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Abstract—Users in multimedia social networks actively interact
with each other. It is crucial to study the complex user dynamics
and analyze its impact on the performance of multimedia social
networks. This paper uses multimedia fingerprinting as an ex-
ample and studies user dynamics in colluder social networks.
During collusion, a group of attackers collectively attack multi-
media fingerprinting system and use multimedia content illegally.
This paper analyzes the incentives of cooperation among attackers
and investigates how colluders form their coalitions to maximize
their payoffs. We present a game-theoretic framework to model
the complex dynamics among colluders, analyze when attackers
cooperate with each other, and investigate how a colluder selects
his/her fellow attackers to maximize his/her own payoff. We
analyze multiuser collusion in two scenarios: when all attackers
receive fingerprinted copies of the same resolution, and when they
have copies of different resolutions. The proposed framework
considers both the colluders’ risk of being detected by the digital
rights enforcer and the reward received from illegal usage of
multimedia content. Our analysis shows that in both scenarios,
colluding with more attackers does not always increase an at-
tacker’s utility, and attackers may not always want to cooperate
with each other. We first examine the necessary conditions for at-
tackers to collude together, and study how they select the collusion
parameters such that cooperation benefits all colluders. We then
study how the number of colluders affects each attacker’s utility,
and investigate the optimum strategy that an attacker should
use to select fellow attackers and to form a coalition in order to
maximize his or her own payoff.

Index Terms—Coalition formation, game theory, multiuser col-
lusion, multimedia fingerprinting.

I. INTRODUCTION

I N THE PAST decade, we witness the emergence of large-
scalemedia-sharing social networks such as Napster, Flickr,

YouTube, CoolStreaming, and PPLive, where millions of users
form a dynamically changing infrastructure to share multimedia
contents [1]–[5]. Social networks are defined as “social struc-
tures that can be represented as networks—as sets of nodes (for
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social system members) and sets of ties depicting their inter-
connections [6].” Nodes in the network can be individual per-
sons, small groups, or formal organizations, who are connected
to each other via certain relationship, such as friendship, trade,
or colleagues. In the above mentioned social networks, users are
the nodes who are connected to each other via sharing of mul-
timedia content and resources, e.g., upload bandwidth. In these
social networks, users actively interact with each other, and such
user dynamics not only influences each individual user but also
affects the system performance. Therefore, it is of ample impor-
tance to analyze the impact of human factors on media-sharing
social networks, and to provide important guidelines to better
design of multimedia systems. The area of human and social dy-
namics has recently been identified by the U.S. National Science
Foundation as one of its five priority areas, which also shows the
importance of this emerging interdisciplinary research area.
This paper analyzes user dynamics in media-sharing social

networks, where users cooperate with each other to share multi-
media data. Cooperation enables users to access extra resources
from others and thus receive higher payoffs. However, cooper-
ation may also incur cost to users and cooperating with more
users does not always increase a user’s utility, as shown in prior
works on cooperation in wireless networks [7] and cooperative
spectrum sensing in cognitive radios [8]. In addition, it has been
observed that in many social networks, nodes tend to create
tightly knit groups where nodes are connected via many direct,
reciprocated choice relations [9]. Analysis of these cliques is an
important research area in social network analysis to identify
such cohesive groups of nodes who share information, achieve
homogeneity of thoughts and behavior, and act collectively, and
to study when and how nodes form cliques/coalitions [9], [10].
This paper provides a case study of coalition formation in mul-
tiuser collusion against multimedia fingerprinting, and builds
a game-theoretic framework to analyze when users cooperate
with each other and how they select partners to maximize their
own utilities.
Recent popularity of peer-to-peer and media-sharing net-

works has raised great concerns on copyright infringement in
these networks, and it was reported in [11] that peer-to-peer
traffic in pirate content may consume 49% to 89% of all Internet
traffic during the day and up to 99% at night. Copyright indus-
tries are looking for novel technologies to throttle illegal file
sharing and to protect intellectual property rights. Multimedia
fingerprinting is an emerging technology that offers proactive
post-delivery protection of multimedia content [12]–[16]. It
labels each distributed copy with the corresponding user’s
identification information, called fingerprint, which can be
used to track the distribution of multimedia data and to identify
the source of illicit copies. Multiuser collusion is a cost-effec-

1520-9210/$31.00 © 2012 IEEE



718 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 3, JUNE 2012

TABLE I
LIST OF SYMBOLS USED IN THIS PAPER

tive attack against multimedia fingerprinting, where a group
of attackers work collectively to remove or attenuate the em-
bedded fingerprints. Note that colluders form a social network;
colluders are the nodes who are connected to each other by
sharing their fingerprinted copies, the risk of being detected,
and the reward from illegal usage of multimedia content.
During collusion, attackers negotiate with each other on fair
distribution of the risk and the reward. Most prior works con-
sidered the equal-risk fairness criterion where all colluders have
the same probability of being detected [17]–[20]. In [21], we
studied different fairness constraints in multiuser collusion, and
investigated how colluders with conflicting objectives bargain
with each other to reach an agreement on the fair allocation
of risk and reward. Based on the above analysis of collusion
attacks, our prior work in [22] investigated techniques for the
fingerprint detector to probe side information about collusion
from the colluded copy, and to select the optimum detection
strategy that maximizes the detection probability.
However, these prior works do not answer the questionswhen

attackers would collaborate with each other and how to form a
coalition. An attacker first needs to decide whether to participate
in collusion and with whom to collude. When colluders’ goal
is to minimize their probability of being detected, the analysis
in [16] and [17] showed that with orthogonal fingerprinting, a
collusion attack with more attackers reduces the energy of each
contributing fingerprint by a larger ratio and, therefore, each
attacker has a smaller chance of being caught. Thus, to minimize
the risk, colluders are always willing to cooperate with each
other, and a colluder should find as many fellow attackers as
possible.
Nevertheless, colluding with more attackers also means

sharing with more people the reward from illegal usage of
multimedia and, therefore, colluders may not always want to
cooperate. Furthermore, a colluder also needs to decide with
whom to collude, which has not been addressed in the literature.
We use game theory to analyze these complex dynamics among
colluders and take into consideration both the risk and the
reward of collusion. In this paper, we use orthogonal fingerprint
modulation and linear averaging collusion as an example, and
provide a case study of coalition formation in colluder social
networks. For other fingerprinting and collusion models, the
same procedure and techniques can be used to analyze colluder
behavior. In this work, we consider two scenarios: when all
attackers receive fingerprinted copies of the same resolution
and when they receive copies of different resolutions. We inves-
tigate under what conditions colluders will cooperate with each
other, study how they choose the collusion parameters to ensure
that all colluders can improve their payoffs, and analyze how

colluders form a coalition to maximize his or her own payoff.
Such analysis helps us have a better understanding of multiuser
collusion, and offers important guidelines to better design of
collusion-resistant multimedia fingerprinting systems.
The rest of this paper is organized as follows. Section II de-

scribes our system model and Section III introduces the game-
theoretic framework that we use tomodel the complex dynamics
among colluders. Section IV and Section V analyze the dy-
namics among colluders when they receive copies of the same
resolution and when the fingerprinted copies have different res-
olutions, respectively. Section VI shows the simulation results,
and conclusions are drawn in Section VII. Some of the symbols
used in the following sections are summarized in Table I.

II. MULTIMEDIA FINGERPRINTING WITH
SCALABLE VIDEO CODING

A. Multimedia Fingerprinting

To address network and device heterogeneity, scalable video
coding decomposes a video sequence into layers of different
priority. The base layer contains the most important informa-
tion of the video and is received by all users, and the enhance-
ment layers gradually refine the reconstructed sequence at the
decoder’s side and are only received by users with sufficient
bandwidth. Using two-layer temporal scalability as an example,
we use frame skipping and frame copying to implement tem-
poral decimation and interpolation, respectively [23]. For ex-
ample, the base layer encodes the odd frames, and the enhance-
ment layer encodes the difference between the even and the odd
frames.
Let and be the sets with indices of frames encoded in

the base layer and the enhancement layer, respectively. The set
contains the indices of all frames that user receives.

If receives a low-resolution copy, then and the
normalized frame rate of ’s copy is

. The normalized frame rate if receives
both layers from the content owner.
With scalable video coding, a multimedia fingerprinting

system consists of three parts: fingerprint embedding, multiuser
collusion, and colluder identification [12].
1) Fingerprint Embedding: In this paper, we consider spread

spectrum embedding that has been widely used in multimedia
fingerprinting due to its robustness against many single-copy at-
tacks [24]. For the th frame in the video sequence represented
by a vector of length , and for each user who sub-
scribes to frame , the content owner generates a unique finger-
print of length . The fingerprinted frame that will be

distributed to is . The term
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is the just-noticeable-difference from human visual models [24],
and it is used to control the energy of the embedded fingerprints.
Finally, the content owner transmits to user all the finger-
printed frames that subscribes to.
We assume that the total number of users is much smaller than

the length of the embedded fingerprints and consider orthog-
onal fingerprint modulation [16], where fingerprints assigned
to different users are orthogonal to each other and have equal
energies.
2) Multiuser Collusion: We consider the scenario where col-

luders wish to generate a high-resolution colluded copy when-
ever possible and the normalized frame rate of the colluded copy
is 1 when at least one attacker receives both layers. In addi-

tion, we consider the simple scenario where colluders who re-
ceive fingerprinted copies of the same resolution agree to share
the same risk and receive the same reward.
When all attackers receive copies of the same resolution,

a simple average of all copies attenuates the energy of all
contributing fingerprints and, therefore, reduces the colluders’
probability of being detected [17]. When attackers receive
copies of different resolutions, they apply the two-stage col-
lusion in [20] as follows. First, colluders divide themselves
into two non-overlapping subgroups: with all colluders
who receive the base layer only, and with all colluders
who receive a high-resolution copy. Let be the number
of colluders in and be the number of colluders
in . Then, they apply the intragroup collusion attack.
For each frame in the base layer, colluders in
average all fingerprinted copies that they have and generate

, and similarly, for every frame
in the video sequence, colluders in generate

. This ensures that all colluders
who receive copies of the same resolution have the same proba-
bility of being detected. Finally, colluders apply the intergroup
collusion to generate the final colluded copy . For each frame

in the base layer, , where
, and for each frame in the enhancement

layer, . The additive noise is used to further
hinder fingerprint detection. Colluders select the parameter
to achieve “fair” distribution of the risk among colluders in
different subgroups.
3) Colluder Identification: Once the content owner dis-

covers the existence of an illegal copy of multimedia, the
detector first extracts the fingerprint
from the th frame of the test copy . Then, for each user

, the detector calculates the correlation-based detection

statistic to measure
the similarity between the extracted fingerprint and the original
fingerprint. Here, is the inner product of two vectors
and , is the norm of the vector , and the summations
are over all frames that user subscribes to. Finally, the
detector compares the detection statistics with a predetermined
threshold , and outputs the estimated identities of the colluders

.

B. Colluder Identification Using Self-Probing Detector

In the two-layer scalable multimedia fingerprinting system
in Section II-A, for user who receives a high resolution

fingerprinted copy, let and denote ’s fingerprints
that are embedded in the base layer and the enhancement layer,
respectively. Let and be the fingerprints extracted from
the base layer and the enhancement layer of the test copy,
respectively.
In such a system, there are many different ways to determine

if participates in collusion. For example, the fingerprint de-
tector can use and collectively to determine whether
is a colluder, and the fingerprint detector uses the collective de-
tection statistic

(1)

to measure the similarity between the extracted and the orig-
inal fingerprints. From [22], with orthogonal fingerprint modu-
lation, if the detection noise is i.i.d. Gaussian

, then follows the Gaussian distribution

if

if .
(2)

In (2), and are the lengths of the fingerprints embedded
in the base layer and the enhancement layer, respectively, and
is the variance of the fingerprint .
The fingerprint detector can also use the fingerprint extracted

from each individual layer to determine whether partici-
pates in collusion, and uses

if
if

(3)

to calculate the similarity between the extracted and the original
fingerprints. Here, the subscript “ ” is the layer index and is
either “ ” (the base layer) or “ ” (the enhancement layer). In
(3), and .
Comparing (2) and (3), , , and have

the same variance but different statistical means, and the one
with the largest mean gives the best detection performance.
When ,

. For a colluder in who contributes
a high-resolution copy, the energy of his/her fingerprint is
spread out in both layers in the colluded copy, and thus, it is
better to use and examine the entire video to achieve
higher robustness against collusion attacks. If , then

, and for a colluder , the energy
of his/her fingerprint in the base layer of the colluded copy is
very small, as it is also averaged with the contributions from
colluders in . Thus, it is better to examine the enhancement
layer only to determine if user participates in collusion and
use for better detection performance. The self-probing
detector in [22] probes the statistical means of different detec-
tion statistics from the colluded copy, and adaptively changes
the detection strategy to maximize the detection performance.
From [22], the self-probing detector has approximately the
same performance as the optimal detector, who has perfect
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knowledge of the statistical means of different detection statis-
tics and always chooses the one with better collusion resistance.

III. UTILITY FUNCTION AND FEASIBLE COLLUSION

The first step of understanding colluder dynamics is to de-
fine the utility function that each colluder wants to maximize.
During collusion, colluders share the risk of being captured by
the digital rights enforcer as well as the reward from illegal
usage of multimedia content. For colluder , let be his
or her probability of being detected, be ’s loss if he or
she is caught by the fingerprint detector, and be the reward
that receives from collusion if he or she is not detected. The
loss and the reward are nonnegative real numbers. A
natural definition of the utility function is the expected payoff
that receives by participating in collusion, that is

(4)

We will analyze the three terms— , , and —in detail
in this section.

A. Probability of Being Detected

We first consider the scenario where colluders receive finger-
printed copies of the same resolution and they agree to equally
share the risk.With orthogonal fingerprint modulation, if the de-
tection noise is i.i.d. Gaussian with zero mean and variance ,
then a guilty colluder ’s probability of being detected is

(5)

and the probability to accuse an innocent user is

. Here, is the Gauss
tail function, is a predetermined threshold, and is the
length of the fingerprint extracted from the colluded copy. We
have if the colluded copy includes the base layer
only , and when the colluded copy
is of high resolution with both layers . Here, the
superscript “sr” denotes that all fingerprinted copies have the
same resolution.1

With scalable video coding, colluders may receive finger-
printed copies of different resolutions. We consider the scenario
where colluders in the same subgroup (with fingerprinted copies
of the same resolution) agree to share the same risk. From the
analysis in [20], with orthogonal fingerprint modulation, if the
detection noise is i.i.d. Gaussian , for colluder who

1With coded fingerprints, colluders’ probability of being detected will
be different. However, their utility function has the same form as in (4) and the
same analysis can be used to study colluders’ behavior in coded fingerprinting.
For example, in Tardos code [25], when , where is
the designed maximal coalition size for a given code length and a given false
alarm probability . When and the code length is large enough,
each colluder’s detection statistic approximately follows Gaussian distribution
with mean and variance reciprocal to . Hence can be approximated by a
Gauss tail function [26], and the techniques proposed in later sections can also
be used to study colluders’ behavior there.

receives a low-resolution fingerprinted copy, his/her chance of
being captured is

(6)

Here, the superscript “b” indicates that colluder is in the sub-
group . If is innocent, his/her chance of being falsely
accused is .
For user who receives both layers from the content

owner, note that the self-probing detector proposed in [22]
has approximately the same performance as the optimum fin-
gerprint detector with perfect information about the statistical
means of the detection statistics. Therefore, during collusion,
attackers should consider the worst case scenario and assume
that the fingerprint detector can always select the optimum
detection statistic with the largest mean. Therefore, if
receives a high-resolution copy and participates in collusion,
from (2) and (3), his/her chance of being detected is

if

if .
(7)

Here, the superscript “ ” means that colluder . If
is innocent, then the probability of falsely accusing him/her is

.

B. Loss and the Reward

In this paper, we consider the scenario where are the
same for all colluders. Furthermore, without loss of generality,
we normalize to one for all , which does not affect
our analysis.
Depending on the video content itself, the reward can take

different forms. For instance, for a commercial movie, the re-
ward can be the money paid by the buyers who purchase the
colluded copy. When defining the reward , we consider the
scenario where attackers receive more reward from collusion
if the colluded copy has higher resolution and better quality.
For instance, the pirated video with DVD quality would have
higher value than that with VCD quality. With temporal scal-
able video coding, we use the frame rate to quantify the video
quality, and let in (4) be an increasing function of the nor-
malized temporal resolution of the colluded copy . We con-
sider a simplified case where colluders who receive the same
quality copies will share the reward evenly. Hence, if all col-
luders contribute fingerprinted copies of the same resolution,
then they distribute the reward equally among themselves, and

. Here, is a nonnegative real number that ad-
dresses the tradeoff between the risk that a colluder takes and
the reward that he or she receives, and it has a smaller value
when colluders emphasize more on risk minimization. Note that

corresponds to the scenario where colluders’ only goal is
to minimize their risk (the probability of being detected), which
has been well studied in the literature. In this work, we consider
the high-risk high-return scenario with a large . e.g., .
In such a scenario, some attackers are willing to take the risk to
gain potentially higher payoffs, and they should consider both
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the risk and the reward when deciding whether to participate in
collusion.
In this paper, we consider the scenario where colluders dis-

tribute the reward based on the resolution of each contributing
copy, and where an attacker receives more reward if he/she con-
tributes a copy of higher resolution. Following the general re-
ward definition model proposed in [21], in this paper, we let

(8)

Here, is a parameter that colluders use to adjust how
they distribute the reward based on the resolution of each con-
tributing copy. For colluder who contributes a high
resolution copy, is an increasing function of and re-
ceives more reward when takes a larger value. Other defini-
tions of the reward function can also be used, and the same pro-
cedure can be used to analyze colluder dynamics.

C. The Utility Function

To summarize, when all colluders receive fingerprinted
copies of the same resolution, colluder ’s utility function is

(9)

where is in (5). If colluders receive copies of different res-
olutions, colluder ’s utility function is

(10)

where is in (6) if and is in (7) if .
Here, the superscript “ ” is the colluder subgroup index, and it
is either “ ” if or “ ” if .

D. Feasible Collusion

Given the assumption that colluders who receive copies of
the same resolution agree to have the same risk and receive the
same reward, to understand when and how the attackers collab-
orate with each other to form a coalition, we model the complex
dynamics among colluders as a two-player game: colluders in

act as a single player and they have the same utility ,
while those in act as a single player with payoff . From
(10), the collusion parameter determines colluders’ probabil-
ities of being detected and thus their utilities. During collusion,
each attacker prefers the that maximizes his/her own payoff,
and the two subgroups of colluders negotiate with each other on
the selection of to resolve the conflict.
Given the utility function and the number of colluders in each

subgroup, attackers first find the feasible set
, where for every , there exists at least one

type of collusion that colluders in and can act to-
gether to select an appropriate collusion parameter , and ob-
tain the utilities and , respectively.
Among all possible solutions in the feasible set, attackers are

especially interested in those in the Pareto optimal set .
A solution is Pareto optimal if no one can further increase his or
her utility without decreasing others’. In a bargaining situation
like this, colluders would always like to settle at a Pareto op-
timal point. From (7) and (10), in the colluder game, the Pareto
optimal set corresponds to the solutions where attackers select

, that is,
. This is because, for col-

luder , when , ’s probability of being
detected in (7) is a constant of . Therefore, from (10),
is the same for all . Meanwhile, for colluder ,

in (6) is an increasing function of , and thus, is a de-
creasing function of . So colluders in are not willing to
contribute more than to the base layer of the colluded copy,
and for , colluders in prefer to improve their
utility without decreasing , the utility of those colluders
in . When , is an increasing function of
while is a decreasing function of , and is the
necessary and sufficient condition for Pareto optimality [21].
In addition, note that attackers will collude with each other

if and only if collusion helps increase their utilities, and they
are interested in solutions in that give them higher payoffs
when compared with the scenario where they do not cooperate
with each other.
• First, if attacker does not participate in collusion and
does not use multimedia content illegally, his/her payoff is
zero. Thus, colludes with other attackers only if he/she
receives positive payoff from collusion, and colluders are
only interested in solutions in where and
.

• Furthermore, note that one possible outcome of the bar-
gaining between and is that they do not reach
an agreement. In such a scenario, attackers will only col-
lude with their fellow attackers in the same subgroup, and

and do not cooperate with each other. Let
denote the utility of a colluder in if he/she colludes
with attackers in only but not those in ; and sim-
ilarly, is the utility of an attacker in if he/she
colludes with attackers in only but not . Here,
the subscript ‘nc’ means no cooperation. Therefore,
and will collude with each other only if the two-stage
collusion in Section II-A.2 increases both players’ payoffs,
and they look for solutions in where and

.
The above analysis helps colluders further narrow down the fea-
sible set to

(11)

With the constraint , every collusion point in the
feasible set will be Pareto optimal, where reasonable col-
luders will all go.

IV. COLLUDER DYNAMICS IN MULTIUSER COLLUSION

In this section, we analyze when attackers will collude with
others who have copies of the same quality, and investigate the
optimum number of colluders that maximizes each colluder’s
payoff.

A. Colluders’ Payoff Functions

As an example and without loss of generality, we assume that
all attackers receive high resolution copies with both layers,
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Fig. 1. when all colluders receive fingerprinted copies of high resolution. and . (a) , . (b) ,
. (c) , .

and they generate a colluded copy of high resolution, that is,
and . The analysis is similar for the scenario

where all fingerprinted copies have the base layer only and thus
omitted. In such a scenario, since all copies have the same reso-
lution, there is no bargaining in collusion, and attackers simply
average all copies that they have with equal weights.
Fig. 1 shows an example of versus the total number of

colluders . In Fig. 1, the lengths of the fingerprints embedded
in the base layer and the enhancement layer are
and , respectively. In Fig. 1, we use as
an example to illustrate colluders’ payoffs, and we observe
similar trends for other values of . The threshold is selected
so that the probability of falsely accusing an innocent user

is 10 in Fig. 1(a) and, in
Fig. 1(b) and (c). We let in Fig. 1(a) and (b), and

in Fig. 1(c). We can see from Fig. 1 that the payoff
versus total number of colluders follows the same trend with
different and different values of . From Fig. 1(a),
when , due to ’s large probability of
being detected. In this scenario, colluders may not want to
use multimedia illegally since it is too risky. Furthermore,
from Fig. 1(a), colluding with more attackers does not always
increase ’s payoff, and becomes a decreasing function
of when there are more than 206 attackers.
Let be the

smallest that gives a non-negative payoff. Attackers will
collude with each other if and only if there are more than col-

luders and when they receive positive payoffs from collusion.
Also, we define as the optimum
that maximizes colluder ’s utility when all attackers receive
copies of the same resolution. A colluder should find a total of

attackers if possible to maximize his/her payoff. In the ex-
ample with and in Fig. 1(a),
and .

B. Analysis of and

Given , and , to find , we first extend the support
of from integers to real numbers, and then solve the equa-
tion . Note that is defined as the smallest in-
teger that makes the payoff non-negative. Therefore,

. To find , we first find the real number that
satisfies . By smoothness, we have

.
Fig. 2 shows for different values of and . The system

setup in Fig. 2 is similar to that in Fig. 1. Fig. 2 suggests that
is a decreasing function of . As an example, when

and , drops from 235 to 103 when increases
from 10 to 100. In addition, from Fig. 2, takes a smaller
value if colluders generate a colluded copy of lower resolution.
For example, with and , when

and when .
Fig. 3 shows as a function of when the colluded copy

has high and low resolutions, respectively. The system setup is
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Fig. 2. versus . , . (a) . (b) .

Fig. 3. versus . , . (a) . (b) .

the same as in Fig. 2. From Fig. 3, takes a smaller value
when the colluded copy has a lower resolution. For example, in
Fig. 3(a), with and , when
the colluded copy has high resolution, and when

. Furthermore, is a decreasing function of . For
example, with and , when

and when . This is because, when
takes a smaller value and when attackers emphasize more on

risk minimization, they prefer to collude with more people to
lower their risk.
To summarize, when all attackers receive copies of the same

resolution, they collude with each other if and only if the total
number of colluders is larger than and when all attackers
receive positive payoffs. In addition, an attacker should try to
find a total of colluders if possible to maximize his/her
payoff.

V. COLLUDER DYNAMICS IN MULTI-RESOLUTION
MULTIUSER COLLUSION

In this section, we consider the scenario where colluders re-
ceive fingerprinted copies of different resolutions, analyze when
attackers will collude with other attackers with different quality
copies, and investigate how an attacker selects his/her fellow at-
tackers to maximize his/her payoff.

A. Analysis of Feasible Collusion

In Section III-D, multiuser collusion is modeled as a two-
player game, in which the two subgroups of colluders, and

, negotiate with each other to reach an agreement on fair
distribution of the risk and the reward. To understand the dy-
namics among colluders, the first step is to analyze the Pareto-
optimal feasible set in (11) and to investigate under what con-
ditions attackers will collude with each other.
1) Colluders’ Payoff Functions: From Section III-D, one

possible outcome of the bargaining between and is
that they do not reach an agreement. In such a scenario, attackers
only collude with their fellow attackers in the same subgroup,
and and do not cooperate with each other. Given ,
, and , if an attacker in colludes with those in
only, following the same analysis as in Section IV, his or

her utility is

(12)



724 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 3, JUNE 2012

In (12), and . Similarly, if an at-
tacker in colludes with those in only, his or her
payoff is

(13)

In (13), .
If and collaborate with each other and select the

collusion parameter , following the analysis in Section III, for
an attacker , his or her utility is

(14)

Similarly, for , an attacker ’s payoff is

(15)

In (15), .
From Section III-D, among all the possible solutions

in the feasible set , colluders are only interested in
those in

, where cooperation helps
both and increase their payoffs.
• From (14), is an increasing function of and, is
a decreasing function of . Let be the that makes
equal to , that is, . Then, the constraint
is equivalent to .

• Similarly, from (15), is a decreasing function of , and
thus is an increasing function of . Let be the that
makes equal to , that is, . Therefore,
the constraint is equivalent to .

• Furthermore, note that is the minimum that colluders
in need to contribute for colluders in to consider
cooperation. Selecting corresponds to the scenario
where contributes nothing but still share some reward,
which is unacceptable to . Therefore, .

From the above analysis, we can rewrite as
. When attackers

receive fingerprinted copies of different resolutions, the two
subgroups of colluders and will collude with
each other if and only if there exists at least one such that

, or equivalently, when is not empty.
2) Lower and Upper Bounds of the Collusion Parameter: To

further understand under what conditions and will
cooperate with each other, we will first analyze and .
From the previous discussion, given , , and ,

colluders should select such that

(16)
where and are in (14). Consequently, we have

or equivalently

(17)

Similarly, given , , , and , colluders should select
such that

(18)
where and are in (15). Therefore, we have

or equivalently

(19)

Fig. 4 shows examples of and . The system setup is similar
to that in Fig. 1(a). in Fig. 1(a), and in
Fig. 4(b). From Fig. 4(a), when , and
when . Therefore, in this example where is fixed
as 120, if and only if . Similarly, from
Fig. 4(b), if or . Thus, when

is fixed, and will collude with each other
if and only if . Note that in Fig. 4(b), changes
its characteristics around the point . This is because

from Fig. 1(a) and, therefore, when
and when , which affects in

(19).
3) Analysis of the Number of Colluders: From Fig. 4,

given , and , for some pairs of , may
be empty and thus, and will not cooperate. Define

as the set including all pairs of
where is not empty and where and

will collude with each other.
Given , and , and will collude with each

other if and only if , that is, when and .
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Fig. 4. in (17) and in (19). , , , , and . (a): . (b): .

Since in (15) is an increasing function of , to ensure
, it is required that

or equivalently

(20)

From (17) and (19), to ensure , must satisfy

(21)

Combining (20) and (21), we have

(22)

The shaded area in Fig. 5(a) shows an example of . At
point “A” in Fig. 5(a), when , no matter which value
takes, is always empty and attackers will not collude with

each other. Similarly, when [point “B” in Fig. 5(a)],
no matter how many attackers are in and how they select
, cooperation between and cannot improve all col-
luders’ payoffs. Furthermore, when [point “C” in
Fig. 5(a)]. and will not collude with each other. In
addition, when , is in the

feasible region and the lower bound of is 1. To quantify
the above boundary points of , we define

(23)

In the example in Fig. 5(a), , , and
. Fig. 5(b) and (c) show the feasible region when
and , respectively, where we observe the

same trend as in Fig. 5(a). From Fig. 5, when takes a smaller
value and colluders emphasize more on risk minimization, they
prefer to collude with more people to reduce their risk of being
detected and more colluders join the coalition. This is similar
to the single-resolution case. Note that it is possible that is
empty in some scenarios. For example, with the same system
setup as in Fig. 5(c), when

and, therefore, . In such a case, col-
luders in will never cooperate with those in , since
for any , there is no in the range that can in-
crease their utility .
Note that for colluders, Fig. 5 and (23) show that if
, , or , it is impossible to find a

that increases all colluders’ payoffs, and and will
not cooperate with each other. Therefore, during collusion, as a
preliminary step, colluders should first check that and

. Then, they should ensure that
is in the set defined in (23), and guarantee that there exists
at least one that increases both and ’s payoffs.
From traitor tracing perspective, Fig. 5 shows that in the sce-

narios considered in this work, we are more likely to see col-
luder groups with a few dozen to a few hundred colluders. This
is because such group sizes ensure the feasibility and Pareto-op-
timality of collusion and improve all colluders’ utilities, where
all colluders will go for. Thus, a digital fingerprinting system
designer should focus on such colluder group size and design
collusion-resistant fingerprinting systems accordingly.
In the following section, we will analyze the boundary points

of ( , , and ) in details.
a) Lower Bound of : Using exhaustive search, we find

that at point “A” in Fig. 5(a), and . To
have a better understanding of , Fig. 6 plots and around
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Fig. 5. An example of . , , and . (a) . (b) . (c) .

Fig. 6. and at point “A” in Fig. 5(a). , , , , and . (a) . (b) .

the point ( , ). Fig. 6 suggests that, at point
“A”, , and has only one item, which is

. Therefore, to find , we first extend
the support of to the first quadrant in the 2-D plane,
and solve the equation . By
smoothness, we have . Using Fig. 5(a) as an ex-
ample, given the parameters , ,
and , the solution to the equation

is ( , ). Thus, , and
it is consistent with the result we find using exhaustive search.
In the example in Fig. 5(c) where , the solution is
( , ) and , which is

consistent with the result that we find using exhaus-
tive search.

b) Upper Bound of : To analyze , using exhaus-
tive search, we find that at point “B” in Fig. 5(a),

and
. Fig. 7 suggests that, at this point, , and

has only one entry. Also, from Fig. 7(b),
when , if has more than one attacker (that
is, ), there is no that can improve both and

’s payoffs. Therefore, to find , we first extend the sup-
port of from integers to real numbers and find point ‘B’ by
solving . By smoothness,
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Fig. 7. and at point ‘B’ in Fig. 5(a). , , , , and . (a) , (b) .

Fig. 8. and at point “C” in Fig. 5(a). , , , , and . (a) , (b) .

we have . As an example, given the system setup
in Fig. 5(a), the numerical solution to with is

and thus . It is consistent
with the result we found using exhaustive search. Similarly, for
the example in Fig. 5(c) with , and

, which is consistent with the exhaustive
search result.

c) Upper Bound of : : At point “C” in Fig. 5(a),
we find and using exhaustive search and

, as shown in Fig. 8. From the analysis in Section V-A.3,
for a given , to satisfy the constraint , it is required
that , where is defined in (20). Therefore, we
have . Using the system setup in Fig. 5(a)
as an example, Fig. 9 plots versus , and achieves
a maximum of 431.88 when . Consequently,

, which agrees with the result we found using
exhaustive search. Similarly, in the example in Fig. 5(c) with

, achieves a maximum of 1246.6 when
. Thus, , which is the same as the

exhaustive search result.
To summarize, given , and other parameters including
and , to ensure that cooperation can help both and
improve their payoffs, colluders should first ensure that

and . Then, attackers should further
check whether satisfies the constraints in (22) and

Fig. 9. versus . , , ,
, and .

whether is nonempty. If , colluders should
use (17) and (19) to calculate and , respectively, and find

. Compared to the
scenario where and do not cooperate, all colluders
increase their payoffs by cooperating and selecting any point
in . Moreover, every point in is Pareto optimal, and any
reasonable attacker will agree to go.
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B. Collusion Strategies

Given , colluders negotiate with each other and reach an
agreement on which pair in to select (or equiva-
lently, which to use during collusion). They select different
collusion strategies depending on how they define fairness of
collusion. In this section, we will quickly review our prior work
in [21] on different fairness constraints and colluder bargaining
process.
1) Absolute Fairness: With the absolute fairness cri-

terion, given , , , and , colluders seek the
that makes all colluders have the same

utility, that is, . Note that even if is not empty, it
is possible that the absolute fairness solution does not exist,
that is, there is no pair where . As
an example, consider the system setup in Fig. 5(a) where

. When , fol-
lowing the analysis in Section V-A.2, should be in the range
[0.5308,0.5858], which gives and

. In this example, even though ,
and, therefore, the absolute fairness

solution does not exist.
To investigate when the absolute fairness solution exists,

note that is a decreasing function of and is an in-
creasing function of . Therefore, given ,
we have and

. The absolute fairness solution ex-
ists only if the two intervals, and

, overlap with each other, that is,

(24)
If (24) is not satisfied, colluders should consider other fairness
criteria other than absolute fairness.
2) MaxSum Fairness: With the MaxSum fairness, colluders

look for the that maximizes the summation of all colluders’
utilities, that is, . To find
the MaxSum fairness solution, colluders first find the root of

and check whether the solutions fall in
the range . If not, they should check the two
boundary points and , and select the one that gives
a larger .
3) Proportional Fairness: With proportional fairness, the

Nash Bargaining solution aims to maximize the objective func-
tion where and
are the bargaining powers of and , respectively. To
find the Nash Bargaining solution, same as in the MaxSum fair-
ness solution, colluders first find the root of
and check if it is in the range . If not, colluders
should check the two boundary points, and , se-
lect the one that gives a larger , and use that parameter
during collusion.
To illustrate how colluders select different collusion strate-

gies in based on different fairness criteria, we consider an
example where , , ,

, , and . In this example,
and . From (17) and (19), ,

. Therefore,
.

Fig. 10. Example of the bargaining result. , ,
, , and . The probability of falsely accusing an

innocent user is .

We first find the absolute fairness solution . In
the above example,
and . Therefore, the
absolute fairness solution exists, and is
with . If colluders prefer the MaxSum fair-
ness criterion, we have and

. If colluders choose the Nash Bargaining so-
lution with , then the solution is ,
which gives . If colluders
prefer proportional fairness with ,
we have and

. Fig. 10 shows and different bargaining
solutions.

C. Maximum Payoff Collusion

Given and , Section V-A and V-B analyze how col-
luders select the collusion parameter to ensure that cooper-
ation increases all attackers’ utilities and how to achieve fair
collusion, respectively. During collusion, in addition to , at-
tackers can also select with whom to collude and the number of
fellow colluders, that is, and . In this section, we will
investigate the impact of on colluders’ utilities and
analyze how attackers choose and to maximize their
own payoffs.
From Section IV-B, when colluders receive fingerprinted

copies of the same resolution, colluding with more people does
not always increase an attacker’s payoff. This is also true when
colluders receive copies of different resolutions. Using
as an example, Fig. 11 shows the impact of the number of
colluders on . The system setup in Fig. 11 is the same as
that in Fig. 5(a), and is fixed.
In Fig. 11(a), we consider the scenario where is fixed

as 150 and colluders select the Nash bargaining solution with
. Fig. 11(a) plots when takes

different values. As shown in Fig. 11(a), in this example,
achieves the maximum of 0.1681 when , and it de-
creases if continues to increase. When , the op-
timal that maximizes with is
the upper bound , and decreases fast as continues to
increase. When , collaborating with colluders in
does not help further increase their utilities, and colluders
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Fig. 11. when is fixed. ,
, , , and . (a) Nash bargaining solution with

. (b) Comparison of the absolute fairness solution, the
maxsum solution, and the Nash bargaining solutions.

will only collude with their fellow attackers in the same sub-
group. Fig. 11(b) compares when colluders select different
collusion strategies including the absolute fairness solution, the
MaxSum solution, and the Nash bargaining solutions. It shows
that, in this example, colluders in receive the highest pay-
offs from collusion if they choose the Nash bargaining solution
with . To conclude, from Fig. 11(b), with a
fixed , if colluders in want to maximize their
own payoffs, the best strategy is to find another 76 attackers
who receive the low resolution copy and to choose the Nash
bargaining solution with .
In the example in Fig. 11, we fix and find the

optimum to maximize ’s utility. In practice, a colluder
may wish to select both and to maximize his or her
payoff. As an example, Fig. 12 plots when and take
different values and when colluders use the Nash Bargaining
solution with . The system setup is the
same as in Fig. 11(a). In this example, achieves the max-
imum 0.1742 when , and a colluder with
a high-resolution copy should find 52 colluders with low-res-
olution copies and another 175 colluders with high-resolution
copies to maximize his/her payoff.
When attackers choose the absolute fairness solution, a col-

luder in is interested to find the and that max-
imize , where is the absolute

Fig. 12. Maximization of with the Nash Bargaining solution where
. , , and . The probability

of falsely accusing an innocent user is .

fairness solution in Section V-B. Similarly, if colluders prefer
the MaxSum fairness solution, a colluder in is interested
in the pair that maximizes his or her payoff, that
is, where
is the MaxSum solution in Section V-B. When colluders choose
the Nash bargaining solution, a colluder in would like to
find the optimal that maximizes his or her payoff,
that is, where

is the Nash bargaining solution in Section V-B.
We find the above solutions for the example in Fig. 5(a), and

the results are shown in Table II. As an example, from Table II,
if colluders prefer the MaxSum fairness solution, then for a
colluder in to maximize his or her own payoff, he/she
should find another 205 attackers who also receive high reso-
lution copies and 16 attackers who have the base layer only.
If we compare the four solutions in Table II, to maximize ,
the optimal collusion strategy for a colluder in is to let

and to select the Nash Bargaining so-
lution with . It helps colluders in
receive a maximum payoff of 0.1742 among all possible s
that they could have.
For colluder , we can use the same method to find

the optimum pair that maximizes ’s utility ,
and Table III shows the results. For instance, from Table III, if
colluders decide to select the Nash bargaining solution with

, then to maximize , a colluder in should
find additional 105 attackers who receive the base layer only
and another 97 attackers who have the high resolution copies.
Similarly, by comparing all four collusion strategies, if colluder

hopes to maximize his or her payoff, should let
(that is, find another 126 attackers who

receive both layers but no more attackers who have the base
layer only) and select the Nash bargaining solution with

. By doing so, achieves the maximum of 0.2047.

VI. SIMULATION RESULTS

In our simulations, we test on the first 40 frames of the
“carphone” sequence in QCIF format, which is a popular test
sequence for video processing. We observe the same trend
for other video sequences. The base layer includes all the odd
frames, and the enhancement layer contains all the even frames.
The length of the fingerprints embedded in each frame is 2500,
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TABLE II
MAXIMIZATION OF . , , , AND

TABLE III
MAXIMIZATION OF . , , , AND

Fig. 13. Simulation results when all attackers receive fingerprinted copies of high resolution. The system setup is the same as that in Fig. 1(a). , ,
and . The results are based on 2000 simulation runs. (a) . (b) .

Fig. 14. Simulation results of and when all attackers receive fin-
gerprinted copies of high resolution. The system setup is the same as that in
Fig. 1(a) with and , and varies from 10 to 100.

and the lengths of the fingerprints embedded in the base layer
and the enhancement layer are and ,
respectively. We use orthogonal fingerprint modulation [16],
and use spread spectrum embedding [24] to embed fingerprints
into the host signals. During collusion, colluders follow the
two-stage collusion in Section II-A-2, and they adjust the power

of the additive noise such that . In
addition, as an example, when defining the utility function, we

Fig. 15. when the host signal is 256 256 Lena image with ,
, , and .

let colluders select and . When identifying
colluders, the fingerprint detector follows Section II-B and
uses the self-probing detector in [22]. The fingerprint detector
selects the threshold such that the probability of falsely
accusing an innocent is .
We first consider the scenario where all colluders receive the

high resolution copies. In such a scenario, they simply average
all the fingerprinted copies that they have and then add addi-
tive noise to further hinder the detection. The simulation re-
sults of the colluders’ utilities are shown in Fig. 13(a), and it
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Fig. 16. Simulation results of when colluders receive fingerprinted copies of different resolutions. The system setup is the same as that in Fig. 11(a). The
results are based on 2000 simulation runs. (a) . . (b) with NBS and . (c) with .

is consistent with our analysis results shown in Fig. 1(a). A col-
luder receives a positive payoff when there are more than 125
colluders, and reaches the maximum when is around 206.
As continues to increase, starts decreasing. Fig. 13(b) plots
the corresponding . From Fig. 13, although a larger always
decreases a colluder’s risk, it does not always increase a col-
luder’s utility when the reward received from collusion is also
considered.
Fig. 14 shows the simulated and , where we use

our simulation results to find the smallest that makes
and the that maximizes , respectively, when varies. It is
consistent with our analytical results in Figs. 2(a) and 3(a), and
both and decrease as increases.
When colluders use different post-collusion processing tech-

niques, colluders may have different probability of being de-
tected and thus different utilities, but we will observe the same
trend as in Figs. 1 and 13(a). As an example, Fig. 15 plots col-
luders’ utility when a 3 3 Gaussian low pass filter with vari-
ance 0.4 is applied after averaging collusion. The host signal
is 256 256 Lena, and spread spectrum embedding is used.
Fig. 15 is based on 200 simulation runs. We observe the same
trend for other parameter values and other post-collusion pro-
cessing. Figs. 1 and 15 show the same trend, and colluders can
use the same strategy to study when to collude and find the op-
timal size of coalition.
We then consider the scenario where colluders receive finger-

printed copies of different resolutions. Following the example in

Fig. 11(a), we fix the number of colluders who receive high reso-
lution copies as .We select such that

and it is possible for colluders to find at least one
that increases all colluders’ payoffs. Fig. 16(a) shows the sim-
ulation results of with the absolute fairness, the maxsum
solution, the Nash bargaining solutions with and

, respectively, and Fig. 16(b) plots the cor-
responding colluders’ risk of being detected when they use the
Nash Bargaining solutions. They are consistent with our analyt-
ical results shown in Fig. 11. In Fig. 16, of the NBS with

reaches the maximum when ,
which gives the same result as in Fig. 11(a). In addition, for
NBS with , when and is
used, remains the same as increases, which causes the
fast decrease of . For NBS with , we observe
the same trend when and colluders select to
maximize . Comparing the two Nash Bargaining solutions
in Fig. 16, using the bargaining powers
helps colluders in gain a better position in the bargaining
process since in Fig. 16, lowers their probability
of detected and increases their utilities. It shows that the Nash
Bargaining solution favors the player with a larger bargaining
power by awarding him/her a higher utility. Fig. 16(c) plots
of the NBS with . From Fig. 16(c),
achieves the maximum 0.1739 when ( , ),
and this is consistent with our analytical results in Fig. 12 and
Table II.
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VII. CONCLUSIONS

This paper provides a case study of cooperation analysis for
multiuser collusion in multimedia fingerprinting. In this paper,
we build a game-theoretic framework to analyze the necessary
conditions for attackers to cooperate with each other, examine
the impact of the selection of fellow attackers on an attacker’s
payoff, and investigate the optimum strategies for colluders
to find their fellow attackers in order to maximize their own
utilities.
We first consider a scenario where all colluders receive fin-

gerprinted copies of the same resolution and the colluded copy
is a simple average of all copies with equal weights. In such a
scenario, we first investigate , the smallest number of col-
luders that gives attackers a non-negative payoff. Attackers col-
lude with each other if and only if the total number of colluders
is larger than or equal to . We then show that colluding with
more attackers does not always increase a colluder’s payoff, and
analyze the optimum number of colluders that maxi-
mizes a colluder’s utility.
We then consider the scenario where attackers receive finger-

printed copies of different resolutions. Our analysis shows that
in this scenario, colluding with more attackers does not always
increase an attacker’s payoff and attackers may not always want
to cooperate with each other. They collude with each other if and
only if cooperation helps increase all attackers’ utilities. We first
investigate the necessary conditions for colluders to cooperate
with each other. We analyze , the set including all pairs of

where it is possible for all colluders to benefit from
cooperation, and explore all possible collusion strategies that in-
crease every attacker’s utility for a given . We
then examine how the number of colluders in each subgroup,

, affects colluders’ utilities, and analyze the optimum
strategy to select fellow attackers if a colluder wants to maxi-
mize his/her own payoff.
Our contribution is twofold. From colluder perspective, our

work shows that cooperation does not always increase a col-
luder’s payoff, and colluders cooperate with each other if and
only if cooperation benefits all colluders. Our work provides a
framework for a colluder to determine when to participate in
collusion and how to select his/her fellow attackers to maxi-
mize his/her own payoff. From traitor tracing perspective, for
the high-risk high-return scenarios considered in our work, the
proposed framework enables the digital rights enforcer to esti-
mate the likely colluder group size, and design collusion-resis-
tant fingerprinting systems accordingly. Our analysis of the col-
luder coalition formation game can also be extended to study
coalition formation and partner selection in other social net-
works and other applications.
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