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Abstract—In this paper, we study a dynamic version of the
sharing problem, in which a dynamic system cost function
composed of time-variant local costs of subsystems and a shared
time-variant cost of the whole system is minimized. A dynamic
alternating direction method of multipliers (ADMM) is proposed
to track the varying optimal points of the dynamic optimization
problem in an online manner. We analyze the convergence
properties of the dynamic ADMM and show that, under several
standard technical assumptions, the iterations of the dynamic
ADMM converge linearly to some neighborhoods of the time-
varying optimal points. The sizes of these neighborhoods depend
on the drifts of the dynamic objective functions: the more
drastically the dynamic objective function evolves across time,
the larger the sizes of these neighborhoods. We also investigate
the impact of the drifts on the steady state convergence behaviors
of the dynamic ADMM. Finally, numerical results are presented
to corroborate the effectiveness of the proposed dynamic ADMM.

Index Terms—Dynamic optimization, the sharing problem,
alternating direction method of multipliers

I. INTRODUCTION

Many signal processing and resource allocation problems

can be posed as an optimization problem which aims at min-

imizing a system cost consisting of local costs of subsystems

and a shared cost of the whole system. For instance, consider

a power system divided into multiple subsystems [1]. On

one hand, if a subsystem receives some amount of power

supplies, the consumption or storage of these supplies enables

the subsystem to gain some utility. On the other hand, the

generation of the total power supplies of all the subsystems

incurs some cost for the whole power system due to factors

such as the consumption of resources and the pollution. The

goal of the designer or controller of the power system is to

minimize the overall system cost including the negative of the

total utilities of all the subsystems and the power generation

cost of the whole system. This structure of local costs plus

shared common cost arises in many applications such as smart

grids, communication networks, or more generally, resource

allocation in multi-agent systems. Optimization problems with

such structure are called the sharing problems [2].

One implicit assumption of the conventional sharing prob-

lem is that both the local cost functions and the shared cost

function are static, i.e., they do not vary with time. However,

in practice, the cost or utility functions of many applications

are intrinsically time-varying. For example, in power grids,

the utility functions of the subsystems vary across time as the

power users’ demands evolve, e.g., the demands climax during

evening and decline between midnight and early morning. The

generation cost of the power system also varies with time

owing to the changing and somewhat unpredictable renewable

energy sources (e.g., wind and solar energy) as well as the

fluctuation of the market prices of the traditional energy.

Therefore, we are motivated to study a dynamic version of

the sharing problem in this paper.

In the literature, dynamic optimization problems arise in

various research fields and have been studied from different

perspectives, such as adaptive signal processing [3], online

convex optimization (OCO) [4]–[9] and online learning [10]–

[15]. To solve the dynamic sharing problem in an online man-

ner, in this paper, we present a dynamic ADMM algorithm.

As a primal-dual method, the ADMM is superior to its primal

domain counterparts such as the gradient descent method in

terms of convergence speed. Due to its broad applicability,

the ADMM has been exploited in various signal processing

and control problems [16]–[20]. In addition, A few recent

studies have investigated the performance of ADMM in a

dynamic scenario. When the time-varying objective functions

are unknown a-priori, an online ADMM algorithm is proposed

in [21] to generate solutions with low regrets compared to

the optimal static offline solution. This online ADMM is

not directly applicable to many dynamic sharing problems in

which the goal is to track the time-varying optimal points and

a static offline benchmark is not very meaningful. A more

closely related work is [22], in which a dynamic ADMM

algorithm is applied to the consensus optimization problems.

However, the convergence analysis of the dynamic ADMM

in [22] significantly relies on the special structure of the

consensus optimization problems, in which all agents share

the same decision variable. This leaves the performance of the

dynamic ADMM in other optimization scenarios unknown.

Our goal in this work is to investigate the convergence

behaviors of the dynamic ADMM for the dynamic sharing

problem both theoretically and empirically. Specifically, A

dynamic ADMM algorithm (Algorithm 1) is proposed for a

more general dynamic optimization problem (Problem (6)),

which encompasses the dynamic sharing problem as a special

case. The dynamic ADMM can adapt to the time-varying

cost functions and track the optimal points in an online man-

ner. We analyze the convergence properties of the proposed

dynamic ADMM algorithm. We show that, under standard

technical assumptions, the dynamic ADMM converges linearly

to some neighborhoods of the time-varying optimal points.

The sizes of the neighborhoods are related to the drifts of

the dynamic optimization problem: the more drastically the

dynamic problem evolves with time, the larger the sizes of the

neighborhoods. We also study the impact of the drifts on the
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steady state convergence behaviors of the dynamic ADMM.

Furthermore, numerical experiments are conducted to validate

the effectiveness of the dynamic ADMM algorithm.

The remaining part of this paper is organized as follows. In

Section II, the dynamic sharing problem is formally defined

and a dynamic ADMM algorithm is proposed. In Section

III, theoretical analysis of the convergence properties of the

dynamic ADMM is presented. Two numerical examples are

shown in Section IV, following which we conclude this work

in Section V.

II. PROBLEM STATEMENT AND ALGORITHM

DEVELOPMENT

In this section, we first formally state the dynamic sharing

problem and give some examples and motivations for it.

Then, we develop a dynamic ADMM algorithm for a more

general dynamic optimization problem, which encompasses

the dynamic sharing problem as a special case.

A. The Statement of the Problem

Consider the sharing problem [2]:

Minimize

n∑

i=1

f (i)
(
x
(i)
)
+ g

(
n∑

i=1

x
(i)

)
, (1)

with variables x
(i) ∈ R

p, i = 1, ..., n, where f (i) : Rp 7→ R

is the local cost function of subsystem i and g : Rp 7→ R is

the global cost function of some commonly shared objective

of all subsystems. The global cost function g takes the sum

of all x(i) as its input argument. The sharing problem (1) is a

canonical problem with broad applications in resource alloca-

tion and signal processing [2]. One limitation of the problem

formulation in (1) and its solution methods is that all the cost

functions are static, i.e., they do not vary over time. This can

be a major obstacle when the application is inherently time-

variant and real-time, in which the cost functions change with

time and online processing/optimization is imperative. In such

circumstances, dynamic algorithms adaptive for the variation

of the cost functions are more favorable. This motivates us to

study a dynamic version of the sharing problem:

Minimize

n∑

i=1

f
(i)
k

(
x
(i)
)
+ gk

(
n∑

i=1

x
(i)

)
, (2)

where k is the time index. f
(i)
k : Rp 7→ R is the local cost

function of subsystem i at time k and gk : Rp 7→ R is the

global cost function of the shared objective at time k.

The dynamic sharing problem in (2) can be applied to

many dynamic resource allocation problems. For example,

consider a power grid which is divided into n power sub-

systems according to either geographical locations or power

line connections. If subsystem i receives x(i) amount of power

supplies at time k, then it gains a utility of −f
(i)
k

(
x
(i)
)

by

either consuming or storing the supplies. In other words, f
(i)
k

is the negative of the utility function of power subsystem i

at time k. The utility function is time-variant because users

often have different power demands at different time, e.g.,

6-11pm may be the peak demand period while 2-6am may

be a low demand period. On the other hand, the generation

of the total power supplies of
∑n

i=1 x
(i) can incur a cost

of gk
(∑n

i=1 x
(i)
)

for the power generator due to resource

consumptions, human efforts and pollution. The generation

cost function gk also varies across time owing to factors such

as the changing and somewhat unpredictable renewable energy

sources and the variant prices of the traditional energy sources.

Thus, the overall social welfare maximization problem can be

posed as a dynamic sharing problem as in (2).

A well-known method to decouple the local cost functions

f (i) and the global cost function g in the sharing problem (1)

is the ADMM [2]. As a primal-dual optimization method, the

ADMM has faster convergence than primal domain alterna-

tives such as the gradient descent algorithm. This inspires us

to develop and analyze a dynamic ADMM algorithm to solve

the dynamic sharing problem in (2) in this work.

B. Development of the Dynamic ADMM

Define x =
[
x
(1)T, ...,x(n)T

]T ∈ R
np, A = [Ip, ..., Ip] ∈

R
p×np and

fk(x) =
n∑

i=1

f
(i)
k

(
x
(i)
)
. (3)

Then, the dynamic sharing problem can be reformulated as:

Minimizex∈Rnp,z∈Rp fk(x) + gk(z) (4)

s.t. Ax− z = 0. (5)

In the remaining part of this paper, we study the following

more general dynamic optimization problem:

Minimizex∈RN ,z∈RM fk(x) + gk(z) (6)

s.t. Ax+Bz = c, (7)

where fk : RN 7→ R and gk : RM 7→ R are two functions

and A ∈ R
M×N ,B ∈ R

M×M are two matrices. The problem

(4) is clearly a special case of the problem (6) by taking N =
np,M = p,B = −I, c = 0 and fk decomposable as in (3).

To apply the ADMM, we form the augmented Lagrangian of

the problem (6):

Lρ,k(x, z,λ) =fk(x) + gk(z) + λ
T(Ax+Bz− c)

+
ρ

2
‖Ax+Bz− c‖22, (8)

where λ ∈ R
M is the Lagrange multiplier and ρ > 0 is

some positive constant. Thus, applying the traditional ADMM

to the dynamic augmented Lagrangian Lρ,k, we propose a

dynamic ADMM algorithm, as specified in Algorithm 1. The

main difference between the dynamic ADMM in Algorithm

1 and the traditional static ADMM is that the functions fk
and gk varies across iterations of the ADMM. The aim of

this paper is to study the impact of these varying functions on

the ADMM algorithm. Lastly, we introduce the following two

linear convergence concepts which shall be used later.
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Definition 1. A sequence sk is said to converge Q-linearly to

s
∗ if there exists some constant θ ∈ (0, 1) such that ‖sk+1 −
s
∗‖2 ≤ θ‖sk − s

∗‖2 for any positive integer k.

Definition 2. A sequence vk is said to converge R-linearly to

v
∗ if there exists a positive constant τ > 0 and some sequence

sk Q-linearly converging to some point s
∗ such that ‖vk −

v
∗‖2 ≤ τ‖sk − s

∗‖2 for every positive integer k.

Algorithm 1 The dynamic ADMM algorithm for the dynamic

problem (6)

1: Initialize x0 = 0, z0 = λ0 = 0, k = 0
2: Repeat:
3: k ← k + 1
4: Update x according to:

xk = argmin
x

fk(x) + λ
T

k−1Ax+
ρ

2
‖Ax+Bzk−1 − c‖22.

(9)

5: Update z according to:

zk = argmin
z

gk(z) + λ
T

k−1Bz+
ρ

2
‖Bz+Axk − c‖22. (10)

6: Update λ according to:

λk = λk−1 + ρ(Axk +Bzk − c). (11)

III. CONVERGENCE ANALYSIS

In this section, convergence analysis for the dynamic

ADMM algorithm, i.e., Algorithm 1, is conducted. We first

make several standard assumptions for algorithm analysis.

Then, we show that the iterations of the dynamic ADMM

converge linearly (either Q-linearly or R-linearly) to some

neighborhoods of their respective optimal points (Theorem

1 and 2). The sizes of these neighborhoods depend on the

drift (to be formally defined later) of the dynamic optimization

problem (6). Finally, we demonstrate the impact of the drift

of the dynamic optimization problem (6) on the steady state

convergence properties of the dynamic ADMM.

A. Assumptions

Throughout the convergence analysis, we make the follow-

ing assumptions on the functions fk and gk, all of which are

standard in the analysis of optimization algorithms [17], [23],

[24].

Assumption 1. For any positive integer k, gk is strongly

convex with constant m > 0 (m is independent of k), i.e.,

for any positive integer k:

(∇gk(z)−∇gk(z
′))

T
(z− z

′) ≥ m‖z− z
′‖22, ∀z, z′ ∈ R

M .

(12)

Assumption 2. For any positive integer k, fk is strongly

convex with constant m̃ > 0 (m̃ is independent of k), i.e.,

for any positive integer k:

(∇fk(x)−∇fk(x
′))

T
(x− x

′) ≥ m̃‖x− x
′‖22, ∀x,x′ ∈ R

N .

(13)

Assumption 3. For any positive integer k, ∇gk is Lipschitz

continuous with constant L > 0 (L is independent of k), i.e.,

for any positive integer k and any z, z′ ∈ R
M :

‖∇gk(z)−∇gk(z
′)‖2 ≤ L‖z− z

′‖2. (14)

Assumption 4. B is nonsingular.

B. Convergence Analysis

In this subsection, we study the convergence behavior of the

proposed dynamic ADMM algorithm under the Assumptions

1-4. Due to the strong convexity assumption in Assumptions

1 and 2, there is a unique primal/dual optimal point pair

(x∗
k, z

∗
k,λ

∗
k) for the dynamic optimization problem (6) at time

k. Denote uk =
[
z
T

k ,λ
T

k

]T
and u

∗
k =

[
z
∗T
k ,λ∗T

k

]T
. Since

B is a square matrix, the eigenvalues of BB
T are the same

as those of B
T
B. Denote the smallest eigenvalue of BB

T,

which is also the smallest eigenvalue of BT
B, as α. According

to Assumption 4, B is nonsingular, so BB
T and B

T
B are

positive definite and α > 0. Define matrix C ∈ R
2M×2M to

be:

C =

[ ρ
2B

T
B

1
2ρIM

]
(15)

Since B is nonsingular (Assumption 4), we know that C is

positive definite. Therefore, we can define a norm on R
2M as

‖u‖C =
√
uTCu. Define t to be any arbitrary number within

the interval (0, 1). A positive constant δ > 0 is defined as:

δ = min

{
2mt

ρ‖B‖22
,
2αρ(1− t)

L

}
, (16)

where ‖B‖2 is the spectral norm, i.e., the maximum singular

value, of B. Now, we are ready to show the first intermediate

result, whose proof is omitted due to space limitation.

Proposition 1. For any positive integer k, we have:

‖uk − u
∗
k‖C ≤ 1√

1 + δ
‖uk−1 − u

∗
k‖C. (17)

Remark 1. Proposition 1 states that uk is closer to u
∗
k than

uk−1 with a shrinkage factor of δ. The bigger the δ, the

stronger the shrinkage. Note that there is an arbitrary factor

t ∈ (0, 1) in the definition of δ in (16). By choosing t =
αρ2‖B‖2

2

mL+αρ2‖B‖2
2

, we get the maximum δ as δmax = 2mαρ

mL+αρ2‖B‖2
2

.

In the expression of δmax, only ρ is a tunable algorithm param-

eter while all other parameters are given by the optimization

problem. The fact that δmax increases with ρ may partially

justify the need of a relatively large ρ for good convergence

behaviors of the dynamic ADMM. We will investigate the

impact of ρ on algorithm performance empirically later.

Proposition 1 establishes a relation between ‖uk−u
∗
k‖C and

‖uk−1−u
∗
k‖C. However, to describe the convergence behavior

of the dynamic ADMM algorithm, what we really want is the

relation between ‖uk − u
∗
k‖C and ‖uk−1 − u

∗
k−1‖C. This is

accomplished by the following theorem.
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Theorem 1. Define the drift dk of the dynamic problem (6)

to be:

dk =

√
ρ

2
‖B‖2‖z∗k−1 − z

∗
k‖2

+
1√
2ρα

‖∇gk−1(z
∗
k−1)−∇gk(z

∗
k)‖2. (18)

Then, for any integer k ≥ 2, we have:

‖uk − u
∗
k‖C ≤ 1√

1 + δ
(‖uk−1 − u

∗
k−1‖C + dk). (19)

Proof. According to KKT optimality conditions, we have:

∇gk(z
∗
k) +B

T
λ
∗
k = 0, (20)

∇gk−1(z
∗
k−1) +B

T
λ
∗
k−1 = 0. (21)

Substraction of (21) from (20) yields:

B
T(λ∗

k − λ
∗
k−1) = −∇gk(z

∗
k) +∇gk−1(z

∗
k−1). (22)

Hence,

‖∇gk−1(z
∗
k−1)−∇gk(z

∗
k)‖22 (23)

= ‖BT(λ∗
k−1 − λ

∗
k)‖22 (24)

= (λ∗
k−1 − λ

∗
k)

T
BB

T(λ∗
k−1 − λ

∗
k) (25)

≥ α‖λ∗
k−1 − λ

∗
k‖22. (26)

On the other hand,

(z∗k−1 − z
∗
k)

T
B

T
B(z∗k−1 − z

∗
k) ≤ ‖B‖22‖z∗k−1 − z

∗
k‖22. (27)

Combining (26) and (27), we get:

‖u∗
k−1 − u

∗
k‖2C (28)

=
ρ

2
(z∗k−1 − z

∗
k)

T
B

T
B(z∗k−1 − z

∗
k) +

1

2ρ
‖λ∗

k−1 − λ
∗
k‖22

(29)

≤ ρ

2
‖B‖22‖z∗k−1 − z

∗
k‖22 +

1

2ρα
‖∇gk−1(z

∗
k−1)−∇gk(z

∗
k)‖22
(30)

≤
(√

ρ

2
‖B‖2‖z∗k−1 − z

∗
k‖2

+
1√
2ρα

‖∇gk−1(z
∗
k−1)−∇gk(z

∗
k)‖2

)2

(31)

= d2k. (32)

Thus, ‖u∗
k−1 − u

∗
k‖C ≤ dk and:

‖uk−1 − u
∗
k‖C ≤ ‖uk−1 − u

∗
k−1‖C + ‖u∗

k−1 − u
∗
k‖C

≤ ‖uk−1 − u
∗
k−1‖C + dk. (33)

Combining (33) and (17) in Proposition 1 gives:

‖uk − u
∗
k‖C ≤ 1√

1 + δ
(‖uk−1 − u

∗
k−1‖C + dk). (34)

Remark 2. Theorem 1 means that uk converges Q-linearly

(with contraction factor
√
1 + δ) to some neighborhood of the

optimal point u∗
k. The size of the neighborhood is character-

ized by dk, the drift of the dynamic problem (6), which is de-

termined by the problem formulation instead of the algorithm.

The more drastically the dynamic problem (6) varies across

time, the bigger the drift dk, and the larger the size of that

neighborhood. When the dynamic problem (6) degenerates to

its static counterpart, i.e., fk and gk does not vary with k, dk
becomes zero. In such a case, Theorem 1 degenerates to the

linear convergence result of static ADMM in [24].

Q-linear convergence of uk to some neighborhood of the op-

timal point u∗
k is established in Theorem 1. A more meaningful

result will be about the convergence properties of xk, zk,λk.

To this end, we want to link the quantities ‖xk − x
∗
k‖2,

‖zk−z
∗
k‖2, ‖λk−λ

∗
k‖2 with ‖uk−u

∗
k‖C. This is accomplished

by the following theorem, the proof of which is omitted.

Theorem 2. For any integer k ≥ 2, we have:

‖xk − x
∗
k‖2

≤ 1

m̃
‖A‖2

[(
√

2ρ+ ‖B‖2
√

2ρ

α

)
‖uk − u

∗
k‖C

+ ‖B‖2
√

2ρ

α
‖uk−1 − u

∗
k−1‖C +

√
2ρdk

]
, (35)

where ‖A‖2 is the spectral norm, i.e., the largest singular

value, of A. Furthermore, for any positive integer k, we have:

‖zk − z
∗
k‖2 ≤

√
2

αρ
‖uk − u

∗
k‖C, (36)

‖λk − λ
∗
k‖2 ≤

√
2ρ‖uk − u

∗
k‖C. (37)

Remark 3. Sine uk converges Q-linearly to some neighbor-

hood of u∗
k (Theorem 1), Theorem 2 indicates that xk, zk,λk

converge R-linearly to some neighborhoods of x
∗
k, z

∗
k,λ

∗
k,

respectively. When the dynamic optimization problem (6) de-

generates to its static version, i.e., fk and gk does not vary

with k, Theorem 2 also degenerates to its static counterpart

in [17], [24].

To see the impact of the drift dk (and thus the difference

between the dynamic ADMM and the static ADMM) on the

steady state convergence behaviors, we present the following

result, the proof of which is omitted.

Theorem 3. Suppose the drift defined in (18) satisfies dk ≤
d, ∀k, for some d ∈ R. Then, we have:

lim sup
k→∞

‖uk − u
∗
k‖C ≤ d√

1 + δ − 1
, (38)

lim sup
k→∞

‖xk − x
∗
k‖2 ≤ ‖A‖2

m̃



√
2ρ+ ‖B‖2

√
8ρ
α√

1 + δ − 1
+
√
2ρ


 d,

(39)

lim sup
k→∞

‖zk − z
∗
k‖2 ≤

√
2

αρ

d√
1 + δ − 1

, (40)

lim sup
k→∞

‖λk − λ
∗
k‖2 ≤

√
2ρ

d√
1 + δ − 1

. (41)
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IV. NUMERICAL EXAMPLES

In this section, numerical experiments are carried out to

validate the effectiveness of the proposed dynamic ADMM

algorithm, Algorithm 1. Specifically, we consider the follow-

ing dynamic sharing problem:

Minimizex(1),...,x(n)∈Rp

n∑

i=1

(
x
(i) − θ

(i)
k

)T
Φ

(i)
k

(
x
(i) − θ

(i)
k

)

+ γ

∥∥∥∥∥

n∑

i=1

x
(i)

∥∥∥∥∥
1

, (42)

where θ
(i)
k ∈ R

p, Φ
(i)
k ∈ R

p×p positive definite, γ > 0 are

given problem data. The problem (42) is clearly in the form

of (2) with:

f
(i)
k

(
x
(i)
)
=
(
x
(i) − θ

(i)
k

)T
Φ

(i)
k

(
x
(i) − θ

(i)
k

)
, (43)

gk(z) = γ‖z‖1. (44)

Define x =
[
x
(1)T, ...,x(n)T

]T
, θk =

[
θ
(1)T
k , ...,θ

(n)T
k

]T
and

Φk = diag
(
Φ

(1)
k , ...,Φ

(n)
k

)
. Thus, in terms of problem (4),

we have:

fk(x) = (x− θk)
T
Φk (x− θk) . (45)

Applying the dynamic ADMM algorithm, i.e., Algorithm 1,

to this dynamic sharing problem, we obtain Algorithm 2. The

soft-threshold function S is defined for a ∈ R, κ > 0 as

follows:

Sκ(a) =





a− κ, if a > κ,

0, if |a| ≤ κ,

a+ κ, if a < κ.

(46)

In (48), an entrywise extension of the soft-threshold function

to vector input is used.

Algorithm 2 The dynamic ADMM algorithm for the dynamic

sharing problem (42)

1: Initialize x0 = 0, z0 = λ0 = 0, k = 0
2: Repeat:
3: k ← k + 1
4: Update x according to:

xk =
(

2Φk + ρA
T
A

)

−1
(

2Φkθk −A
T
λk−1 + ρA

T
zk−1

)

.

(47)

5: Update z according to:

zk = S γ
ρ

(

Axk +
λk−1

ρ

)

. (48)

6: Update λ according to:

λk = λk−1 + ρ(Axk − zk). (49)

We generate the problem data Φ
(i)
k and θ

(i)
k recursively as

follows. Given Φ
(i)
k−1 (k ≥ 1), we first generate Φ̃

(i)
k according

to Φ̃
(i)
k = Φ

(i)
k−1 + η

(i)
k E

(i)
k , where η

(i)
k is some small positive
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Fig. 1: The convergence curve of ‖xk − x
∗
k‖2. x∗

k is the

optimal point of the dynamic sharing problem (42) at time k

computed by an offline optimizor. xk is the online solution

given by the proposed dynamic ADMM algorithm, i.e.,

Algorithm 2.

number and E
(i)
k is a random symmetric matrix with entries

uniformly distributed on [−1, 1]. Then, we construct the matrix

Φ
(i)
k as:

Φ
(i)
k =




Φ̃

(i)
k , if λmin

(
Φ̃

(i)
k

)
≥ ǫ, i.e., Φ̃

(i)
k � ǫI,

Φ̃
(i)
k +

[
ǫ− λmin

(
Φ̃

(i)
k

)]
I, otherwise,

(50)

where λmin(·) denotes the smallest eigenvalue and ǫ > 0 is

some positive constant. Through this construction, we ensure

that Φ
(i)
k � ǫI, k = 1, 2, .... In addition, Φ0 is a random

symmetric matrix whose entries are uniformly distributed on

[−1, 1].

Given θ
(i)
k−1 (k ≥ 1), we generate θ

(i)
k according to:

θ
(i)
k = θ

(i)
k−1 + η

(i)
k h

(i)
k , (51)

where h
(i)
k is a random p-dimensional vector whose entries

are uniformly distributed on [−1, 1]. θ
(i)
0 is also a random

p-dimensional vector with entries uniformly distributed on

[−1, 1].
In the first simulation, we set the parameters as η = 0.2, ǫ =

1, γ = 1, ρ = 1, p = 5, n = 20. We use the CVX package

[25] to compute the optimal point x∗
k of the instance of the

dynamic sharing problem (42) at time k in an offline manner.

The convergence curve of ‖xk − x
∗
k‖2 (xk is the online

solution given by the proposed dynamic ADMM algorithm,

i.e., Algorithm 2) is shown in Fig. 1. The result is the average

of 100 independent trials. We observe that xk can converge

to some neighborhood of x
∗
k after about 30 iterations. This

corroborates the theoretical results (Theorem 2 and Theorem

3) and the effectiveness of the proposed dynamic ADMM

algorithm.

In the second simulation, we investigate the impact of the

algorithm parameter ρ on the convergence performance of the

dynamic ADMM. We consider three different values for ρ:

0.01, 0.1, 1. The corresponding convergence curves (‖xk −
x
∗
k‖2) are shown in Fig. 2. We find that ρ = 0.1 yields the

best convergence performance among the three circumstances.

This indicates that the importance of an appropriate value of ρ,
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Fig. 2: The impact of the algorithm parameter ρ on the

convergence behaviors (‖xk −x
∗
k‖2) of the dynamic ADMM.

which should be neither too large nor too small. We note that

similar observations have been made in the traditional static

ADMM [2].

V. CONCLUSION

In this paper, motivated by the dynamic sharing problem,

we propose and study a dynamic ADMM algorithm, which

can adapt to the time-varying optimization problems in an

online manner. Theoretical analysis is presented to show that

the dynamic ADMM converges linearly to some neighborhood

of the optimal point. The size of the neighborhood depends

on the inherent evolution speed, i.e., the drift, of the dynamic

optimization problem across time. The impact of the drift

on the steady state convergence behaviors of the dynamic

ADMM is also investigated. Finally, numerical results are

presented to corroborate the effectiveness of the proposed

dynamic ADMM.
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