB(zk−1 − zk)

+mt‖zk − z∗k‖22 +
1− t
L

∥∥∥BT(λk − λ∗k)
∥∥∥2
2
. (40)

We have:
1

ρ
(λk−1 − λk)T(λk−1 − λ∗k) = − 1

2ρ
‖λ∗k − λk‖22

+
1

2ρ
‖λk−1 − λk‖22 +

1

2ρ
‖λ∗k − λk−1‖22, (41)

ρ(zk−1 − zk)TBTB(zk−1 − z∗k) = −ρ
2
‖Bz∗k −Bzk‖22

+
ρ

2
‖Bzk−1 −Bzk‖22 +

ρ

2
‖Bz∗k −Bzk−1‖22. (42)

Combining (41) and (42) and further utilizing (40) gives:

1

2ρ
‖λk−1 − λ∗k‖22 +

ρ

2
‖Bzk−1 −Bz∗k‖22 −

1

2ρ
‖λk − λ∗k‖22

− ρ

2
‖Bzk −Bz∗k‖22 (43)

=
1

ρ
(λk−1 − λk)T(λk−1 − λ∗k)

+ ρ(zk−1 − zk)TBTB(zk−1 − z∗k)

− 1

2ρ
‖λk−1 − λk‖22 −

ρ

2
‖Bzk−1 −Bzk‖22 (44)

≥ 1

2ρ
‖λk−1 − λk‖22 +

ρ

2
‖Bzk−1 −Bzk‖22

+ (λk − λk−1)TB(zk−1 − zk)

+mt‖zk − z∗k‖22 +
1− t
L

∥∥∥BT(λk − λ∗k)
∥∥∥2
2

(45)

=
1

2ρ
‖λk − λk−1 + ρ(Bzk−1 −Bzk)‖22 +mt‖zk − z∗k‖22

+
1− t
L

∥∥∥BT(λk − λ∗k)
∥∥∥2
2

(46)

≥ mt‖zk − z∗k‖22 +
1− t
L

∥∥∥BT(λk − λ∗k)
∥∥∥2
2

(47)

≥ mt

‖B‖22
‖Bzk −Bz∗k‖22 +

α(1− t)
L

‖λk − λ∗k‖22 (48)

≥ δ
(

1

2ρ
‖λk − λ∗k‖22 +

ρ

2
‖Bzk −Bz∗k‖22

)
, (49)

where the last step is due to the definition of δ in (16). Noticing the
definition of ‖ · ‖C, we get:

‖uk−1 − u∗k‖2C ≥ (1 + δ)‖uk − u∗k‖2C, (50)

which is tantamount to (17).

Remark 1. Proposition 1 states that uk is closer to u∗k than uk−1

with a shrinkage factor of δ. The bigger the δ, the stronger the
shrinkage. Note that there is an arbitrary factor t ∈ (0, 1) in the
definition of δ in (16). By choosing t =

αρ2‖B‖22
mL+αρ2‖B‖22

, we get the

maximum δ as δmax = 2mαρ

mL+αρ2‖B‖22
. In the expression of δmax, only ρ

is a tunable algorithm parameter while all other parameters are given
by the optimization problem. Further, we note that δmax is maximized
when ρ =

√
mL

α‖B‖22
, for which the theoretical performance bound

of the dynamic ADMM is the best. This suggests that the optimal
value of ρ should be neither too large nor too small. Nevertheless,
in practice, this optimal ρ is hard to compute since we may not have
access to m and L. Instead, we usually just use trial and error to find
a reasonably “good” value for ρ.

Proposition 1 establishes a relation between ‖uk − u∗k‖C and
‖uk−1 − u∗k‖C. However, to describe the convergence behavior of
the dynamic ADMM algorithm, what we really want is the relation
between ‖uk − u∗k‖C and ‖uk−1 − u∗k−1‖C. This is accomplished
by the following theorem.

Theorem 1. Define the drift dk of the dynamic problem (6) to be:

dk =

√
ρ

2
‖B‖2‖z∗k−1 − z∗k‖2

+
1√
2ρα
‖∇gk−1(z∗k−1)−∇gk(z∗k)‖2. (51)

Then, for any integer k ≥ 2, we have:

‖uk − u∗k‖C ≤
1√

1 + δ
(‖uk−1 − u∗k−1‖C + dk). (52)

Proof. See Section S.1 of the supplementary material.

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2940317, IEEE
Transactions on Automatic Control

5

Remark 2. Theorem 1 means that the optimality gap ‖uk −u∗k‖C
converges Q-linearly (with contraction factor

√
1 + δ) to some neigh-

borhood of zero. The size of the neighborhood is characterized by
dk, the drift of the dynamic problem (6), which is determined by the
problem formulation instead of the algorithm. The more drastically
the dynamic problem (6) varies across time, the bigger the drift dk,
and the larger the size of that neighborhood. When the dynamic
problem (6) degenerates to its static counterpart, i.e., fk and gk
does not vary with k, dk becomes zero. In such a case, Theorem
1 degenerates to the linear convergence result of static ADMM in
[30]. Further, we note that the target optima u∗k is a time-varying
sequence instead of a fixed point. Thus, Theorem 1 indicates that
the algorithm iterate uk tracks the dynamic optima u∗k instead of
converging to some fixed point. This is due to the temporal variations
of the underlying optimization problems and differs from existing
works on static optimization, in which the algorithm iterates usually
converge to a fixed (optimal) point.

Remark 3. If higher computational overhead is affordable, one can
conduct multiple ADMM iterations in each time slot to improve the
performance of dynamic ADMM. As far as performance analysis is
concerned, this can be regarded as repeating the same optimization
problem for multiple time slots and all the analyses for the single
iteration case still hold under minor modifications. In particular, when
the same problem is repeated multiple times, the corresponding drift
dk is zero and the gap ‖uk−u∗k‖C decreases geometrically for mul-
tiple rounds according to (52). This partially explains why multiple
ADMM iterations per time slot can improve the performance.

Remark 4. We note that in the proof of Theorem 1, the sole role
of the drift dk is to upper bound ‖u∗k−1 − u∗k‖C. Thus, one may
define a new notion of drift as d̃k = ‖u∗k−1 − u∗k‖C and (52) (as
well as other later theorems) still holds for this new drift. In this
paper, we define drift dk according to (51) because it only involves
quantities in the primal optimization problem (6) such as the primal
optimal point z∗k and the primal objective function gk. It is more
natural to characterize the drift of the primal problem (6) using only
these primal quantities instead of the dual optimal point λ∗k used
in ‖u∗k−1 − u∗k‖C. The reason is that the temporal variations of
primal quantities, e.g., ‖z∗k−1 − z∗k‖2, are usually easier to estimate
than those of the dual variables. For example, if z∗k represents the
location of a moving target, we may estimate the variations of z∗k by
the knowledge of the target’s speed range. By defining the drift in
terms of the primal variables, we may obtain more accurate estimates
of the drifts and thus know more about the convergence performance
of the dynamic ADMM. Further, we note that the drift dk depends
on the ADMM parameter ρ, which may seem unnatural at the first
glance. Nevertheless, this is indeed reasonable (and inevitable) since
the optimality gap ‖uk − u∗k‖C that we want to bound in (52) also
depends on ρ implicitly through the norm ‖ · ‖C (recall that the
definition of C in (15) depends on ρ) and uk, which is generated by
dynamic ADMM with parameter ρ.

Remark 5. The notion of drift and the linear convergence result
in Theorem 1 are analogous to that of [21]. Nevertheless, [21]
is focused on decentralized consensus optimization problems over
networks and the analysis heavily relies on the special structures
of consensus optimization, in which networked agents share one
common decision variable. For instance, in [21], owing to the special
structures of consensus optimization, some primal/dual variables can
be eliminated under appropriate initializations, which simplies the
performance analysis. Such structures no longer hold for the dynamic
sharing problem in this paper. In fact, the proofs of linear convergence
for the dynamic sharing problem in this paper are very different from
that of [21].

The convergence property of uk has been established in Theorem

1. A more meaningful result will be about the convergence properties
of xk, zk,λk. To this end, we want to link the quantities ‖xk−x∗k‖2,
‖zk − z∗k‖2, ‖λk − λ∗k‖2 with ‖uk − u∗k‖C. This is accomplished
by the following theorem.

Theorem 2. For any integer k ≥ 2, we have:

‖xk − x∗k‖2

≤ 1

m̃
‖A‖2

[(√
2ρ+ ‖B‖2

√
2ρ

α

)
‖uk − u∗k‖C

+ ‖B‖2
√

2ρ

α
‖uk−1 − u∗k−1‖C +

√
2ρdk

]
, (53)

where ‖A‖2 is the spectral norm, i.e., the largest singular value, of
A. Furthermore, for any positive integer k, we have:

‖zk − z∗k‖2 ≤
√

2

αρ
‖uk − u∗k‖C, (54)

‖λk − λ∗k‖2 ≤
√

2ρ‖uk − u∗k‖C. (55)

Proof. See Section S.2 of the supplementary material.

Remark 6. Since ‖uk−u∗k‖C converges Q-linearly to some neigh-
borhood of zero, Theorem 2 indicates that ‖xk −x∗k‖2, ‖zk − z∗k‖2,
and ‖λk − λ∗k‖2 converge R-linearly to neighborhoods of zero.
When the dynamic optimization problem (6) degenerates to its static
version, i.e., fk and gk does not vary with k, Theorem 2 also
degenerates to its static counterpart in [28], [30].

Theorems 1 and 2 characterize the transient behaviors of the
dynamic ADMM for each time k in terms of the drift dk. Based
on these results, we can bound the limiting optimality gaps of the
algorithm iterates as the time k goes to infinity in the following.

Theorem 3. Suppose the drift defined in (51) satisfies dk ≤ d,∀k,
for some d ∈ R. Then, we have:

lim sup
k→∞

‖uk − u∗k‖C ≤
d√

1 + δ − 1
, (56)

lim sup
k→∞

‖xk − x∗k‖2 ≤
‖A‖2
m̃

√2ρ+ ‖B‖2
√

8ρ
α√

1 + δ − 1
+
√

2ρ

 d,
lim sup
k→∞

‖zk − z∗k‖2 ≤
√

2

αρ

d√
1 + δ − 1

, (57)

lim sup
k→∞

‖λk − λ∗k‖2 ≤
√

2ρ
d√

1 + δ − 1
. (58)

Proof. See Section S.3 of the supplementary material.

The dynamic problem (6) falls into the general category of con-
strained online optimization problems [3], for which regret and con-
straint violation are two prevalent performance criteria. Specifically,
for problem (6), the regret and the constraint violation of an algorithm
at time K are defined as:

Reg(K) =

K∑
k=1

[fk(xk) + gk(zk)− fk(x∗k)− gk(z∗k)], (59)

Vio(K) =

K∑
k=1

‖Axk + Bzk − c‖2, (60)

where the time-varying primal optimal point (x∗k, z
∗
k) serves as a dy-

namic benchmark sequence. Generally, sublinear regret and sublinear
constraint violation, i.e., Reg(K) ≤ o(K) and Vio(K) ≤ o(K), are
regarded as “good” performance. In such a case, the time-average
performance of the algorithm iterates is no worse than that of the
benchmark optima asymptotically since Reg(K)

K
≤ o(1) → 0 and

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2940317, IEEE
Transactions on Automatic Control

6

Vio(K)
K

≤ o(1) → 0 as K → ∞. If gk and fk are β- and β̃-
Lipschitz continuous, respectively, it can be shown that the regret
and the constraint violation can be upper bounded in terms of the
tracking errors ‖xk − x∗k‖2 and ‖zk − z∗k‖2 as follows:

Reg(K) ≤
K∑
k=1

(
β̃‖xk − x∗k‖2 + β‖zk − z∗k‖2

)
, (61)

Vio(K) ≤
K∑
k=1

(‖A‖2‖xk − x∗k‖2 + ‖B‖2‖zk − z∗k‖2). (62)

These bounds manifest the connections between the regret/constraint
violation and the tracking errors used in Theorems 1-3. In the
following, by exploiting these connections, we establish upper bounds
for the regret and the constraint violation in terms of the drift.

Theorem 4. Suppose that gk and fk are Lipschitz continuous
with positive constants β and β̃, respectively, i.e., ∀k, ∀z, z′ ∈
RM , ∀x,x′ ∈ RN , we have

|gk(z)− gk(z′)| ≤ β‖z− z′‖2, (63)

|fk(x)− fk(x′)| ≤ β̃‖x− x′‖2. (64)

Define the cumulative drift of problem (6) at time K as DK =∑K
k=2 dk. Then, the regret and the constraint violation of the dynamic

ADMM can be bounded as:

Reg(K) ≤ O(DK + 1), Vio(K) ≤ O(DK + 1). (65)

Proof. See Section S.4 of the supplementary material.

From Theorem 4, we know that the dynamic ADMM achieves
sublinear regret and sublinear constraint violation as long as the
cumulative drift DK is sublinear. Conversely, if the cumulative drift
DK is not sublinear, then the per time drift dk is in constant
order at least, i.e., the underlying optimization problem (6) varies
in constant speed at least. In such a case, it is hard for the algorithm
iterates to track the dynamic optimal points so that the regret and the
constraint violation may not be sublinear. Additionally, we note that
the benchmark (x∗k, z

∗
k) that we use in (59) is a dynamic sequence

instead of a fixed point. In the literature, regret analysis with respect
to dynamic benchmark has been carried out for other algorithms
of constrained online optimization, e.g., the saddle point method in
[32]. The corresponding regret and constraint violation bounds often
depend on various forms of the drifts of the underlying dynamic
problems. Here, Theorem 4 gives such bounds for the proposed
dynamic ADMM algorithm.

IV. NUMERICAL EXAMPLES

In this section, two numerical examples are presented to validate
the efficacy of the proposed dynamic ADMM algorithm. The first
example is a dynamic sharing problem and the second one is the
dynamic least absolute shrinkage and selection operator (LASSO).
We note that the dynamic LASSO is not a dynamic sharing problem.
Recall that the dynamic ADMM (Algorithm 1) is designed for
the general dynamic optimization problem (6), which includes the
dynamic sharing problem as a special case. Here, we study dynamic
LASSO numerically to confirm that applications of the proposed
dynamic ADMM are indeed not limited to dynamic sharing problem.

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

10
1

E
rr

o
r

Fig. 1: The convergence curves of ‖xk − x∗k‖2 for different
numbers of ADMM iterations per time slot.

A. The Dynamic Sharing Problem

1) Problem Formulation: We first consider the following dynamic
sharing problem:

Minimize
x(1),...,x(n)∈Rp

n∑
i=1

(
x(i) − θ

(i)
k

)T
Φ

(i)
k

(
x(i) − θ

(i)
k

)
+ γ

∥∥∥∥∥
n∑
i=1

x(i)

∥∥∥∥∥
1

,

(66)

where θ
(i)
k ∈ Rp, Φ

(i)
k ∈ Rp×p positive definite, γ > 0 are given

problem data. The problem (66) is clearly in the form of (2) with:

f
(i)
k

(
x(i)
)

=
(
x(i) − θ

(i)
k

)T
Φ

(i)
k

(
x(i) − θ

(i)
k

)
, (67)

gk(z) = γ‖z‖1. (68)

Define x =
[
x(1)T, · · · ,x(n)T

]T
, θk =

[
θ
(1)T
k , · · · ,θ(n)T

k

]T
and

Φk = diag
{

Φ
(1)
k , · · · ,Φ(n)

k

}
. Thus, in terms of problem (4),

we have fk(x) = (x− θk)T Φk (x− θk) . Applying the dynamic
ADMM algorithm, i.e., Algorithm 1, to this dynamic sharing prob-
lem, we can obtain closed-form updates for (9) and (10) in each
iteration by invoking the soft-threshold function since gk is `1 norm.

2) Generation of Φ
(i)
k and θ

(i)
k : We generate the problem data

Φ
(i)
k and θ

(i)
k recursively as follows. Given Φ

(i)
k−1 (k ≥ 1), we first

generate Φ̃
(i)
k according to Φ̃

(i)
k = Φ

(i)
k−1 + η

(i)
k E

(i)
k , where η(i)k is

some small positive number and E
(i)
k is a random symmetric matrix

with entries uniformly distributed on [−1, 1]. Then, we construct the
matrix Φ

(i)
k as:

Φ
(i)
k =

Φ̃
(i)
k , if λmin

(
Φ̃

(i)
k

)
≥ ε, i.e., Φ̃

(i)
k � εI,

Φ̃
(i)
k +

[
ε− λmin

(
Φ̃

(i)
k

)]
I, otherwise,

(69)

where λmin(·) denotes the smallest eigenvalue and ε > 0 is some
positive constant. Through this construction, we ensure that Φ

(i)
k �

εI, k = 1, 2, In addition, Φ0 is a random symmetric matrix whose
entries are uniformly distributed on [−1, 1]. Given θ

(i)
k−1 (k ≥ 1), we

generate θ
(i)
k according to θ

(i)
k = θ

(i)
k−1 + η

(i)
k h

(i)
k , where h

(i)
k is a

random p-dimensional vector whose entries are uniformly distributed
on [−1, 1]. θ(i)

0 is also a random p-dimensional vector with entries
uniformly distributed on [−1, 1].

3) Simulation Results: In the first simulation, we set the param-
eters as η = 0.2, ε = 1, γ = 1, ρ = 1, p = 5, n = 20. We use the
CVX package [33] to compute the optimal point x∗k of the dynamic
sharing problem (66) at time k. In each time k, we use single or
multiple iterations of the ADMM updates, i.e., single or multiple
rounds of the updates (9)-(11) for each time k (the original Algorithm
1 uses one single ADMM iteration per time slot). The convergence
curves of ‖xk−x∗k‖2 (xk is the online solution given by the dynamic

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2940317, IEEE
Transactions on Automatic Control

7

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

E
rr

o
r

=0.01

=0.1

=1

Fig. 2: The impact of the algorithm parameter ρ on the convergence
behaviors (‖xk − x∗k‖2) of the dynamic ADMM.

ADMM algorithm) for different numbers of ADMM iterations per
time slot are shown in Fig. 1. The results are the average of 100
independent trials. We observe that ‖xk − x∗k‖2 converges to some
neighborhoods of zero after about 7 to 30 iterations, depending on
the number of ADMM iterations per time slot. This corroborates the
efficacy of the proposed dynamic ADMM algorithm. Unsurprisingly,
we observe that the performance of the dynamic ADMM algorithm
can be enhanced by using more ADMM iterations per time slot
at the expense of higher computational overhead. We note that the
choice of gk(z) = γ‖z‖1 does not satisfy the strong convexity and
Lipschitz continuous gradient assumptions used in the theoretical
analysis. In light of this, we further run the dynamic ADMM for
the quadratic function gk(z) = γ‖z‖22, which is strongly convex and
has Lipschitz continuous gradient (all Assumptions 1-4 are satisfied).
The convergence curve for this quadratic function g is also shown
in Fig. 1, and one ADMM iteration is conducted in each time slot.
Comparing this curve with the red cross curve, we observe that the
performance of dynamic ADMM is better for the quadratic function g
than for the `1-norm function g. This suggests that the assumptions
made for theoretical analysis can also be important for empirical
performance.

In the second simulation, we investigate the impact of the algo-
rithm parameter ρ on the convergence performance of the dynamic
ADMM. We consider three different values for ρ: 0.01, 0.1, 1. The
corresponding convergence curves (‖xk − x∗k‖2) are shown in Fig.
2. We find that ρ = 0.1 yields the best convergence performance
among the three circumstances. This indicates that the importance
of an appropriate value of ρ, which should be neither too large nor
too small. We note that similar observations have been made in the
traditional static ADMM [1].

B. Dynamic LASSO

1) Problem Formulation: Least absolute shrinkage and selection
operator (LASSO) is an important and renowned problem in statistics
and signal processing. It embodies sparsity-aware linear regression.
Here, we consider a dynamic version of the LASSO since the problem
data often vary with time in many real-time applications as new
measurements arrive sequentially:

Minimize
x∈Rp

1

2
‖Fkx− hk‖22 + γ‖x‖1, (70)

where Fk ∈ Rm×p, hk ∈ Rm are time-variant problem data
and γ > 0 is some positive constant controlling the sparsity of
the solution. The problem (70) is clearly in the form of (6) with
fk(x) = 1

2
‖Fkx− hk‖22, gk(z) = γ‖z‖1, A = I, B = −I, c = 0.

Thus, we can apply Algorithm 1 to the problem (70), where both (9)
and (10) admit closed-form solutions. Note that the problem (70) does
not fall into the category of dynamic sharing problem (2) as fk(x)
cannot be decomposed across several parts of x. Our goal in this
numerical example is to verify that the proposed dynamic ADMM

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
rr

o
r

ADMM and offline

ADMM and truth

Offline and truth

(a) Slowly varying case (η = 0.01).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
rr

o
r

ADMM and offline

ADMM and truth

Offline and truth

(b) Fast varying case (η = 0.1).

Fig. 3: Results for the gaps ‖xk − x∗k‖2, ‖xk − x̃k‖2, ‖x∗k − x̃k‖2.

works well for the general dynamic optimization problem (6), not
just the dynamic sharing problem.

2) Generation of Fk and hk: The problem data Fk and hk are
generated as follows. Given Fk−1 (k ≥ 1), we generate Fk according
to Fk = Fk−1+ηkWk, where ηk is some small positive constant and
Wk ∈ Rm×p is a random matrix with entries uniformly distributed
on [−1, 1]. F0 is also a random matrix with entries uniformly
distributed on [−1, 1]. To generate the sequence hk, we construct an
auxiliary ground-truth sequence x̃k as follows. We randomly select
q different numbers {j1, ...jq} from the set {1, ..., p}, where q � p.
Given x̃k−1 (k ≥ 1), we generate x̃k based on: x̃k = x̃k−1 +ηkuk,
where uk ∈ Rp is a random vector with jl-th entry uniformly
distributed on [−1, 1], l = 1, ..., q and other entries equal to zero. x̃0

is a random vector whose jl-th entry is uniformly distributed on [0, 1],
l = 1, ..., q and other entries are zero. This enforces sparsity of the
ground-truth x̃k to be estimated, which is the underlying hypothesis
of the LASSO. With x̃k and Fk in hands, we generate hk according
to hk = Fkx̃k + vk, where vk ∼ N (0, σ2I) is a m-dimensional
Gaussian random vector.

3) Simulation Results: In the simulations, we set the parameters
as: m = 10, p = 30, q = 2, ρ = 1, γ = 0.2, σ = 0.1. All
results except Fig. 4 are the average of 100 independent trials. We
consider two values, 0.01 and 0.1, for η, the parameter controlling
the variation of the problem data across time. We call η = 0.01 and
η = 0.1 the slowly time-variant case and the fast time-variant case,
respectively. Denote the online estimate generated by applying the
dynamic ADMM to the dynamic LASSO (70), the estimate given by
the offline optimizor through the CVX package (i.e., the optimal point
of (70)) and the ground-truth as xk,x

∗
k and x̃k, respectively. The gaps

between these three quantities, i.e., ‖xk − x∗k‖2, ‖xk − x̃k‖2 and
‖x∗k− x̃k‖2, in the slowly time-variant case and the fast time-variant
case are reported in Fig. 3-(a) and Fig. 3-(b), respectively. A few
remarks are in order. First, the solution of the optimizor x∗k should be
regarded as the benchmark for the dynamic ADMM as the former is
the optimal point of (70), or in other words, the best that the dynamic
LASSO can achieve. For both slowly and fast time-variant cases,
the gaps between the dynamic ADMM and the offline optimizor,
i.e., the blue line with square marker, converge to some small values
after about 40 iterations. This indicates that the dynamic ADMM can
track the optimal point of (70) well. Second, the gaps between the
dynamic ADMM and the truth (red line with cross markers) as well as
the gaps between the offline optimizor and the truth (black line with
triangle markers) are similar after some 50 iterations in both slowly
and fast time-variant cases. This suggests that in terms of tracking
the ground-truth, the dynamic ADMM and the offline optimizor have
similar performances while the former has much less computational
complexity than the latter. Third, unsurprisingly, comparing 3-(a) with

0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2940317, IEEE
Transactions on Automatic Control

8

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

The first dimension

0.8

1

1.2

1.4

1.6

1.8
T

h
e

 s
e

c
o

n
d

 d
im

e
n

s
io

n Truth

ADMM

Offline

end

start

Fig. 4: The trajectories of the two nonzero dimensions in one trial

3-(b), we observe that the tracking performances of both the dynamic
ADMM and the offline optimizor are related to the value of η: the
larger the η, the more drastically the change of the problem data
across time, the poorer the tracking performance.

Lastly, a more palpable result of the tracking performance is shown
in Fig. 4, in which the trajectories of the two nonzero dimensions
(i.e., i1, i2, corresponding to the horizontal axis and the vertical axis,
respectively) of the dynamic ADMM, the offline optimizor and the
ground-truth in one trial of the fast time-variant case are shown. The
starting point corresponds to k = 10 and the time gap between two
adjacent points is 10. We observe that the dynamic ADMM can track
the truth well. The tracking performance of the offline optimizor is
somewhat better, but at the expense of its heavy or even intractable
computational burden in many real-time applications.

V. CONCLUSION

In this paper, motivated by the dynamic sharing problem, we
propose and study a dynamic ADMM algorithm, which can adapt
to the time-varying optimization problems in an online manner.
Theoretical analysis is presented to show that the gaps between the
algorithm iterates and the dynamic optimal points converge linearly
to some neighborhoods of zero. The sizes of the neighborhoods
depend on the inherent evolution speed, i.e., the drift, of the dynamic
optimization problem across time: the more drastically the problem
evolves, the bigger the size of the neighborhood. Explicit upper
bounds of the limiting optimality gaps of the dynamic ADMM
are given. Moreover, regret and constraint violation bounds of the
dynamic ADMM are developed in terms of the cumulative drift of the
dynamic problem. Finally, numerical results are presented to validate
the proposed dynamic ADMM.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their
insightful comments and suggestions.

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, 2011.

[2] S. Haykin, Adaptive Filter Theory (3rd Ed.). Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1996.

[3] E. Hazan et al., “Introduction to online convex optimization,” Founda-
tions and Trends R© in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[4] M. Mahdavi, R. Jin, and T. Yang, “Trading regret for efficiency: online
convex optimization with long term constraints,” Journal of Machine
Learning Research, vol. 13, no. Sep, pp. 2503–2528, 2012.

[5] A. Koppel, F. Y. Jakubiec, and A. Ribeiro, “A saddle point algorithm
for networked online convex optimization,” IEEE Transactions on Signal
Processing, vol. 63, no. 19, pp. 5149–5164, 2015.

[6] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex
optimization in the bandit setting: gradient descent without a gradient,”
in SODA, pp. 385–394, 2005.

[7] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in ICML, pp. 928–936, 2003.

[8] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
in FOCS, pp. 256–261, IEEE, 1989.

[9] S. Arora, E. Hazan, and S. Kale, “The multiplicative weights update
method: a meta-algorithm and applications.,” Theory of Computing,
vol. 8, no. 1, pp. 121–164, 2012.

[10] J. Kivinen and M. K. Warmuth, “Exponentiated gradient versus gradient
descent for linear predictors,” Information and Computation, vol. 132,
no. 1, pp. 1–63, 1997.

[11] C. Tekin, J. Yoon, and M. van der Schaar, “Adaptive ensemble learning
with confidence bounds,” IEEE Transactions on Signal Processing,
vol. 65, no. 4, pp. 888–903, 2016.

[12] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[13] D. P. Bertsekas, “Dynamic programming and stochastic control,” 1976.
[14] G. França and J. Bento, “An explicit rate bound for over-relaxed

ADMM,” in IEEE ISIT, pp. 2104–2108, 2016.
[15] P. Giselsson and S. Boyd, “Linear convergence and metric selection

for douglas-rachford splitting and ADMM,” IEEE Transactions on
Automatic Control, vol. 62, no. 2, pp. 532–544, 2017.

[16] H. Wang and A. Banerjee, “Online alternating direction method,” ICML,
2012.

[17] S. Hosseini, A. Chapman, and M. Mesbahi, “Online distributed admm
on networks: Social regret, network effect, and condition measures,”
arXiv:1412.7116, 2014.

[18] H. Ouyang, N. He, L. Tran, and A. G. Gray, “Stochastic alternating
direction method of multipliers.,” ICML, vol. 28, pp. 80–88, 2013.

[19] W. Zhong and J. T.-Y. Kwok, “Fast stochastic alternating direction
method of multipliers.,” in ICML, pp. 46–54, 2014.

[20] T. Suzuki, “Dual averaging and proximal gradient descent for online
alternating direction multiplier method.,” in ICML, pp. 392–400, 2013.

[21] Q. Ling and A. Ribeiro, “Decentralized dynamic optimization through
the alternating direction method of multipliers,” IEEE Transactions on
Signal Processing, vol. 62, no. 5, pp. 1185–1197, 2014.

[22] A. Makhdoumi and A. Ozdaglar, “Broadcast-based distributed alter-
nating direction method of multipliers,” in Communication, Control,
and Computing (Allerton), 2014 52nd Annual Allerton Conference on,
pp. 270–277, IEEE, 2014.

[23] N. S. Aybat, Z. Wang, T. Lin, and S. Ma, “Distributed linearized alter-
nating direction method of multipliers for composite convex consensus
optimization,” IEEE Transactions on Automatic Control, vol. 63, no. 1,
pp. 5–20, 2018.

[24] G. França and J. Bento, “How is distributed admm affected by network
topology?,” arXiv preprint arXiv:1710.00889, 2017.

[25] A. Makhdoumi and A. Ozdaglar, “Convergence rate of distributed admm
over networks,” IEEE Transactions on Automatic Control, vol. 62,
no. 10, pp. 5082–5095, 2017.

[26] Q. Ling, Y. Liu, W. Shi, and Z. Tian, “Communication-efficient weighted
admm for decentralized network optimization,” in Acoustics, Speech and
Signal Processing (ICASSP), 2016 IEEE International Conference on,
pp. 4821–4825, IEEE, 2016.

[27] A. Teixeira, E. Ghadimi, I. Shames, H. Sandberg, and M. Johansson,
“Optimal scaling of the admm algorithm for distributed quadratic
programming,” in IEEE CDC, pp. 6868–6873, 2013.

[28] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the admm in decentralized consensus optimization,”
IEEE Trans. on Signal Processing, vol. 62, no. 7, pp. 1750–1761, 2014.

[29] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge univer-
sity press, 2004.

[30] W. Deng and W. Yin, “On the global and linear convergence of the
generalized alternating direction method of multipliers,” Journal of
Scientific Computing, vol. 66, no. 3, pp. 889–916, 2016.

[31] L. Vandenberghe, “Gradient method,” lecture notes, UCLA, 2016.
[32] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex optimization

approach to proactive network resource allocation,” IEEE Transactions
on Signal Processing, vol. 65, no. 24, pp. 6350–6364, 2017.

[33] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1.” http://cvxr.com/cvx, mar 2014.

