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Abstract—In the present evolving world, automobiles have
become an intelligent electronic machine and are no longer a
mere transport medium. In this work, we attempt to make them
smarter by introducing the idea of in-car driver authentication
using wireless sensing and develop a system which can recognize
drivers automatically. The proposed system can recognize human
identity by identifying the unique radio biometric information
recorded in the channel state information (CSI) through multi-
path propagation. However, since the environmental information
is also captured in the CSI, the performance of radio biometric
recognition may be degraded by the changing environment. In
this work, we first address the problem of “in-car changing
environments” where the existing wireless sensing based human
identification system fails. We build a long-term driver radio
biometric database consisting of radio biometrics of seven people
collected over a period of two months. We leverage this database
to create machine learning (ML) models that make the proposed
system adaptive to new in-car environments. Secondly, we study
the performance of the in-car driver authentication system with
increasing effective bandwidth. We realize an effective bandwidth
of 960 MHz by exploiting the multi-antenna and frequency
diversities in commercial WiFi devices. The performance of the
proposed system is shown to improve with increasing effec-
tive bandwidth and the long-term experiments demonstrate the
feasibility and accuracy of the proposed system. The accuracy
achieved in the two-driver scenario is up to 99.13% for the best
case.

Index Terms—Driver authentication, radio biometrics, human
identification, wireless sensing, radio shot, smart car.

I. INTRODUCTION
The field of the Internet of Things (IoT) continues to ex-

tend its capabilities and engulfs many interesting applications
within. With the deployment of tremendous smart devices
that can sense, exchange and analyze information, the IoT
has enabled evolutionary changes in every day lives. Smart
environments and smart vehicles are among the many interest-
ing applications in the IoT [1]. Using different sensors, smart
vehicles are able to predict traffic patterns, automate driving
and optimize fuel consumption [2]. While these works focused
more on automating the driving patterns, there are a plethora
of other works on driver monitoring and activity recognition.
The authors in [3], [4] used vision based techniques to detect
head, eye and hand movements to predict driver behavior for
accident prevention, although cameras in general introduce
privacy concerns.

On the other hand, wireless sensing is an innovative modal-
ity to achieve security and privacy at the same time and has
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been widely used in many IoT applications because of the
ubiquitous deployment of WiFi devices. High accuracy indoor
localization has been achieved using WiFi fingerprinting [5]–
[7]. By extracting statistics and identifying other features in the
channel state information (CSI), multiple research teams inves-
tigated the detection of indoor motion or dynamics [8]–[10].
Recently, researchers have been working on using wireless
sensing to enable indoor vital sign estimation by extracting the
periodic components in the CSI [11], [12]. Other applications
such as key stroke recognition [13], movement speed estima-
tion [14], gesture [15] and gait recognition [16], have also
been explored through wireless sensing. In the study on smart
vehicles using wireless sensing, researchers have investigated
driver activity recognition where driving actions have been
estimated using received signal strength information (RSSI)
and CSI amplitudes in a simulated environment [17]. However,
not much research has been done on driver authentication
based on wireless sensing.

Driver authentication system improves security and can
automatically make in-car driver-specific adjustments such
as temperature and seat and mirror positions. Nowadays,
human authentication is either done by using password based
methods such as encryption keys, PINs, key cards, or by using
biometrics. The term biometrics refers to a measurement of
biological data. Any biological measurement that is potentially
unique to a person is considered as a biometric. Biometric
based methods are gaining popularity due to their inherent
uniqueness and convenience, compared to passwords and
keys which may be easily forged or forgotten. Biometrics
can be broadly classified into two categories: 1) physical
characteristics, comprising of fingerprints, face, iris and hand
print, and 2) behavioral characteristics, such as gait, keystroke
dynamics, specific gestures etc. Physical characteristics are
more reliable and some may not change significantly with
time, while behavioural traits can change over time or be
changed intentionally [18].

In this work, we use a new type of physical biometrics,
the radio biometrics, to achieve reliable in-car driver authen-
tication [19]. Radio biometrics is the pattern of a human
body introduced to the wireless propagation environment. Re-
searchers have studied the electromagnetic wave propagation
through a human body [20], [21] and the dielectric properties
[22]–[24]. Alongside these studies, the work in [25] showed
that the electromagnetic propagation in and around a human
body is influenced by such factors as the height, weight,
body water volume, surface area, tissue density and more. A
combination of these features could be potentially unique to a
person and serve as a biometric [19]. In an indoor environment,
the wireless signal undergoes many reflections and scattering
that generates multipaths. At the receiver, the result of all the
multipaths can be recorded in the form of a CSI. Human radio
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biometrics can be recorded within the CSI and is determined
by the unique biological characteristics of each individual. The
captured CSI can be considered as a radio signature and the
process of recording a radio signature is termed as a radio
shot.

The first wireless sensing based human recognition system
[19] used CSI as the feature for individual physical charac-
teristics and utilized the time-reversal technique to compare
the similarity of radio biometrics. However, this prior art
assumed that the indoor environment remains static throughout
the period of the experiment. In reality, this is not the case and
even a small change in the indoor environment will introduce
a significant change into the multipath CSI. Different from the
existing work, we do not make any such assumptions in this
work. Instead, we build machine learning (ML) models which
can adapt to the changing in-car environment.

ML techniques require data to learn patterns, draw infer-
ences and generalize to new unseen references [26]. They
perform automated feature selection from the training data.
ML and deep learning have achieved great successes in the
field of computer vision because they have large amounts of
data to train on, while the performance of deep learning in
other fields is largely limited by the availability of training
data. In this work, we build the first radio biometric database
consisting of radio biometrics of seven people collected over
a period of two months. Driver authentication is achieved by
building ML models using this database.

Previous works have shown that the pattern of radio
propagation through a human body is frequency dependent
[22]. Based on that, in this work, we try to obtain radio
biometrics from several channels. One way to implement
this idea is to use frequency hopping. Frequency hopping
rapidly switches channels to transmit wireless signals. For
example, [27] used frequency hopping to achieve sub-nano
level Time of Flight (ToF) and [7] achieved high accuracy
indoor localization by using augmented CSI fingerprint from
several channels. In this work, we implement the frequency
hopping on portable commercial WiFi devices that can be fixed
in a car. Furthermore, we exploit the multi-antenna diversity
in the MIMO systems to obtain more differentiating features.
We have evaluated the performance of the proposed system in
a long-term experiment for two months, and have studied the
impact of different factors on the performance of the proposed
driver authentication system. For two-driver authentication, an
accuracy of 99.13% has been achieved in the best scenario
while an accuracy of 72.12% has been achieved for the most
difficult scenario.

The main contributions of this work can be summarized as
follows:
• We propose the first in-car driver authentication system

using the human radio biometrics recorded in the wireless
CSI.

• We address the problem of in-car environmental changes.
We build the first multiple-driver radio biometric database
consisting of radio biometrics of seven people collected
over a period of two months. To our knowledge, this is the
first long-term study conducted for human radio biometric
recognition. With the help of this database, we integrate

ML techniques to make the proposed driver authentication
system adaptive to different in-car environments.

• We study the impact of the multi-antenna diversity and
the frequency diversity on the accuracy of the proposed
driver authentication system. For experimental evaluation,
we have implemented frequency hopping on portable
commercial WiFi devices that can be fixed in a car for
long-term.

• We perform extensive analysis on the dependence of the
classification accuracy on different factors including the
size of training set, similarity of radio shots, time gap
between training and testing days, number of MIMO links
and the number of channels.

In the proposed in-car driver authentication system, we
focus on cases in which there is only a single driver present in
the car with no passengers. The more practical scenario where
one or more passengers are present in the car will be studied
in future work. Also, the radio biometrics of the driver should
have been present in the radio biometric database of the car. In
case of a temporary driver, key or passwords should be used.
Here are some practical applications:
• The proposed system can be used by parents preventing

a car driven by kids or an unauthorized driver who might
cause accidents. A physical key is easy to access whereas
the radio biometric system can be used to differentiate
kids from adults.

• In a typical home, there are usually 2-3 daily drivers for
a car (e.g., the wife and the husband). In such cases, our
proposed system is very useful in both security enhance-
ment and personalization. Also, in case of recognizing
the husband and the wife, the difference in attributes is
usually higher and the proposed system performs better.

This paper is organized as follows. Section II describes the
challenges in the proposed in-car driver authentication system.
Section III discusses the dataset preparation, preprocessing and
frequency hopping techniques. Section IV presents different
methodologies to achieve in-car driver authentication and
the experiments results are discussed in Section V. In-depth
analysis of the classification accuracy is studied in Section
VI. Limitations and future work are discussed in Section VII
and finally, Section VIII presents the conclusions.

II. CHALLENGES

The similarity of two CSIs can be defined by the time re-
versal resonating strength (TRRS). For two channel frequency
responses (CFRs) h1 and h2, the TRRS in the frequency
domain is given by [19]:

T RRS(h1,h2) =
maxφ |

∑L−1
k=0 h1[k]h2[k]∗e jkφ |2

(
∑L−1

l=0 |h1[l]|2)(
∑L−1

l=0 |h2[l]|2)
, (1)

where L is the number of subcarriers. The higher the TRRS
is, the more similar the two CFRs are, and thus the more
similar the two radio biometric samples are. There are two
main challenges in the proposed in-car driver authentication
system.
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A. Change of in-car environment

The human radio biometrics are highly correlated with
the environmental information in the CSI. Hence, when the
in-car environment is altered, the CSI containing the driver
radio biometrics is also changed. To measure the degree of
changes in an in-car environment, we record the CSI of the
empty car every day. The similarity between the CSI of empty
car captured on different days and the CSI of empty car
captured on day 1 is calculated by the TRRS. Fig. 1 shows
the change of in-car environment with time measured in terms
of TRRS. Overall, we can observe that the TRRS decreases
as more changes accumulate in the in-car environment over
time. The in-car environment is similar to the indoor wireless
propagation environment with multipaths created by numerous
scatterers. The received CSI is a composition of such multi-
paths. When one scatterer Sa is displaced, all the multipaths
which involved Sa in their paths are altered and this causes
a change in the received CSI. Let the original CSI be CSIo
and the CSI after displacing Sa be CSIa. Let another scatterer
Sb be displaced and the corresponding CSI be CSIb. The
difference between CSIa and CSIo is due to the multipaths
that involved Sa only whereas the difference between CSIo
and CSIb is due to the multipaths which involved Sa only,
Sb only and both Sa and Sb. Therefore, as an increasing
number of scatterers are displaced with time, more multipaths
are altered and the CSI becomes more and more distinct
from the original CSI. Since the displacement of scatterers
in the car is random and there are many multipaths involving
each scatterer, it is highly unlikely to recreate the exact same
multipath profile by reversing the displacement of scatterers
or by a new combination of scatterer locations. Therefore, on
an average, we see that the TRRS decreases with time as more
changes accumulate inside the car.

An existing WiFi based human identification system used
TRRS matching to identify humans [19]. During the training
phase, the human radio biometrics which are embedded in
the indoor CSIs are recorded and stored as a database. In the
testing phase, the CSIs are compared with those in the training
database using TRRS similarity metric. The identity of the
human is determined by the class of the highest matching CSI
from the training database provided that the highest TRRS is
greater than a predefined threshold (0.7). With the given degree
of changes of the in-car environment, the TRRS matching
technique can no longer be applied. For example, consider
the CSIs of two drivers H1 and H2, collected on two different
days A and B. As shown in Fig. 2, the TRRS between CSI of
H2 on day A and CSI of H1 on day B is 0.81 while TRRS
between CSIs of H2 on different days is 0.63 resulting in a
misclassification. In this work, we overcome this challenge by
adopting ML techniques to make the system adaptive to new
environments.

B. Low resolution of multipaths

Secondly, the CSI recorded at each time instant is a
collection of channel information on multipaths which have
different path lengths. In order to resolve the multipaths with
a higher resolution, a larger bandwidth is required. Since the
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Fig. 1: Change of in-car environment with time measured in
terms of TRRS. The blue curve shows the TRRS of each day
with reference to day 1 and the red curve shows the moving
average of the blue curve.

Fig. 2: TRRS heatmap between different radio biometrics
captured on different days.

bandwidth (40 MHz) is fixed for a channel in commercial WiFi
device, in this work, we achieve higher effective bandwidths
by exploiting the diversity in multiple MIMO links as well
as different frequency channels. The details are discussed in
Section III.

Impacts of external environment: The influence of exter-
nal environment on the in-car CSI has been studied. Fig. 3
shows the experimental set up where the test car is fixed and
another car is parked in different locations (1-5) around the
test car, in a public parking lot. In-car CSIs are recorded for
each of the five scenarios. To quantitatively measure the degree
of change of an in-car wireless propagation environment, we
have calculated the TRRS matrix for all the recorded CSIs
which is shown in Fig. 4. We can observe that the CSIs are
highly correlated and the TRRS values are all nearly equal to
1. The car acts as a metal cage and only a few of the multipaths
escape to the external environment through the glass windows
and only a smaller fraction of them are reflected by external
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objects. Such multipaths which are reflected back into the
car through the windows are severely attenuated and almost
negligible. We can safely assume that the effect of external
environment is insignificant, and in this work, we focus only
on the in-car environment changes.

Fig. 3: Experimental set up to study the impact of external
environment on the in-car CSI.

Fig. 4: TRRS matrix for in-car CSIs for different external
environments.

III. IN-CAR DRIVER AUTHENTICATION SYSTEM

The proposed in-car driver authentication system uses com-
mercial WiFi devices as transceivers that are placed in the
car. The location of transceivers play an important role in the
performance of the proposed system. The location of receiver
is chosen at the back of the car at the typical location of
an in-car RF antenna. The best location for the transmitter
would be in front of the driver as we can capture more

differentiating features including the face of the driver in a
ray-tracing perspective. From our experience, the recorded
human radio biometrics were more distinct for different people
when the transmitter was placed in front of the driver. This is
because the multipath channel is affected the most when the
driver intercepts the LOS path between the transmitter and the
receiver. Also, a greater number of multipaths passing through
the driver helps to capture more driver specific radio biometric
features. Fig. 5 shows two possible transceiver locations and
the multipath propagation inside the car. The blue line shows
the LOS path which is intercepted when the driver is present in
the car. The orange colored lines show the NLOS paths which
are received by the receiver after several reflections inside
the car. The transmitter is located at the back of the steering
wheel in Fig. 5(a), while it is placed near the audio system
in Fig. 5(b). The slight differences in the locations is because
of the space limitation during experiments. The performance
for other possible sets of transceiver locations is left for future
work. In the following, we will describe the frequency hopping
mechanism designed in the proposed system, data collection
procedure and the pre-processing technique.

Fig. 5: Location of transceivers in the car. Scenario (a) has
transmitter near the speedometer at the back of the steering
wheel and in Scenario (b), the transmitter is at the audio
system.

A. Frequency hopping on Commercial WiFi devices

Frequency hopping refers to changing channels according
to a pre-specified schedule/pattern and enables utilization
of frequency diversity. Using frequency hopping, we can
record CSIs on different channels sequentially. In this work,
to increase the number of features for in-car driver radio
biometrics, we record CSIs on four channels in the 5.2 GHz
band, during a radio shot. By doing so, we achieve a larger
effective bandwidth as explained in a later section.

The frequency hopping algorithm that we used is explained
in Algorithm 1 and Algorithm 2. The transmitter and receiver
function in parallel. The channel index is taken as ch. The
transmitter sends the channel information to the receiver in
specially designed frames called action frames. These are sent
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at regular intervals of time and the duration of each channel
is specified by the user as dwell time (µ). In this work, we
use µ = 125 milliseconds. Fig. 6 demonstrates the mechanism
of hopping channels at the receiver. It also shows the absolute
time of arrival of the CSI frames at the receiver. The stairs-
like pattern is caused by the action frames before setting to
a new channel during which no CSI samples are recorded.
Sometimes, due to channel congestion/packet loss, all of the
k action frames might be lost and the receiver continues to
stay in the same channel as in regions (B). In such cases, the
next channel is not set until the receiver receives action frames
on the existing channel in the next cycle. In Section VI, we
evaluate the performance of the proposed driver authentication
system for different number of channels.

Algorithm 1 Frequency hopping algorithm: Transmitter

1: channel-list← {36,44,153,161}
2: ch← 0
3: while (1) do
4: Set channel to channel-list(ch)
5: Send CSI frames as channel probing signals on chan-

nel channel-list(ch) for dwell time (µ)
6: Determine the next channel index

ch← (ch + 1) mod 4
7: Next channel is channel-list(ch)
8: Construct and send k action frames with new channel

index information
9: end while

Algorithm 2 Frequency hopping algorithm: Receiver

1: channel-list← {36,44,153,161}
2: Set channel to channel-list(0)
3: while (1) do
4: if CSI frame is received then
5: receive CSI
6: else if action frame is received then
7: ch

′

←next channel extracted from action frame
8: Set channel to ch

′

9: end if
10: end while

B. Dataset Preparation

In our experiments, during the radio shot, the driver sits
in the driver’s seat of a car and the wireless propagation
environment is captured in the CSI. This CSI is used as the
radio biometric for that particular driver. For every radio shot
of the driver, we also record the CSI of the corresponding
in-car environment without the driver.

The in-car driver authentication database was built by col-
lecting radio shots of seven people over two months. On each
day, for each test subject, four radio shots were taken in the
morning and evening, in a car parked at different locations
in a public parking lot. By doing so, a total of 60 different
environments have been considered. Multiple recordings of

the radio shots helps us to improve the classification accuracy
using grouping technique which is explained in Section IV.

The prototype of the proposed in-car driver authentication
system was built using the commercial off-the-self WiFi chips
with no additional hardware. The CSIs were recorded using a
2×3 MIMO system. The system operated in the 5.2 GHz band
over four channels with 114 accessible subcarriers in each
channel. Also, multiple CSIs were recorded using a sounding
rate of 30 Hz to perform phase cleaning and remove outliers
as discussed later in this section. So, for each radio shot, each
CSI sample is a 2×3×456 dimensional complex valued matrix.

C. Data Preprocessing

Timing and frequency synchronizations errors in the WiFi
systems introduce phase offsets in the recorded CSI. The mul-
tiple CSIs recorded for each radio shot are highly correlated
with each other and thus can be used for phase compensation
and outlier removal. In data preprocessing, we compensate for
the linear and the initial phase offsets.

Let ĥk
i be the received Channel Frequency Response (CFR)

of the ith sample on the k th subcarrier. Let hk
i be the CFR

without phase distortions. Then, hk
i is given by the following

equation [7]:

ĥk
i = sinc(π(∆ε + ∆ηk))hk

i e j2π(βik+αi ), (2)

where ∆ε and ∆η are the residual errors of channel fre-
quency offset and sampling frequency offset respectively, and
βi and αi are termed as the linear and initial phase. Assuming
the argument of the sinc function is small, the linear phase
can be aligned with a reference CFR [19].

Consider two CFRs ĥk
1 , ĥk

2 and ĥk
1 be the reference. Then,

we have the following equations:

ĥk
1 = hk

1 e j2π(β1k+α1), (3)

ĥk
2 = hk

2 e j2π(β2k+α2), (4)

δβ = argmax
φ
|Σk ĥk

1 ĥk∗
2 e j2πkφ |, (5)

The aligned linear phase is obtained by ĥk
′

2 = ĥk
2 e−j2πkδβ .

The initial phase is equal to the phase of the first subcarrier
on each CFR sample. It is compensated as halign = ∠ĥ[0]′ .

An example is shown in Fig. 7 where the linear and
initial phases are compensated for CSIs collected using four
channels. In this case, the phase compensation should be
done independently for each channel as the phase offsets are
different for different carrier frequencies. Fig. 7(a) shows the
phase of raw CSI for four channels. The first 114 subcarriers
correspond to channel 1, the next 114 to channel 2 and so
on. Fig. 7(b) shows the phase after linear phase compensation
and Fig. 7(c) shows the resultant phase after linear and initial
phase compensation. The CSIs are then appended to form the
feature vector for the in-car driver authentication system.

After the phase alignment, the combined CSI from the four
channels results in a 2 × 3 × 456 (i.e 114 subcarriers per
channel) dimensional complex valued vector which can be
flattened to a 5472 dimensional real valued vector. With such
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Fig. 6: Demonstration of channel hopping at the receiver with time.

a high dimension of features, the number of parameters that
need to be learned in ML models is large and usually the
models require a lot of data to train. Unlike computer vision
techniques, obtaining a large amount of data in our case is
expensive. Hence, we perform dimensional reduction using
Principle Component Analysis (PCA) to reduce the number
of parameters. PCA transforms the original features to a new
feature space based on the degree of variance. In this work, we
consider the number of features which contribute to 99% of the
total variance in the data. For instance, the dimension reduced
from 5472 to 270 for the data using all the four channels and
2 × 3 MIMO links.

IV. LEARNING METHODOLOGIES

In this section, we introduce the ML techniques and meth-
ods that we adopt in the proposed driver authentication system.

A. K-Nearest Neighbors (K-NN)

We know that the radio biometrics are embedded inside
the CSI of the environment and are highly correlated. In the
proposed in-car driver authentication system, a new in-car
environment is presented on a new day. This can be seen
as a new instance of the problem and one baseline approach
would be to use instance-based learning methods [28]. K-
nearest neighbour approach is the simplest of these methods
and often used as a baseline for classification algorithms. In
this approach, for a new test sample, we select K nearest
neighbours from the existing database and assign the majority
label to the test sample. We measure the similarity using the
Euclidean distance.

The value of K is a hyper parameter and can be chosen by
conducting several experiments and finding the best value of
K that gives the maximum average performance. For example,
consider radio biometric data of two drivers collected for 40
days. Fig. 8 shows the 40-fold cross validation accuracy with
varying number of nearest neighbours (K). The maximum
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Fig. 7: Demonstration of linear and initial phase compensation.
Figure shows the phase (a) of raw CSI, (b) after linear phase
compensation, (c) after initial phase compensation.

accuracy is achieved for a value of 3. Therefore, for the
classification of these drivers, we use 3-nearest neighbours.

B. Support Vector Machine (SVM)

SVM is the most popular approach for classification al-
gorithms in ML [29]. The aim of linear-SVM is to find a
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Fig. 8: Average K-NN accuracy for varying value of K.

Fig. 9: Average classification accuracy with number of epochs
in a neural network.

hyper plane that divides the classes with maximum margin
where margin is defined as the minimum distance of the hyper
plane to points from either class. When the data is not linearly
separable which is often the case, the “kernel-trick” is used
to project the data to higher dimensions where it is linearly
separable [30]. In this work, we use linear and RBF kernels to
evaluate the proposed system with the regularization parameter
C = 1.0. Also, we use cross validation technique to report
classification accuracy.

C. Neural Network

As the in-car environment changes with time, we would
want the system to be more adaptive and learn human radio
biometrics for different environments. Therefore we refer to
neural networks (NN) which have been used in ML and
deep learning to learn more non-linear and complex decision
boundaries for classification problems.

Architecture: The hyper parameters in the neural net-
work are tuned using K-fold validation technique. Consider
for example, the number of training epochs. We find the
classification accuracy for all the K experiments for 1000
epochs. It is observed that the model is over-fit much before
1000 epochs. We then calculate the average performance for
every epoch. Fig. 9 shows the average classification accuracy
obtained for the pair A-D with the number of epochs. The
maximum value is reported as the final accuracy. Here, the
maximum is achieved near epoch 160 with an accuracy of
93.33%. The number of hidden layers and hidden nodes are
determined by cross validation. As we further increased the
number of hidden layers or the hidden nodes, the capacity

of the network increased and it began to over-fit. The neural
network architecture that we use is shown in Fig. 10. The
network consists of a input layer with number of input nodes
equal to the input features, two hidden layers and an output
layer which gives the class probabilities for a data point. In this
work, we adopt ReLU activation function and cross entropy
loss with the Adam optimizer.

Data: We have used about 40 days data for evaluating the
performance using Kv-fold validation. The number of samples
per day is 8 and the total data available per class is nearly 320
samples. The data are partitioned by date and in total we have
40 partitions. The 40-fold validation accuracy is used as the
evaluation metric in Section V.

Fig. 10: Neural network architecture.

D. Grouping

During the process of radio shots, slight variations in the
seating positions of the driver can cause a change in the
CSI and might sometimes lead to a misclassification. To
capture and compensate these small variations, we collect
multiple radio shots for the same in-car environment and take
a combined decision. We call it as the grouping technique
which is explained in Fig. 11. During the testing phase, for
each test subject, assume the four radio shots are indexed
as i; i = 1,2,3,4. Let PAi and PBi represent the predicted
class probability of the ith radio shot for class A and class B,
respectively. Then the identity of the test subject is determined
as class A, if ΣPAi < ΣPBi and vice versa. If ΣPAi = ΣPBi ,
the test subject cannot be determined and we considered such
samples as incorrectly classified in our accuracy calculations.
We used four radio shots, since for our test subjects, more
than four radio shots led to repetitions of the CSI. This can
easily be extended to more number of radio shots based on
the consistency of seating postures of the test subjects.

Fig. 11: Grouping technique
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V. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed in-car driver
authentication system using the ML models discussed in the
previous section. First, we discuss the special case of two
driver authentication which can serve similar purpose as the
existing memory seating facilities in cars alongside providing
authentication. Later, we evaluate the performance of the
proposed system in the multi-driver scenario.

One of the main challenges in evaluating the in-car driver
authentication system is the availability of data. The study
of the trend of radio biometric data with time required that
the testers be available throughout the experiment duration
which is two months. Since the amount of data is limited, the
accuracy values obtained are dependent on the split of train and
test data. This is because the selected train data may or may
not be able to generalize well to the test data. To overcome
this, cross validation techniques are used in ML models [31].
In the simplest cross-validation technique, the entire data set
is divided into Kv parts and Kv experiments are performed
with each part as testing data and the remaining Kv − 1 parts
as the training data. In this work, the value of Kv is taken
as the number of days of available data i.e we treat the data
corresponding to each day as a partition. By doing so, we
make sure that the same instance of the in-car environment
is not present in both training and testing data. Throughout
this work, the reported accuracies are calculated using Kv-fold
validation and the value of Kv is taken as the total number of
days of data available.

A. Two-Driver Authentication

In this scenario, we classify a driver into one of the two
known drivers i.e., a two-class problem. We consider five test
subjects denoted by A, B, C, D and E. More information about
the testers is shown in Table -I.

TABLE I: Information about the testers

Name Gender Age Ht (cm) Wt (kg)
A F 25 163 56.2
B F 28 165 58.5
C M 30 168 82.5
D M 23 172 85
E M 25 180 73

TABLE II: Classification accuracy: comparison between
learning-based and TRRS-based approach for two-driver au-
thentication.

Classes TRRS-based(%) Learning-based(%)
A-B 76.51 96.55
A-C 83.09 98.27
A-D 87.73 99.13
A-E 82.18 93.10
B-C 80.88 96.55
B-D 81.58 93.67
B-E 76.13 87.06
C-D 64.93 72.12
C-E 74.60 91.37
D-E 73.41 90.22

The accuracy of the proposed system with different ML
techniques is evaluated using 40-fold validation with CSI from
one channel and with the proposed grouping technique. Table
- III shows the classification accuracy for different sets of
drivers from the in-car driver radio biometric database. The
performance of the K-NN in the first column can be taken as
the baseline performance. On an average, the NN approach
gave about 7% increase in the accuracy. The highest accuracy
achieved is 99.13% for the pair A-D.

Comparison with state-of-the-art approach: To our best
knowledge, there is only one prior work which uses radio
biometrics embedded in the CSI of wireless signals for human
recognition [19]. However, as discussed in Section II, the
performance of the previous work will be compromised by the
in-car environment changes because it heavily relied on TRRS
to compare the similarity between different radio biometrics
embedded in the CSI. Table - II demonstrates the improvement
delivered by the proposed learning-based approach. In all the
cases, the learning-based approach outperforms the state-of-
the-art TRRS-based approach by at least 7% and up to 20%.

TABLE III: Performance on two driver authentication

Classes K-NN(%) Linear SVM(%) SVM-RBF(%) NN(%)
A-B 88.93 92.52 90.22 96.55
A-C 91.88 90.87 93.03 98.27
A-D 90.37 94.39 93.10 99.13
A-E 88.50 94.39 90.44 93.10
B-C 89.79 89.15 90.51 96.55
B-D 85.70 88.93 90.08 93.67
B-E 75.71 84.69 85.48 87.06
C-D 65.80 70.83 72.12 60.63
C-E 83.11 86.99 85.77 91.37
D-E 82.68 86.99 88.36 90.22

B. Multiple Driver Authentication

We also evaluate the performance of the proposed system
in identifying more than two drivers. Fig. 12 shows the con-
fusion matrices for multiple driver classification using the NN
approach. The average detection rate for an individual among
three drivers is 84.33% while among seven drivers is 53.85%.
This is much greater than the accuracy achieved by random
guessing of identities among seven people i.e., 14.28%. The
performance decreases with increasing number of drivers.
The increasing off-diagonal elements from confusion matrices
between three to seven people also indicate an increasing false
alarm. The average false alarm increased from 15.33% in the
three driver case to 46.14% in the seven driver case.

VI. DISCUSSIONS

The performance of a human radio biometric based system
is dependent on many factors, such as the physical character-
istics of the people, the number of channels used to obtain
CSI, the environment, the amount of training data present,
the number of classes present, and etc. In this section, we
analyze and evaluate the impact of the various factors on the
in-car driver authentication system using the NN approach.
The hyper parameters are tuned using the Kv-fold validation
technique.
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Fig. 12: Confusion matrices for different number of people.

A. Size of the Training Set

We evaluate the performance of the proposed system as
the size of the training set increases. Fig. 13 shows the
performance of the system averaged over several pairs of
people. As the amount of training data increases, the clas-
sification accuracy improves. When a new user is added, the
performance will improve as the proposed adaptive neural net-
work continues learning and generalizing the distinctiveness
between his/her and others radio biometrics. From Fig. 13,
we can see that the accuracy improves drastically and reaches
about 90% in 15 days. As the user continues to use the car, the
proposed system can capture more radio biometric information
of him/her and then improve the recognition accuracy.
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Fig. 13: Accuracy averaged over several pairs of people with
the amount of training data.

B. Similarity of Radio Shots

We can observe from previous experiments that the clas-
sification performance largely depends on the set of people
that we aim to differentiate. This is because, some people
can have more similar radio biometrics compared to others.

Classification of such people might be more challenging than
others.

To support our observation, we have calculated the similar-
ity of radio biometrics in the same environment for different
sets of people, where similarity is measured in terms of
TRRS as defined in (1). In Table - IV, we show the TRRS
calculated for the pairs with maximum (A-D) and minimum
accuracy (C-D) averaged over all days. We can say that the
similarity of CSIs is one of the many factors affecting the
classification accuracy. The accuracy is lower for the pair
with more similar CSIs. However, there are many other factors
which can influence the classification accuracy in addition to
the similarity of radio biometrics. A few of them are listed
below.

1) Consistency of seating position: If the seating position of
a tester is consistent and similar during the training and
testing period, the classification accuracy is improved.
On the other hand, if the tester tends to sit in different
seating postures or positions every time, it might lead to
a decreased classification accuracy but can get mitigated
with an adaptive training data set which keeps refreshing
with newly added radio biometrics samples.

2) Difference in the in-car environment: As the human
radio biometrics are highly correlated with the in-car
environment, if the difference in the in-car environments
(measured quantitatively by the TRRS) during the train-
ing and the testing period is significant, the classification
accuracy tends to decrease.

3) Difference in the training and testing data: For example,
if a tester wears a thick jacket during the training phase
and no jacket during the testing phase, the classification
accuracy might decrease.
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TABLE IV: Similarity of radio shots and classification
accuracy

Classes Average TRRS Classification accuracy
A-D 0.7094 99.36%
C-D 0.7773 84.19%

C. Performance with Increasing Gap between Training and
Testing Data

As discussed in Section II, with time, the changes in the
in-car environment accumulate and the TRRS with reference
to day 1 continues to decrease. This causes a decrease in
the classification accuracy. Fig. 14 shows the classification
accuracy with an increasing gap between the training and
testing data. The maximum TRRS achieved by the test sam-
ple with the samples from the training database is shown
in blue. The red line shows the average accuracy achieved
in case of two-driver authentication. We can see that with
increasing difference between train and test times (days), the
maximum matching TRRS and the classification accuracy
have a decreasing trend. The classification accuracy does not
monotonically decrease since it also depends on other factors
such as variation in the seating positions, type of clothing, and
etc. From this observation, the best performance of the system
can be achieved when it is used regularly and by constantly
updating the database. The more regular and longer this system
is used, the better is the performance.

Fig. 14: Accuracy and maximum TRRS with difference be-
tween train and test days. Red line shows accuracy with
increasing gap between the training and testing days. The blue
line shows the TRRS which is the best match of the empty
in-car environment from the training database.

D. Effect of Grouping

Grouping technique (Section IV-D) uses multiple radio shots
to determine the driver identity. In Table - V, we show the
classification accuracy with and without grouping for one
channel using the NN approach. We observe that in most
cases, the grouping technique can significantly improve the
classification accuracy and hence using multiple radio shots

to predict the identity is more reliable. Few exceptions in the
case of KNN could be due to a large variation in the seating
position for each radio shot.

TABLE V: Performance with and without grouping

Classes KNN KNN(G) NN NN(G)
A-B 88.93 90.22 88.93 96.55
A-C 91.88 94.25 92.81 98.27
A-D 90.37 90.51 94.18 99.13
A-E 88.50 90.80 87.42 93.10
B-C 89.79 91.09 90.22 96.55
B-D 85.70 85.91 87.93 93.67
B-E 75.71 71.26 80.45 87.06
C-D 65.80 61.78 57.75 60.63
C-E 83.11 86.20 84.77 91.37
D-E 82.68 85.91 82.39 90.22

E. Effect of the Number of Links

Through exploiting the antenna diversity provided by mul-
tiple links of the MIMO system, we can explore different
multipaths in the environment and there is a potential increase
in the number of independent features. Fig. 15 shows the
classification accuracy with increasing number of links for two
driver authentication. Overall, we can see that the performance,
increases with the number of links.
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Fig. 15: Classification accuracy with increasing number of
links for different sets of people.

F. Effect of the Number of Channels

The effective bandwidth has been defined as We = D ×
W × N , where W is the bandwidth per channel per link
which is 40 MHz in the proposed system, D is the number
of channels and N is the number of links [7], [32], [33]. The
radio shots are taken on a single channel at a time, according
to the proposed frequency hopping mechanism. In our work,
we use a maximum of four channels and achieved a largest
effective bandwidth of 2 × 3 × 40 × 4, i.e 960 MHz. Table -
VI shows the performance using NN approach with a training
data of 12 days for different number of channels. While in few
cases, there is a marginal difference in the accuracy, in other
cases such as B-E, a significant increase in the classification
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accuracy is observed from 64.13% to 80.65%. The effective
bandwidth that we achieve here is different from the physical
bandwidth. Although we increase the number of channels
using frequency hopping, the system uses only one channel
at a time which cannot improve the resolution of multipaths.
However, using different channels and thus different carrier
frequencies, more features can be extracted. The variation in
the performance improvement for different pairs of people
with the number of channels is yet to be analyzed by involving
more number of subjects in the study.

TABLE VI: Performance with increasing effective bandwidth
using Neural network approach.

Classes 1 ch upto 2 ch upto 3 ch upto 4 ch
A-B 77.95 78.69 81.63 82.51
A-C 92.39 92.39 92.39 92.39
A-D 78.14 82.58 88.26 88.26
A-E 68.37 79.97 83.37 83.37
B-C 90.53 92.18 92.18 92.18
B-D 83.64 83.64 83.64 83.64
B-E 64.13 73.80 79.04 80.65
C-D 73.65 76.06 76.06 76.06
C-E 88.97 88.97 88.97 88.97
D-E 77.90 83.50 83.50 83.50

VII. FUTURE WORK

The proposed driver authentication system is the first gen-
eration of such an effort where we focused on key enabling
issues and carried out a proof-of-concept development. Several
limitations and issues deserve additional attention, which can
be addressed in our on-going work and future plan.

1) A small change in the environment can alter the multi-
path channel and the CSI. All the techniques based on
the exact value of CSI are sensitive to these changes.
In this work, we attempted to address the problem of
“changing in-car environments” using learning methods
for a restricted environment such as a car. For more
general environments such as indoor, more advanced
techniques will be necessary. Also, environment inde-
pendent radio biometrics cannot be obtained by direct
subtraction of the CSI of empty environment. As a future
work, we will study the pattern of the indoor multipath
channel change and the dependence of human radio
biometrics on the multipath channel.

2) We have used a simple NN in this work. Other NNs
with a more complicated architecture involve a larger
number of learnable parameters, and thus require a much
larger number of samples for training. Gathering more
radio biometric data for different people in different
environments can enable the usage of a more complex
NN architecture and provides a better understanding
on human radio biometrics. Although this increases the
complexity, with the available level of computational
ability in the recently manufactured cars used for auto
pilot mode, adaptive cruise mode and even face recogni-
tion, we believe that the future cars will be well equipped
to carry out the task of model updating in a NN. An
alternate approach can be cloud computing, by sending

gathered data to the cloud and fetching the recurrent
training computed on the cloud.

3) In a practical scenario, there will be at most two or three
authenticated drivers for a car. In such cases, similarity
in all the physical attributes is highly unlikely. As the
future work, more data need to be gathered to study
the performance of the proposed system for people with
similar physical characteristics like twins. The variability
in the accuracy for different pairs of people can also
be understood with more data and by including more
testers.

4) This system can not recognize a new temporary driver
without learning the knowledge of his/her radio biomet-
ric information in advance. The radio biometrics of the
driver should be present in the driver radio biometric
database of the car. In case of a temporary driver, key
or passwords have to be used.

VIII. CONCLUSIONS

In this work, we introduced the idea of in-car driver au-
thentication to make the automobiles smarter and more user
friendly. In order to evaluate the feasibility and performance of
the proposed system, we conducted long-term experiments in a
car. We built the first long-term driver radio biometric database
for multiple persons and proposed to integrate ML techniques
into the system. Furthermore, we have implemented frequency
hopping and used MIMO systems to exploit the frequency
and multi-antenna diversities respectively. Experimental results
show that the proposed system is practically feasible with a
good accuracy for two or three driver authentication, which is
a typical use case for a smart car.
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