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ABSTRACT 

Digital fingerprinting is a technology for tracing the distribution of 
multimedia content and protecting them from unauthorized redis- 
tribution. Collusion attack is a cost effective attack against digi- 
tal fingerprinting where several copies with the same content hut 
different fingerprints are combined to remove the original finger- 
prints. In this paper, we consider average attack and several nonlin- 
ear collusion attacks on independent Gaussian based fingerprints, 
and study the detection performance of several commonly used 
detection statistics in the literature under collusion attacks. Ob- 
serving that these detection statistics are not specifically designed 
for collusion scenarios and do not take into account the characteris- 
tics of the newly generated fingerprints under collusion attacks, we 
propose pie-processing techniques to improve the detection perfor- 
mance of the detection statistics under collusion attacks. 

1. INTRODUCTION 

With the rapid development of multimedia and communication 
technologies, an increasing amount of multimedia data are dis- 
tributed through networks. This introduces an urgent demand to 
insure the proper distribution and usage of content, especially con- 
sidering the ease of manipulating digital multimedia data. 

To prevent illegal redistribution of the multimedia content, a 
digital fingerprinting system embeds unique identification infor- 
mation into each distributed copy to trace customers who use their 
copies inappropriately. There is a cost effective attack against digi- 
tal fingerprinting, known as collusion. In collusion atlacks, several 
users (colluders) get together, combine information from different 
fingerprinted copies of the same host signal and generate a new 
copy where the original fingerprints are removed or attenuated [I]. 
Digital fingerprinting should be resistant to collusion attacks as 
well as to common signal processings. 

In the literature, there are several commonly used detection 
statistics [ I ,  2, 31 available for the detection of the existence of 
the additively embedded watermark in the test signals. To our 
knowledge, there is no work that compares their detection perfor- 
mance under collusion attacks. Also, these detection statistics are 
not specifically designed for detection of fingerprints under col- 
lusion attacks and ignore the statistical characteristics of the col- 
luded fingerprints under different collusion attacks. In this paper, 
we focus on average and several nonlinear collusion attacks [ I ]  
on independent Gaussian based fingerprints and study the detec- 
tion performance of different statistics under collusion attacks. We 
also take into consideration the statistical features of the colluded 
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fingerprints in the detection process to improve the detection per- 
formance under collusion attacks. 

The paper is organized as follows. Section 2 introduces the 
fingerprinting and collusion attack system model. In Section 3, we 
analyze the detection performance of the detection statistics under 
collusion attacks. In Section 4. we study the performance of the 
statistics on independent Gaussian based fingerprints. Section 5 
proposes the pre-processing stage to improve the detection perfor- 
mance of the statistics. Conclusions are drawn in Section 6. 

2. SYSTEM MODEL 

We consider a system that consists of three parts: fingerprint em- 
bedding, collusion attacks, and fingerprint detection. Spread spec- 
trum watermark embedding [4,51 is widely used in watermark ap- 
plications where the robustness of the watermark is required. As- 
sume that there are a total of M users in the system. Given a host 
signal represented by a vector S with length N ,  the owner chooses 
a unique fingerprint W(') of length N for user i = 1 , .  . , M, and 
generates the fingerprinted copy X(') by XI') = S + awl'). a 
is the Just-Noticeable-Difference (JND)  from human visual mod- 
els IS] to control the energy and guarantee the imperceptibility of 
the embedded fingerprints. We assume that the A4 fingerprints 
(WCi)} are chosen independently. 

Assume that K users collude and SC is the set containing the 
indices of the colluders. We further assume that the collusion at- 
tack is in the same domain as the fingerprint embedding. With K 
different copies ( X ( k ) } r e s c ,  the colluders generate the j th (j = 
I , . .  . , N)componentoftheattackedcopyV = [V,,V,, . .  . , V , I T  
using one of the following collusion functions: 

average: = Xj")IK, (1) 
k t S C  

minimum: = min {xj"}, 
k E S c  

= m a  {~j"], maximum: q.""' 
k 6 S c  

VTi" with prob. p, 
randomized negative: V,?'d"'s = {I/,!""" with prob. 1 - p 

In this paper, we assume that p in the randomized negative attack 
is independent of the fingerprints {Wji)} and p = 0.5. Analy- 
ses of other nonlinear collusion attacks are available in 161. Note 
that for our model, applying the collusion attacks to the finger- 
printed copies is equivalent to applying the collusion attacks to the 
fingerprints. F O ~  example, v"" = minkEsc { S  + a ~ ( ' ) }  = 
s + a  mimes, {W')}. 
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In the detection process, the detector removes the host signal 
from V and extracts the fingerprint Y .= g ( { W ' " } k , S , ) ,  where 
g(.) is the collusion function defined in (1). The detector measures 
the similarity between Y and each of the M original fingerprints 
{W(,!} ,  compares with a threshold, and outputs the estimated col- 
luder set. In the literature, three detection statistics [I ,  2, 31 are 
used to measure the similarity between the extracted fingerprint 
and the original fingerprint I: 

T$) = ( Y > W ' . ' ) l ~ ,  (2) 

z(') = - - log-  1 ' where 
2 I - "  

andq(') = f i M , / f i ,  where 

In (Z), //W(')ll is the Euclidean norm of W('),  N is the length 
of the watermark, p is the estimated correlation coefficient be- 
tween Y and w($), A c  = 1. & (We)  3 - r N EN ?=1 W,('))2 
and a$ = (K - k CY=, K)' are the unbiased esti- 
mates of the original fingerprint's variance and the extracted fin- 
gerprint's variance, respectively. and My and V,' are the sample 
mean and sample variance of {KWT)}.  

We adopt the commonly used criteria to measure the detec- 
tion performance of the three statistics under collusion attacks: the 
probability of capturing at least one colluder (Pd) and the proba- 
bility of accusing at least one innocent user (J'fP). We also con- 
sidered other measurements like the fraction of colluders that are 
successfully captured and the fraction of users that are innocently 
accused. From the analysis in [6], they have the same tendency as 
P, and Pfp. and therefore are not included in this paper. 

3. ANALYSIS OF THE DETECTION STATISTICS UNDER 

N - 1  

COLLUSION ATTACKS 

3.1. Analysis of the Correlation Term 

Note that, in (2). all detection statistics are correlation based, and 
the kemel term is the linear correlation between the extracted fin- 
gerprint Y and the original fingerprint W(') 

where N is the length of the fingerprint and T Z )  can be regarded 
as the unnormalized TN statistics far user i .  

Under the assumption that {W,'*'} are i.i.d. distributed with 
zero mean and variance U&,, {g({W~)}kesc)W~)}~=l are also 
i.i.d. distributed. From central limit theorem, if they have finite 
mean p and finite variance 0'. then we can approximate T;') with 
the following Gaussian distribution: 

T $ ) - N ( p , c ' / N ) .  (4) 

Therefore, we need to find p = E[g({W(*)}lies.)W(')] and 
0' = "a'[g({W(k)}*es,)W(')] (for simplicity, we will drop the 
subscript j ) .  Due to the symmetv of g({W("}kEsC)Wc') with 
respect to the user i, with the same collusion function and the same 
numberofcolluders, all g({W(k)}kesc)W(' )  where i E Sc have 
the same mean and variance. Similarly, all g({W(*)}*,s,)W(') 
where i $ SC have the same mean and variance. 

Fo r i  E SC, define 

&,Ht a E [g({w(k)}k€S.)W(')] 3 ( 5 )  

and e:,,,, a mr [y({W(*)}k,s,)W("] 

Fori  $ S c ,  because {W(')}"l a1ei.i.d. distributed with zero 
mean and variance U&,, we have 

pLS,~ , ,  a E [g({W(')}tes,)W(')] = 0, 
and u : , ~ ,  = A var [g( {W(*)}b~s , )W(' ) ]  

= E [g2({W(k)}res.)]  &. (6) 

Detailed derivation of pLI,H1, u : , ~ ~  and ui.Hc under different 

From (4), ( 5 )  and (61, TN(i) can be approximated with the fol- 
collusion attacks is availablqin [61. 

lowing Gaussian distribution 

3.2. Analysis of the Detection Statistics 

From (7). T i '  can be approximated with Gaussian distribution 

The Z statistics can be approximated with a Gaussian random 
variable N(p',  1) with p' = ?-log a , where E[@] 
is the mean of p defined in (1) and is the correlation coefficient of 
Y and W(') [I]. Since E[W("l = 0, we have 

where u ; , ~  = v ~ a r [ g ( { W ( * ) } k ~ ~ ~ ) ]  is the variance of the ex- 
tracted fingerprint. Consequently, we have 

if i Sc, 

N ( $ - l o g M ,  1) i f i E S c ,  

(9) 

( i V ( O '  

Z(') - 
- Ilo.Hi where E[p] = &zJzz' 

Similarly, q(') can be approximated with Gaussian distribution 
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3.3. Analysis of Pd and PfP 

Define ~ L T ~  = +. aTN , H ,  = *, and , H o  &%. If 

the number of colluders is K ,  among the the M statistics {T,$'}E,, 
K of them are normally distributed with N ( p ~ , . , , a $ ~ , ~ , ) ,  and 
theothers arenormally distributed wi thN(0 ,  U $ ~ , ~ J .  If {Til}El 
are uncorrelated with each other or the correlation IS very small, 
then for a given threshold h, we can approximate P d  and Pfp with 

a f i C g , H  2 a+i 

12 
where Q(z)  = J," A e - 7  dt is the Gaussian tail function. 

Similarly, with agiven threshold h, we have 
Define p z e : m l o g  andpqaflpg,H1/,&. 

for the Z statistics, Pd = 1 - (1 - Q(h - p ~ ) ) ~ ,  

for the q statistics, Pd x 1 - (1 - Q(h - P ~ ) ) ~ ,  
and Pfp = 1- ( l - Q ( h ) ) M - K ;  

and Pfp LJ 1 - ( 1 - Q ( h ) )  . (11) M-K 

4. GAUSSIAN BASED FINGERPRINTS 

It was shown in [ I ]  that uniformly distributed fingerprints can be 
easily defeated by nonlinear collusion attacks. The simulation re- 
sults in [I]  also showed that Gaussian fingerprints are more re- 
sistant to nonlinear collusion attacks than uniform fingerprints. 
However, unlike uniform fingerprints, Gaussian fingerprints are 
not bounded and may introduce noticeable distortion in the fin- 
gerprinted copies. In order to achieve bath the robustness against 
collusion attacks and the imperceptibility of the embedded finger- 
prints. bounded Gaussian-like fingerprints were introduced in [61. 

Assume that fx(-) and F x ( . )  are the pdf and cdf of a Gaus- 
sian random variable with zero mean and variance ub respec- 
tively. The pdf of a bounded Gaussian distribution f,!.,(.) is: 

Given the pdf (12) and the analysis in Section 3, we can calculate 
P ~ . H , ,  ai ,H, ,   ai,^^ and &. and therefore P d  and Pfp.  De- 
tailed derivation is available in [6]. 

From the simulation results in Figure I .  we can see that, three 
detection statistics have similar performance under the average and 
randomized negative attacks; and under the minimum and maxi- 
mum attacks, the Z statistics is more robust than the TN and q 
statistics. The detection performance under the maximum attack 
is the same as that under the minimum attack. 

5. PRE-PROCESSING OF THE EXTRACTED 
FINGERPRINTS 

m e  three detection statistics we have studied so far are not specifi- 
cally designed for collusion scenarios, and do not exploit the statis- 
tical features of the extracted fingerprints under collusion attacks. 
One of such features is the sample mean of the extracted fioger- 
prints. From the histogram plots of the extracted fingerprints un- 
der different attacks as shown in Figure 2, we observe different 

Fig. 1. P d  of three detection statistics under the average, minimum 
and randomized negative attacks on i.i.d. fingerprints following 
distribution (12) with a& = 119. M = 100, N = lo4 and 
PfP = lo-'. Results are based on Zoo0 simulation runs. 

patterns of the sample means of the extracted fingerprints: the av- 
erage attack yields an approximately zero sample mean; the mini- 
mum and maximum attacks yield a negative and a positive sample 
means, respectively; and the extracted fingerprint components un- 
der the randomized negative attack are from two distributions, one 
with a negative mean, the other with a positive mean. 

Recall from (6 )  that ai,Ho is proportional tn the second mw 
men1 of the extracted fingerprint, subtracting the sample mean 
from the extracted fingerprint will reduce its second moment, thus 
improve the detection performance. Molivaled by this intuition, 
we propose a pie-processing stage in the detection roccss. Given 
the extracted fingerprint {Y, = g({W;}kEs,J}[l, we first in- 
vestigate its histogram. If a single non-zero sample mean is ob- 
served, we subtract it from the extracted fingerprint, and then apply 
the detection statistics. If the fingerprint components are generated 
from two (or more) distributions, we need to cluster components 
into different distributions and then subtract the sample mean of 
each distribution from those fingerprint components in that distri- 
bution correspondingly. In our problem, for the randomized nega- 
tive attack, a simple solution is to first observe the bimodality in 
the histogram of {Y,}, and then cluster all negative components 
into one distribution and cluster all positive components into the 
other distribution. Given the extracted fingerprint {&}, the pre- 
processing stage generates a new signal {Yi}y=l by 

Y,  . I[? < O]/ E, I [ &  < 01 if Y,  < 0 ,  
yl - Cj Y,  . I [ Y ,  > O]/Cj I [ &  > 01 if & > 0,  

where I [ . ]  is the indication function, and then the detector applies 
the detection statistics to {Y/}y=,. 

The analysis of the detection statistics with pie-processing is 
the same as in Section 3. Under the minimum attack, for i E 
S c , i f p m i n , ~ ,  = E[Wmi"W( ' ) ] ,  a L i n . ~ ,  = var[W"'"W(')], 

parameters without pie-processing, then with pie-processing, 
a m t n , ~ a  2 = E[(W mi" ) 2 I&, and uLi,,y = var[W"'"] are the 

f i m i n , ~ ,  e E [ (W-'" - ii![W"*"]) W'"] = pLmin ,~ ,  , 

&,,,HI 2 uar [(W'"'" - E[W"'"]) W(' )]  
- - 
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Fig. 2. Histogram of the extracted fingerprints under the average, minimum and randomized negative attacks. Fingerprint components are 
i.i.d. following distribution (12) with uf = 119. N = 10' and K = 45. 
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Fig. 3. P, of the three detection statistics with and without pre-processing under the minimum and randomized negative attacks. Fingerprint 
components are i.i.d. following distribution (12) with U:, = 119. M = 100, N = lO'and Pfp = lo-*. Results are based on 2000 
simulation runs. Left: under the minimum attack, right: under the randomized negative attack. 
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The analyses of the maximum and randomized negative attacks are 
similar and thus omitted here. With (13). the analysis of (Pd, P,,) 
with this pre-processing stage is the same as in Section 3.3. 

The simulation results in Figure 3 show that, with the pre- 
processing stage, the detection performance under the minimum, 
maximum and randomized negative attacks is improved, and three 
statistics have similar performance. The performance under the 
maximum attack is the same as that under the minimum attack. 

6. CONCLUSIONS 

In this paper, we have studied the detection performance of com- 
monly used detection statistics on independent Gaussian based fin- 
gerprints under collusion attacks. We have shown that, with the 
three detection statistics as defined in the literature and without 
any modification, the Z statistics is more resistant to the minimum 
and maximum attacks than the TN and q statistics, while the three 
statistics have similar performance under other collusion attacks. 
Observing different pattems of the sample means of the extracted 
fingerprints under different collusion attacks, we have also intro- 
duced a pre-processing stage to improve the detection performance 
and we have shown that, with the pre-processing stage, the de- 
tection performance is improved and the three detection statistics 
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