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Abstract— The objective of scheduling algorithms in wireless
networks is to provide Quality of Service (QoS) for mobile users
in a shared environment and at the same time utilize the system
resources efficiently. We have introduced a notion of income
maximization to increase throughput for multimedia wireless
systems and to maintain the QoS for each user above an agreed
level. We have proposed greedy and dynamic programming
approaches to solve the optimization problem. The simulation
results reveal that our scheduling algorithms provide high
network throughput, support QoS even under heavy network
loads, and generate high income for service provider.

I. INTRODUCTION

Scheduling algorithms that support Quality of Service
(QoS) while maintaining high throughput for wireless net-
works are crucial to the development of broadband wireless
networks. QoS refers to the capability of a network to
provide certain services to selected network traffics. The four
important attributes of QoS in packet networks are dedicated
bandwidth, controlled jitter/latency, and controlled loss char-
acteristics. Through the notion of effective bandwidth, it can
be shown that a certain QoS level can be translated into a
bandwidth guaranteed to a user [1]. Thus, we will represent
the QoS by a bandwidth guaranteed to a user in this work.

Although many mature scheduling algorithms are available
for wireline networks, they are not directly applicable in
wireless networks due to major differences in medium. The
time varying nature of wireless channels introduces some
discontinuity in the availability of a user when the channel is
in a bad condition. The very same nature of wireless channel
provides opportunities for the transmission of large amount
of information when the channel is in a good condition. On
the other hand, if a scheduler operates independent of channel
condition, it might allocate bandwidth to users in deep fade,
where most of data is lost and bandwidth is wasted, while at
the same time deprive users with good channel from taking
advantage of their instantaneous large capacity.

Channel State Dependent Packet Scheduling (CSDPS)
defers transmission of packets on links experiencing bursty
errors [2]. A link status monitor, checks the channel condition
for all mobiles, and when a channel is in a bad state, the
scheduler does not serve the user associated with that link.
Any one of the known wireline scheduling algorithms, e.g.,
round robin, earliest deadline first, and longest queue first,
could be used as the service policies for this scheduling
algorithm. However, CSDPS does not have any mechanism
for supporting QoS (to guarantee bandwidth) for a mobile
user.

Idealized Wireless Fair Queuing (IWFQ) is a modified
version of Weighted Fair Queueing (WFQ) scheduling al-
gorithm for wireless networks [4]. It uses an error-free WFQ
as a reference system and tries to approximate the real
service to the ideal error-free system. This algorithm provides
some appealing properties in fairness and QoS guarantees.
However, when a user is compensated for its previous lagged
service, all other users with good channels will not be served
at all.

Service Level Agreement (SLA) is a contract between a
user and its service provider. An SLA defines the service
(QoS) requested by the user, the price that the user must pay
for the service, the penalty if the agreement is violated, and
etc. This paper considers SLA as the reference point between
the network and the network users. In scheduling algorithms,
there is a trade-off between throughput maximization, which
relates to the efficiency in utilizing bandwidth, and supporting
QoS, which indicates how resources are shared among users.
In this work, we introduce a notion of income maximization,
by which the scheduler is rewarded when total network
throughput is increased, and penalized when SLA for each
user is violated. We will show that by properly choosing a
penalty, as a function of SLA, and reward, as a function of
network throughput, the trade-off is performed efficiently. We
will also show that our algorithms meet the QoS and utilize
network resources efficiently. We propose a greedy solution
and a dynamic programming approach for the problem.

This paper is organized as follows: In Section II system
model is introduced. SLA-based scheduling algorithms are
proposed in Section III. The simulation results and perfor-
mance comparison for different algorithms are presented in
Section IV, and finally a summary of the contributions of
this work is included in Section V.

II. SYSTEM MODEL AND BACKGROUND

In this paper a single cell wireless network is investigated.
We consider a time-slotted system, where time is the resource
to be shared among all mobile users by a central processor. At
any given time, only one user can be scheduled to occupy a
given channel within a cell. The scheduling algorithm decides
which time slot should be assigned to which user. At the
down-link packets are queued at the base station; therefore,
the scheduler at the base station has the full knowledge of
the status of the queues. The block diagram of this system
is shown Figure 1.

Let rn denote the rate reserved by user n (n =
1, 2, · · · , N ), which is a fraction of the total available band-
width (0 ≤ rn ≤ 1). In fluid model, user n expects to receive

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1028



Transmit 
Antenna

Channel Capacity
Estimator

U
1

U
2

U
N

U
1

U
2

U
N

Scheduler

Fig. 1. System block diagram

a fraction of a time slot, rn. However, in this work, we do
not consider the fluid model and assume that a time slot is
assigned only to one user. Define Yn(t) as

Yn(t) =

{
1 if the scheduler selects user n at time t,

0 otherwise.
Also, assume that the indictor function, In(t) is one when

the queue of user n is non-empty at time t, and zero
otherwise.

We assume that the link between each user and the base
station is a wireless fading channel. In a power controlled
system, the average power in each link is maintained at a
fixed level and the instantaneous power follows a Rayleigh
fading distribution. The Signal to Noise Ratio (SNR) for the
nth user is a function of the received power Pn, and the noise
power Nn. The capacity per unit bandwidth for this user, is
given by

Bn = log2(1 + Pn/Nn). (1)
Since thermal noise at each receiver is fixed, the SNR at

each user follows a Rayleigh distribution.
We assume that the link capacity is quantized to a limited

number of levels. Let us assume that the channel capacity
for user n at time t is denoted by gn(t), which is a fractional
number. Therefore, the service received by user n at time t
is gn(t)Yn(t).

Next, we consider two scheduling algorithms. The first one
is proposed to support QoS, and the other one to provide high
network throughput.

A. Maximum Credit Scheduling (MCS)
In order to support QoS, a scheduler monitors and allocates

resources in such a way that users’ effective rates stay within
a satisfactory range. A credit based mechanism can be used
to measure and control the service provided to each user;
the user n is assigned a credit, denoted by Cn(t) (n =
1, 2, · · · , N ). A user’s credit represents how much service
the network owes to the user.

The credit for user n at time t evolves as follows:

Cn(t) = Cn(t − 1) + In(t)rn − gn(t)Yn(t). (2)

The second term on the right hand side of the above
equation, In(t)rn, represents the service reserved by user
n. If the nth queue is non-empty, this term is the requested
service. The third term represents the service received by user
n. Starting from Cn(−1) = 0 for all users, by induction, it
is straightforward to show that 2 leads to the following non-
recursive expression for the credits:

Cn(t) = rn

t∑
s=0

In(s) −
t∑

s=0

gn(s)Yn(s). (3)

In the above equation, the first and second terms are
the reserved and received service by user n up to time t,

respectively. A negative credit means that a user has received
a better service than what has been reserved. On the other
hand, a positive credit implies that the network owes service
to the user. Therefore, credit is a measure of how much
service has been delivered or how much the service provider
owes to a user. To support QoS, a scheduler must keep credits
of all the users as small as possible. In this case, for users
with non-empty queues the delivered service is close to their
reserved services.

In order to minimize user credits, a Maximum Credit
Scheduler (MCS) assigns the available bandwidth to the user
with maximum credit [9]; in other words Yn(t) = 1 only for
n = arg maxk{Ck(t). Since the scheduling is based on the
credit values at time t, and these credits are independent of
the channel capacities at time t, the total throughput in this
algorithm is equal to the average channel capacity, E [gn(t)],
when E[x] means the expectation of the random variable x.

B. Maximum Throughput Scheduling (MTS)
It has been proved that to maximize the network through-

put, a scheduler must select the user with the best capacity or
with the lowest fading among all the users [5]; , i.e. Yn(t) = 1
only for n = arg maxk{gk(t). The total throughput in
this algorithm is equal to E [maxn gn(t)]. However, this
algorithm has no mechanism for supporting QoS.
C. A Trade-off: Throughput versus QoS

In MTS, a user that is trapped in a bad channel state, does
not receive a service as long as its channel stays at that state.
For this user, QoS or SLA is not satisfied. Thus, supporting
QoS and maximizing network throughput cannot necessarily
be achieved at the same time.

MCS does not face this trade-off in wired networks, since
the channel responses of all users are equally good, i.e.,
gn(t) = 1 for all n, t. Therefore, by selecting the user with
the highest credit, the scheduler maintains the credits as
small as possible. However, in wireless networks, attempting
to support QoS for users with bad channel response may
result in reducing network throughput. Another approach is
to ignore users with the most eligible QoS that are in deep
fade, in favor of users with better channel response with the
hope that in the future the capacity of those ignored users
would improve.

III. SLA-BASED SCHEDULING ALGORITHMS

In this work, we propose scheduling algorithms that re-
solves the trade-off between throughput and QoS based on
the users SLA. SLA includes QoS, pricing for the service
provided and penalty when the agreement is violated. Let us
denote dn(t) to be the income of the service provider from
user n at time t. Also, let us assume that for the service
received by user n, i.e., gn(t)Yn(t), the network charges the
user by αngn(t)Yn(t), where αn is the rate that the nth user
pays for the service. On the other hand, if the user has not
received the requested QoS, its credit is increased and the
network is penalized by fn[Cn(t)]. We assume that fn[.]
is a real, positive and continuous function with fn[x] = 0
for x ≤ 0. Both fn[.] and αn are defined through the SLA
between the service provider and user n. Thus, we obtain:
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dn(t) = αngn(t)Yn(t) − In(t)fn [Cn(t)] . (4)

If N is the number of users, the total income of the network
at time t is given by D(t) =

∑N
n=1 dn(t). An SLA-based

scheduler selects the user that increases the total income.
The penalty function has a significant role in the perfor-

mance of a SLA-based algorithm. It is chosen in such a way
that a user with negative credit does not penalize the system
since this user has received its requested QoS; therefore,
fn[x] = 0 for x ≤ 0. Also, if a user has accumulated a big
credit, i.e., has received a poor QoS, it might be beneficial to
disconnect this connection and pay the corresponding penalty.
Moreover, we will expect that the penalty increases to be
more significant for high credits. This means that fn[.] needs
to be convex. We will see that for some special cases, the
convexity of fn[.] is necessary [10]. One special example for
fn[.] is:

fn[x] =

{
γnx2 if x > 0,

0 otherwise,
(5)

where γn is a positive number.

A. Maximum Income Greedy Scheduling
The Maximum income Greedy Scheduling (MIGS) algo-

rithm selects the user that maximizes the total system income
at each time slot t, D(t).

Without loss of generality, from now on, we assume all
users have non-empty queues, i.e., In(t) = 1. The following
lemma summarizes the MIGS algorithm.

Lemma 3.1: The maximum income greedy scheduling al-
gorithm selects the user that maximizes the following quan-
tity over all the users with non-empty queues:

Hp(t) = αpgp(t) + fp[Cp(t − 1) + rp]
− fp[Cp(t − 1) + rp − gp(t)]. (6)

Proof: Assume that user k is selected at time t, i.e.,
Yk(t) = 1 and Yn(t) = 0, n �= k. In this case, we denote the
total income at time t by Dk(t), i.e.:

Dk(t) = αkgk(t) −
N∑

n=1
n�=k

fn[Cn(t − 1) + rn]

− fn[Ck(t − 1) + rk − gk(t)]. (7)

The MIGS selects the user p that maximizes the total
income, i.e. p = arg maxk{Dk(t)}. That is, Yp(t) = 1, and
Yk(t) = 0, k �= p and Dp(t) ≥ Dk(t), k �= p, where Dp(t)
and Dk(t) are defined in (7). After simple manipulations, we
obtain

Hp(t) ≥ Hk(t). (8)

Therefore, MIGS maximizes (8) at time t.
Now consider a special case at time t, where a user, say kth

user, is in deep fade (gk(t) = ε << 1). Intuitively, we expect
the scheduler to ignore such a user, because scheduling this
user is equivalent to bandwidth loss at time slot t. Moreover,
the small allocated rate (gk(t)) is not large enough to support
the QoS for this user. Because of continuity of the function
fk[.], it can be shown that the metric associated with this
user would be αkε + δ, where δ is a small positive number.

This means that if a user is in deep fade, it has a very small
metric and is not expected to be selected by scheduler.

In the following, we’ll consider two extreme cases. In one
case only the system throughput is important, and in the
other case, only the QoS matters. We will show that MIGS
approaches these two cases, so it addresses the throughput-
QoS trade-off.

1) Case I: Maximum Throughput Scheduling (MTS): Let
us assume that the system would not be penalized for not
supporting QoS, i.e., fn[.] = 0. Also, for simplicity assume
that the system charges different users with the same rate, i.e.,
αk = α. Subsequently, as we discussed in Section II-B, in
this case, the system tries to maximize the system throughput,
and the scheduler selects the user with the best capacity. With
these assumptions, the optimal user is selected as follows:

p = arg max
k

{αgk(t)} ≡ arg max
k

{gk(t)} . (9)

2) Case II: Minimum Penalty Scheduling (MPS): Here, let
us assume that the only goal of the system is to deliver QoS to
the users, and the system throughput is not important. In this
case αn = 0 for all the users, and therefore, the scheduling
process will be:

p = arg max
k

{fk[Ck(t − 1) + rk] − fk[Ck(t − 1) + rk − gk(t)]} .

We expect this algorithm (we call it Minimum Penalty
Scheduling, MPS) to support QoS for wireless networks.

Now, let us assume that gn(t) = 1, as in wireline networks.
Then, it can be shown that if fn[.] is a positive, continues,
increasing and convex function, MPS can be simplified as
[10]

p = arg max
k

{Ck(t − 1) + rk} , (10)

which is similar to the MCS, mentioned in Section II-A.

B. Maximum Income Dynamic Programming Scheduling
(MIDPS): Optimal Solution

The algorithms presented in the previous sections, maxi-
mize the total income locally. In this section, the objective
is to maximize the system income, globally. In order to do
so, dynamic programming algorithms are used to predict the
future to make the decisions at the present time. In this
framework, the optimization can be done within a finite
horizon or infinite horizon policy [11]. We focus on the
infinite horizon problem, since it provides the steady state
policy which is independent of time. Define the expected
total income as follows:

D = E

{ ∞∑
t=0

βt

[
N∑

n=1

Dn(t)

]}
, (11)

where 0 < β ≤ 1 is the discount factor to keep the total
income bounded.

Let the column vectors C(t), Y (t), and g(t) represent the
credits, scheduling decisions, and channel capacities of all N
users at time t, respectively. Moreover, the vectors r, and α
show the reserved rates, and reward rate of all users. Then,

C(t + 1) = C(t) + r − g(t) ⊗ Y (t), (12)
where ⊗ denotes Hadamard product. Let {Y } and {g} denote
the set of all Y (t) and g(t) for all times, then we want to
maximize

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1030



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Total network load

S
ys

te
m

 th
ro

ug
hp

ut

Total system throughput vs. network load

MTS
MCS
MPS
MIGS
IWFQ
CSDPS

Fig. 2. Throughput vs. network load

max
{Y }

E{g}

{ ∞∑
s=0

βs

[
N∑

n=1

{αngn(s)Yn(s) − fn [Cn+1(s)]}
]}

.

Now, we define G(C(t), Y (t), g(t)) � D(t). Let St, the
state of the system at time t be defined as the augmented
vector X(t) = (C(t), g(t)). Note that the scheduler knows
the channel capacities at the decision time, and therefore,
the channel capacities are part of the state vector. However,
before time t, the vector g(t)) is a random vector. At time
t = 0 the system state is X(0). Then we have

J∗(X(0)) � max
{Y }

E{g}

[ ∞∑
t=0

βtG(C(t), Y (t), g(t))|X(0)

]
.

(13)
We would like to obtain the optimal policy Y ∗(t) =

µ∗ (
C(t), g(t)

)
at each time slot t that maximizes (13). We

can rewrite the optimal income in the form of Bellman’s
recursive equation for discounted infinite horizon problem at
any time slot t [11], as follows:

J∗(X(t)) = max
Y (t)

{G(C(t), Y (t), g(t))

+ βEg(t+1)

[
J∗(C(t + 1), g(t + 1))

]}.
If we denote the probability of g(t+1) = gk by p̂gk , where

gk is the kth level quantized value for the channel capacity,
we obtain:

J∗(X(t)) = max
Y (t)

{G(C(t), Y (t), g(t))

+ β
∑

k

p̂gkJ∗ (
C(t + 1), gk

)}. (14)

Starting from X(t), the scheduler selects the user that
maximizes the righthand side of (14), in which the first
terms represents the current income (as seen in the greedy
algorithm, MIGS) and the second term represents the income-
to-go. It can be shown that this maximization is equivalent to
selecting the user n in the following maximization problem:

max
n

{αngn(t) + fn [Cn(t) + rn] − fn [Cn(t) + rn − gn(t)]

+ β
∑

k

p̂gkJ∗(C(t) + r −




0
.
gn(t)
.
0


 , gk)}.
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IV. SIMULATIONS RESULTS

In order to evaluate the performance of our algorithms, we
have simulated a single-cell wireless system where users are
randomly distributed. We assume that path loss and shadow
fading are compensated by a power allocation mechanism
and the channel follows a Rayleigh fading distribution. By
considering the same noise level at all receivers, the received
signal power also follows a Rayleigh distribution. Here we
have assume that number of quantized levels of channel
capacities is Q = 4. These levels and their probabilities are
{1.0, 0.6, 0.4, 0.2} and {0.43, 0.24, 0.19, 0.14}, respectively.

If Rn is the assigned rate to user n, and rn is the reserved
rate by that user, we define the minimum assigned relative
rate over all users as η = minn{Rn

rn
}. This value can be

considered as a measure of QoS; to support QoS for all users,
we want η ≥ 1.

First we present the simulation results for MIGS and
compare its performance with MTS, MCS, MPS, IWFQ, and
CSDPS for a system with four users. The reserved rates of
the four users are ρ[0.1, 0.2, 0.3, 0.4], where 0 ≤ ρ ≤ 1 is
the network load. Also, we assume that αn = 1000 for all
users.

Throughput, minimum assigned relative rate, and total
income are plotted in Figures 2-4, respectively. The penalty
function in the simulations is selected as in (5) with γn = 1.
The horizontal axis in all these figures shows the network
load. As illustrated in Figure 2, MTS and MIGS achieve the
maximum throughput (the expectation of maximum link ca-
pacity, E{max(g) = 0.96}). MCS achieves a flat throughput
which is equal to the average link capacity (E(g) = 0.68).
At low network loads, MPS tries to satisfy each user with
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its requested bandwidth; that is, throughput is minimally
allocated to satisfy each user. As network load increases, the
system throughput increases and it approaches to that of MTS
and MIGS. As illustrated in Figure 3, at low network loads
all the algorithms support QoS. However, as network load
increases, MPS and MIGS try to maintain QoS for all users,
while MTS and CSDPS fail to do so. This result is expected
since they are not designed to provide QoS. Since MCS
does not utilize bandwidth as efficiently as MIGS, it fails
at high network loads due to the lack of available channel
bandwidth. As it was mentioned earlier, total income is a
combination of system throughput and penalty when QoS
requirement is not met. This quantity is shown in Figure 4.
MIGS generates the highest income since the throughput and
penalty are optimized jointly. The income for MTS, MCS,
IWFQ, and CSDPS drop at high network loads, since they
fail to meet QoS after certain loads. MTS and CSDPS fail
to meet QoS at lower network loads compared to MCS and
IWFQ, and thus, their incomes drop faster. Total income for
MPS increases as load increases, since it tries to minimize
penalty independent of load, while at large loads, throughput
grows and increases the income. At high network loads, MPS
income approaches that of MIGS, since both achieve similar
throughput at high loads.

Next, we evaluate the performance of MIDPS and compare
it with performance of MIGS and MPS (See Figures 5, 6 and
7). However, because of complexity issue of DP algorithm,
we consider only three users, limit the credits of users to be
between -1 and 2, and perform the simulations for three cases
where the reserved rates are a:[0.2, 0.2, 0.2], b:[0.2, 0.2, 0.4],
and c:[0.2, 0.2, 0.6]. The penalty function is described by (5),
and α1 = 1, α2 = 2, and α3 = 4. Figures 5 and 6 show that
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the system throughput and QoS with MIDPS are as good as
the throughput and QoS with MIGS. Therefore, MIDPS can
support QoS and provide high system throughput. However,
as shown in Figure 7, the total income with MIDPS is better
than the sub-optimal MIGS. We have to mention that when
we increase the range of credits, sub-optimal solution MIGS
performs close to the optimal solution MIDPS.

V. CONCLUSION

In this work we have proposed Service Level Agreement
(SLA) based scheduling schemes. We have introduced a
notion of income maximization where throughput is the ob-
jective of maximization with the constraint that the scheduler
is penalized when the QoS or SLA is violated. We have
proposed a greedy approach and a dynamic programming
approach to solve the problem. Our results show that the
performance of the algorithm is superior to cases where only
throughput or QoS is considered in the scheduling process.
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