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a b s t r a c t

In cognitive radio networks, secondary users (SUs) are allowed to opportunistically exploit the

licensed channels. Once finding the spectrum holes, SUs need to share the available licensed

channels. Therefore, one of the critical challenges for fully utilizing the spectrum resources is

how the SUs obtain accurate information about the primary users’ (PUs’) activities and make

right decisions on which channels to access so as to avoid competition from other SUs. In this

paper, we formulate SUs’ learning and decision making process as a Chinese restaurant game,

which is concernedwith negative network externality, by considering the scenariowhere each

SU senses only one of the channels and then makes access decisions sequentially. In the pro-

posed game, SUs build the knowledge of the PUs’ activities by their own sensing and learning

the information from other SUs. They also predict the subsequent SUs’ decisions to maximize

their own utilities. We analyze the interactions among SUs and study specifically the impact of

SUs’ initial belief, sensing accuracy and channel quality on their decisions. We also derive the

theoretical results for the two-user two-channel case and extend the results to the multi-user

multi-channel case. Finally, we verify the theoretical results and evaluate the performance of

the proposed scheme in terms of social welfare through simulations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the last decades, the demand for wireless spec-

trum resources has grown rapidly. Cognitive radio technol-

ogy as a promising way to increase the efficiency of spec-

trum utilization and thus alleviate the spectrum shortage

has drawn great attentions. In cognitive radio networks, sec-

ondary users (SUs) as unlicensed users are allowed to use li-

censed spectrum bands with the constraint that they do not

incur harmful interference to the primary users (PUs) who

✩ Part of this work have been presented at the 2012 IEEE Global Telecom-

munications Conference (Globecom)[1].
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own the license of the spectrum bands. One typical cognitive

radio technology is opportunistic spectrum access, where

SUs need to perform spectrum sensing, i.e., detect the PUs’

activities, and access the spectrum once finding spectrum

holes.

In the literature, spectrum sensing approaches are pro-

posed to identify spectrum holes [2,3], while spectrum ac-

cess schemes aim at designing medium access control pro-

tocols to efficiently share the available spectrum resources

among SUs [4,5]. Joint spectrum sensing and access are also

considered in works such as [6], [7] and [8]. Although ex-

isting dynamic spectrum access schemes have improved the

spectrum utilization efficiency, due to the mobility of nodes

and the dynamics of the channel variation, the accuracy

of users’ decisions is limited and remains a challenge to

fully utilize the scarce spectrum resources. The analysis of

http://dx.doi.org/10.1016/j.comnet.2015.08.010
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fine-grain spectrum usage traces in [9] showed that even

with extensive statistical knowledge on PUs’ access patterns,

SUs can only extract 20–30% of available spectrum due to im-

proper access strategies.

SUs’ inaccurate decision making mainly results from the

lack of knowledge on the state of licensed channels. For-

tunately, SUs’ limited knowledge can be expanded through

learning. An SU can learn from its previous experience [10].

In the context of cognitive radio network, machine learn-

ing technology such as Q-learning [11] has been well inves-

tigated. Alternatively, an SU can learn from some other in-

formation sources, such as signals revealed by neighboring

SUs or the actions they have taken. Such a type of learn-

ing is referred to as social learning, where cooperative spec-

trum sensing is regarded as one of the typical applications. By

jointly combining sensing information from SUs over a wide

area, spatial diversity among these SUs is exploited and the

reliability of spectrum sensing is improved [12,13].

Most of existing works [10,14] study how users’ believes

are formed through learning and how accurate the believes

will be when more information is collected, assuming that

there is no network externality, i.e., a user’s reward will not

be affected by the actions of other users. However, such an

assumption is generally not true. In reality, not only channel

availability but also channel quality influences an SU’s util-

ity obtained from accessing a channel. Therefore, it is very

likely that two or more SUs will choose the same channel,

especially when the number of SUs is much larger than the

number of available channels. An SU then usually needs to

share the channel with others, but due to negative network

externality, the more SUs select the same channel, the less

utility each SU can obtain from this channel. In such a case,

when a rational but selfish SU chooses the best channel from

multiple available channels to maximize its utility, it must

take into account other SUs’ decisions, which leads to a game

among SUs. In the literature, the interactions of SUs are usu-

ally formulated as a global game [15] or a congestion game

[16], where all users make decisions simultaneously and a

user’s reward is determined by the system state and the

number of users making the same decision with him/her.

While lots of works have been done regarding the simul-

taneous decision making problem, the sequential decision

making problem has not been well investigated mainly due

to the complexity of the problem. Unlike the simultaneous

decision problem where all SUs make access decisions and

announce them at the same time and thereby no informa-

tion is exchanged among SUs, in sequential decision mak-

ing problem where SUs make and announce decisions one

by one, the signals and decisions revealed by the previous

SUs can be overheard by the following SUs. An SU therefore

can exploit not only the signal observed by its own sens-

ing, but also information from other SUs, which complicates

the problem but helps to enhance the reliability of SUs’ esti-

mation on spectrum occupancy. On the other hand, besides

taking previous SUs’ actions into consideration, an SU’s opti-

mal strategy in sequential decision making problem should

involve predicting decisions of subsequent SUs. Due to the

fact that information collected by different SUs is asymmet-

ric, i.e., an SU making decision later can collect more infor-

mation, such a prediction is more complicated than that in

a simultaneous decision case. However, in practice, sequen-

tial decision making scenarios are even more prevailing, es-

pecially in cognitive radio networks where SUs do not know

each other and synchronization among them is quite difficult.

Therefore, in this paper, we focus on the problem of dis-

tributed channel selection under the scenario where SUs

have to make decisions sequentially after each of them

senses only one of the channels, and tries to provide some

insights and results on it. The learning and decision mak-

ing process of SUs is modeled as a Chinese restaurant game

which provides a general framework for social learning prob-

lems with negative network externality.

To illustrate a typical Chinese restaurant game, consider a

Chinese restaurant with K tables and M rational customers.

Assume each customer can request for one table. The table

requested by the ith customer is xi, and the size of the ith ta-

ble is Ti but unknown to customers. Since customers prefer

bigger dining space, they may prefer bigger tables. However,

a customer may need to share the table with others if multi-

ple customers request for the same table. Let nxi be the num-

ber of customers choosing table xi. Then the utility function

of customer i is given by U(Txi ,nxi), where U(·) is a decreas-
ing function of nxi for the effect of negative network external-

ity. Supposing customers sequentially arrive and request for

seats from these K tables, social learning can be included. Un-

der such a situation, how the customers learn the true size of

tables and then choose the right tables to enhance their own

dining experience? The above table selection problem is an

example of Chinese restaurant game, which draws immedi-

ate parallels with decentralized channel selection in cogni-

tive radio networks. For details of Chinese restaurant game,

we refer readers to [17] and [18], where the relation between

Chinese restaurant game and Chinese restaurant process is

also described.

1.1. Related works

There is an extensive research on the topic of opportunis-

tic spectrum access [2–8]. We refer readers to [19] for an

overview. In recent years, a few works have been done in

the framework of multi-armed bandit (MAB), where an SU’s

decision on whether to sense new channels in the hope of

obtaining better availability (i.e., exploration) or to transmit

over the current channel (i.e., exploitation) is investigated.

While it is assumed in the early works [6,20] that the chan-

nel availability statistics are known and there is no compe-

tition among SUs, current researches [21,22] abandon such

assumptions when studingmultiple SUs’ optimal channel se-

lection strategy. Considering that channel states are selected

by adversary (thus non-stochastic), the authors of [23] pro-

posed joint channel sensing, probing, and accessing schemes

and proved that the proposed schemes can achieve almost

optimal throughput. In all these schemes SUs learn indepen-

dently, reducing the overhead of information exchange but

at the same time missing the chance of social learning which

may shorten the time to converge and enhance learning ac-

curacy. Moreover, taking network externality into considera-

tion, it is more natural and necessary to formulate the deci-

sion making process of rational and selfish SUs into a game.

Two closely-related strategic game models which incor-

porate the negative externality of spectrum resource are

global game and congestion game, in which the payoff of
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each player depends on the resource it chooses and the num-

ber of players choosing the same resource. In [24], consid-

ering that competitive optimal behavior of the secondary

system is a function of the prior probability distribution of

spectrum hole occupancy, channel quality and observation

noise, the decentralized dynamic spectrum access problem

among SUs was discussed in the framework of interacting

multivariate global game. In [25], multiple heterogenous SUs’

competition for transmission on idle primary channels was

finally modeled as a singleton congestion game. Since all

players in these games make decisions simultaneously, there

is no social learning involved.

Some researchers have made great efforts to introduce

learning and signaling into global game and congestion

game. Angeletos et al. [26,27], for example, examined how

learning influences the dynamics of coordination in a global

game of regime change, where a status quo is abandoned

once a sufficiently large fraction of agents attacks it. How-

ever, the network externality considered in these works are

positive. In [28], the authors investigated learning through

multiplicative updates in congestion games, while in [29] the

authors proposed a stochastic learning automata (SLA) based

channel selection algorithm. Nevertheless, due to simultane-

ous decision, players in these games still can only learn from

their private information or action-reward history. More-

over, the multiplicity of equilibria of these games is analyzed

only in simplified models where players are homogenous.

A general study incorporating both effects of social learning

and negative network externality is still limited, especially

in the case where heterogeneous players make decisions

sequentially.

Recently, Wang et al. [17,18] studied a sequential decision

scenario where a certain number of intelligent users make

wise decisions by taking advantages of other users’ expe-

riences through learning to avoid competitions from huge

crowds. By introducing the strategic behavior into the non-

strategic Chinese restaurant process, the authors proposed a

new game called Chinese restaurant game. Jiang et al. [30]

then extended the game model to the dynamic scenario

where users may arrive at or leave the network at any time,

and directly apply the proposed dynamic Chinese restaurant

game to cognitive radio networks to demonstrate the effec-

tiveness and efficiency of the game from simulations. Our

work differs from these works in two aspects. First, instead

of building a general framework and using cognitive radio

network as background for simulations, we apply the model

to specific cognitive radio scenario where we perform ex-

tensive theoretical analysis and get meaningful insights into

the impact of important factors, such as initial belief, sensing

accuracy and channel quality, on SUs’ access decisions. Sec-

ond, while [17,18] and [30] only consider the homogeneous

case where users have the same valuation about the same re-

source, our work takes into account the heterogeneous char-

acteristic of users, i.e., the quantity of the same channel is

variant for different SUs.

In our prior work [1], we formulated SUs’ decision mak-

ing problem in opportunistic spectrum access as a Chinese

restaurant game, where belief threshold is not considered

and we only derived SUs’ optimal access actions and the cor-

responding action regions under different initial beliefs and

sensing accuracies, and studied the property of SUs’ expected

action for the two-user two-channel scenario. While in this

paper, we modify the system model to a more practical one

by adding a belief threshold for SU’s access channel selection,

where we get totally different results on SUs’ optimal access

actions and the corresponding action regions. Based on the

modified model, we further investigate and obtain more in-

sight on the impact of channel quality on SUs’ actions. We

then extend our discussion on the two-user two-channel sce-

nario to the multi-user multi-channel scenario. What’s more,

we propose a Backward Induction Algorithm to find the best

strategy for each SU, and prove theoretically that the algo-

rithm will lead to sub-game perfect Nash equilibrium (NE)

of the proposed game and under certain conditions the NE

is unique. The convergence and computational complexity of

the algorithm is analyzed as well.

1.2. Contributions

The novelty and technical contributions of this work are

summarized as follows.

• Different from previous works which focused on simulta-

neous spectrum access decision, we address the sequen-

tial access decision problem, which is more realistic but

more difficult, for cognitive radio networks. The decision

making process in such a problem is modeled as a Chi-

nese restaurant game. In our proposed game, all SUs first

simultaneously sense the channels to estimate the chan-

nel state and then decide sequentially which channel to

access. Once an SU has selected a channel, it reveals its ac-

cess decision as well as the sensing result through a com-

mon control channel which can be overheard by all other

SUs. Since an SU can exploit the information collected by

sensing and learning, it is able to build a global view of

the channel state of the system and choose the optimal

channel for access, not necessarily constrained to the one

it has sensed.

• We propose a backward induction algorithm to find the

optimal action for each SU in the system. Furthermore,

we prove that the algorithm will result in a sub-game NE

of the proposed game and under certain conditions the

NE is unique.

• Taking the heterogeneous characteristic of SUs into con-
sideration, we further get meaningful insights into the in-

teractions among SUs. Specifically, we derive SUs’ opti-

mal access actions and study the impact of initial belief,

sensing accuracy and channel quality on their decisions.

We also discuss the SUs’ expected actions before knowing

the sensing results and study some of the general proper-

ties of expected actions under different channel qualities.

Furthermore, we extend the discussion for two-user two-

channel scenario to multi-user multi-channel scenario.

Note that the theoretical analysis is non-trivial. Due to the

highly non-linear characteristic of expected utility func-

tion defined in the game, no closed-form solution for the

scenario under consideration can be obtained. The het-

erogeneous characteristic of SUsmakes it more difficult to

analyze SUs’ actions mathematically since the results can

be significantly different when SUs’ preferences are dif-

ferently given. Simulations are finally performed to verify
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Table 1

Notations.

am The access action of SUm

a∗
m The optimal access action of SUm

a∗ = {a∗
1, . . . , a

∗
M} M SUs’ optimal action profile

bm, k The belief, i.e., the probability, of channel Hk being vacant from the perspective of SUm

b = (b0,1, . . . , b0,K) The prior belief with b0, k being the prior belief on channel Hk

cm The sensing action of SUm

gm, k SUm ’s average channel gain in Hk

G = (gm,k|∀m, k) The channel quality of the system

Hk The Kth licensed channel

θ k The state of channel Hk

θ Channel state of the system

� Space of channel state

f(s|θ k) Predefined distribution of result swhen sensing channel Hk

p Sensing accuracy

sm,k ∈ {s+, s−} The signal obtained via SUm ’s sensing channel Hk

Rm,k(G) The maximal rate SUm can obtain by accessing channel Hk

Rm,k(G,n) The rate that SUm can obtain when it shares channel Hk with n− 1 other SUs

hm The set of signals revealed by SUs before SUm

nm Vector used to record the number of SUs choosing each channel before SUm

vm,k The number of SUs choosing Hk after SUm , including SUm itself

Um, k( · ) SUm ’s utility of accessing channel Hk

Ūm,k( · ) The expected utility of SUm accessing channel Hk

BEm( · ) SUm ’s best response

�i, i = 0,1,2 Action regions for SU1 in the two-channel two-user case

�i, i = 0,1,2,3 Action regions for SU2 in the two-channel two-user case

ϕm( · ) The expected action of SUm

the theoretical results and evaluate the performance of

the proposed scheme in terms of social welfare.

Note that our model is quite general and its application is

not restricted to the channel selection problem but can also

be deployed in other problems in cognitive radio networks

with sequential decisionmaking and negative network exter-

nality, such as relay selection with limit transmission power

and/or backhaul capability. Beyond that, the proposed model

can be applied to many other fields, such as service selec-

tion in cloud computing, deal selection on Groupon website

in online social networking and WiFi access point selection

in wireless networking.

In the rest of the paper, Section 2 describes in details our

systemmodel for the cognitive radio networks and formulate

the decision making problem as a Chinese restaurant game.

The existence of Nash equilibrium is proved and the algo-

rithm to find the Nash equilibrium is also proposed in this

section. In Section 3, we analyze the impact of prior belief,

sensing accuracy and the channel quality on SUs’ decision in

the two-user two-channel scenario while in Section 4, we ex-

tend the analysis to the multi-user multi-channel scenario.

Finally, we present the simulation results in Section 5 and

draw conclusions in Section 6. A list of the key mathematical

symbols used in this paper is shown in Table 1.

2. Chinese restaurant game model of cognitive radio

system

2.1. System model

In this paper, we consider a primary system with K li-

censed channels, Hk, k ∈ K = {1,2, . . . ,K}, as shown in Fig. 1.
All the channels in the system are synchronized and slotted,

and each is owned by one PU. Within each slot, the chan-

nel state of the system is defined as θ = (θ1, θ2, . . . , θK) with
state space �. θ k, the state of channel Hk, can be 0 or 1 ac-

cording to the PU’s activity. Here, “0” stands for the channel

being occupied by the PUwhile “1” means that the channel is

vacant. The PUs’ access pattern Pr(θ k), ∀k ∈ K, are indepen-

dent with each other and considered as prior probabilities.

Suppose that there are M SUs, i.e., SUm, m ∈ M =
{1,2, . . . ,M}, searching vacant channels for transmission.

Since SUs are not licensed users, they can only access the

channels when the PUs are not present. In such a case, SUs

need to perform sensing before accessing the channels. All

SUs can independently perform sensing using energy de-

tection [2]. The sensing result, which is a binary signal s ∈
{s+, s−}, represents the observation or estimation of the state
of the sensed channel. The positive signal s+ indicates that

the channel is vacant while the negative signal s− stands for

Fig. 1. The system model.
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the channel being occupied by the PU. Considering the uncer-

tainty in sensing process due to physical propagation effect,

e.g. fading or shadowing, we further assume that s follows

a predefined Binomial distribution, i.e., f (s = θk|θk) = p and

f (s �= θk|θk) = 1− p, ∀k ∈ K. Here p ∈ (0, 1) can be regarded

as the system parameter and is referred to sensing accuracy

in the rest of this paper.

As shown in Fig. 1(b), in our model, one slot is further di-

vided into three sub-slots. In the first sub-slot,M SUs perform

sensing. Although our model can be extended to multiple

spectrum sensing, in this paper, we assume that an SU only

senses one channel. After sensing, each SU can select one va-

cant channel for transmission due to the hardware limitation

[31]. Therefore, in the second sub-slot, SUs sequentiallymake

the access decisions based on the information they have col-

lected,1 and report their decisions as well as sensing results

within a predefined time through a dedicated common con-

trol channel which can be overheard by all other SUs.2 Note

that the sequential decision order will cause the unbalance

information availability among SUs and affect their decisions

and utilities. For the sake of fairness, we assume that the

decision order is randomized and is different at each time

slot. In the third sub-slot, SUs transmit their data through

the channels they selected. If more than one SU choose the

same channel, they can share the channel through but not

limited to Carrier Sense Multiple Access (CSMA), Time Divi-

sion Multiple Access (TDMA) or Code Division Multiple Ac-

cess (CDMA).

Note that since SUs are uncertain about their future deci-

sion orders, they only care about the expected utility at the

current slot. Moreover, an SU’s utility is obtained within the

third sub-slot which will be normalized to 1 in the follow-

ing analysis. In such a case, how the three sub-slots are di-

vided will not affect the SUs’ decisions. However, it should be

pointed out that the optimal sub-slot allocation is an impor-

tant issue for certain scenarios and previous works focusing

on this topic can be referred in [33] and [34].

2.2. Utility function

Let gm, k(t) be SUm’s average channel gain in Hk at slot t,

which generally varies over the slots but remains invariant

within each slot [38,39]. Since in this paper we mainly dis-

cuss SUs’ decisions in a specific time slot, the time index t is

thereby dropped. With gm, k, we define G = (gm,k|m ∈ M, k ∈
K) as the channel quality of the system in a slot, which can be

achieved by channel estimation [35,40] and known to every

SU.3 Then given G, the maximal rate SUm can obtain by ac-

1 Note that the time an SU needs to make decision can be very short, if the

channel gain is modeled as a Finite-State Markov chain [36], the computa-

tion of optimal strategies is conducted off-line and the results are put into a

look-up table, to which an SU refers for a quick decision.
2 The report can be sent in a message with format < i, s, j >, where s ∈

{0, 1} is the sensing result, and i and j, both represented in logK bits, are

the channels that the SU has sensed and will access, respectively. As a re-

sult, 2logK + 1 bits are needed for one message and the total overhead is

M(2logK + 1) bits, if modulation is not taken into account. Such an over-

head is acceptable even in a real secondary system whereM and K is on the

order of tens [31,32].
3 We assume that the channel quality information is broadcasted by SUs

via a wireless control channel every coherence interval. Then the time for

cessing channel Hk is Rm,k(G) = log2(1+ gm,kPm

N2
0

), where Pm

is SUm’s transmission power and N2
0 is the variance of addi-

tive white Gaussain noise. We assume that all SUs use the

same power to transmit and all the noises have equal vari-

ance. Moreover, let Rm,k(G,n) be the rate that SUm can obtain

when it shares channel Hk with n− 1 other SUs. Note that

Rm,k(G,n) should be a decreasing function in terms of n due
to interference or less access opportunity, and its exact form

is determined by how these SUs share the channel.

Definition 1 (Preferential channel). Channel Hk is the pref-

erential channel of SUm if Hk = arg max
Hk∈{H1,...,HK }Rm,k(G).

We use the transmission throughput as SUs’ utilities. As-

suming the length of the third sub-slot is normalized to 1, the

utility of SUm accessing channel Hk can be defined as

Um,k(G, θk,Nk) = Rm,k(G,Nk)1(θk = 1), (1)

where 1( · ) is the indicator function and Nk is the final num-

ber of SUs that choose to access channel Hk.

From (1) we can see that the SU’s utility is determined by

the channel quality, the channel state and the number of SUs

who share this channel. However, due to sensing error and

sequential decision, the true channel state θ k and the value

of Nk,∀k ∈ K, are unknown to SUm in the decision making

phrase (the second sub-slot). Therefore, instead of maximiz-

ing utility defined in (1), an SU learns the true channel state

and estimates the number of users who will eventually share

the channel with it, aiming at maximizing the expected util-

ity defined in the following section. Such a decision making

process involving learning and prediction is thereby formu-

lated as a Chinese restaurant game [17].

2.3. Chinese restaurant game

Let cm ∈ C and am ∈ A be the sensing and access actions

of SUm, where C = {1,2, . . . ,K} and A = {0,1,2, . . . ,K} are
the sensing and access action sets that SUs may choose from.

Here, “0” in A is used to represent that an SU will choose

none of the K channels.

We use the concept of belief to describe an SU’s estima-

tion on the channel state. Specifically, let belief bm, k be the

probability that channel Hk is vacant from the perspective

of SUm. Let b = (b0,1, b0,2, . . . , b0,K) with b0, k being the prior
belief on channel Hk which reflects the kth PU’s historical ac-

cess pattern. For simplicity, we assume that all SUs have a

common prior belief on the same channel. Let sm,k ∈ {s+, s−}
be the signal obtained via SUm’s sensing channel Hk while

s̄m,k ∈ {s+, s−}\sm,k be the complement signal of sm, k. As-

sume that all the signals are independent when conditioning

on the channel state.With the collected signals Tk = {si,k|ci =
k,1 ≤ i ≤ m}, SUm can update its belief on Hk with Bayesian

rule as follows:

information propagation is less than 0.002ms assuming the average dis-

tance between two SUs is 5 km and the total delay for channel quality in-

formation exchange is less than 0.002M ms, while the report overhead will

be nKM bits if each report needs n bits.
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bm,k(b0,k, p, Tk)

=

∏
s∈Tk

f (s|θk = 1)b0,k∏
s∈Tk

f (s|θk = 1)b0,k + ∏
s∈Tk

f (s|θk = 0)(1− b0,k)
. (2)

Suppose there is a belief threshold bk for each channel Hk,

∀k ∈ K. If an SU’s belief on the channel is below bk, it is

not allowed to access Hk. Assume that the belief thresh-

olds for all channels are the same, i.e., bk = b, ∀k ∈ K. Then
Km = {k|bm,k ≥ b,∀k ∈ K} is denoted as the set of channels

that SUm is allowed to access.4

Besides learning the channel state, an SU also needs to

predict the decisions of the subsequent SUs due to the ex-

istence of negative network externality. Recall that an SU

will report its sensing result and access decision after it

makes the access decision. Let hm = (s1,c1
, s2,c2

, ..., sm−1,cm−1)
be the signals revealed by the SUs before SUm and nm =
(nm,1,nm,2, ...,nm,K) with nm, k being the number of SUs

choosing channel Hk before SUm. If we denote vm,k be the

number of SUs choosing Hk after SUm, including SUm itself,

when all the information b, p, G, nm, hm and sm,cm are avail-

able, the expected utility of SUm accessing channel Hk over

different channel state θ and all the possible number of vm,k,

is defined as

Ūm,k(b, p,G,nm,hm, sm,cm)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
θ∈�

M−m+1∑
x=1

[Pr(θ|b, p,hm, sm,cm)

·Pr(vm,k = x|b, p,G,nm,hm, sm,cm , am = k, θ)·
Um,k(G, θk,nm,k + x)], if k ∈ Km,

0, otherwise,

(3)

where Pr(θ| ·) is the probability that the system state is θ con-
ditioning on b, p, hm and sm,cm , and Pr(vm,k = x| · ) is the con-
ditional probability of vm,k being x. Therefore, given b, p, G,

nm, hm and sm,cm , SUm’s best response, i.e., the optimal ac-

cess action that maximizes the expected utility, can be de-

fined as

BEm(b, p,G,nm,hm, sm,cm)

=
{
arg max

k∈Km

Ūm,k(b,p,G,nm,hm, sm,cm ), if Km �= ∅

0, otherwise.

(4)

2.4. Backward induction algorithm

In this section, we study how to find the best response for

each SUm,m ∈ M.

From (3) we can see that to compute the expected utility

of accessing certain channel, say Hk, SUm needs to estimate

4 From Figs. 5–7 in Section 5, we can see that both the collision probabil-

ity with PUs and the spectrum opportunity for SUs reduce with the belief

threshold. Therefore, there is a tradeoff between the collision probability

and the spectrum opportunity with different thresholds. One possible way

to select the belief threshold is to maximize the spectrum opportunity with

the constraint that the collision probability should be smaller than a certain

threshold.

the channel state, i.e., Pr(θ|b, p,hm, sm,cm). Given all the con-
dition, Pr(θ| ·) can be computed by following the Bayesian

rule as

Pr(θ|b, p,hm, sm,cm) = Pr(θ)Pr(hm, sm,cm |θ)∑
θ ′∈� Pr(θ ′)Pr(hm, sm,cm |θ ′)

, (5)

where Pr(θ) = ∏
k∈K Pr(θk) due to independent state of each

channel, and Pr(hm, sm,cm |θ) depends on how the signals are

observed, i.e., f(s|θ k), ∀k ∈ K.
SUm also needs to guess how many SUs after it will make

the same decision, i.e., vm,k, and the corresponding probabil-

ity Pr(vm,k|b, p,G,nm,hm, sm,cm , am, θ). To reach this target,

the backward induction technology is used as follows.

Notice from (4) that there may exist more than one sig-

nal that leads SUm+1 to choose certain channel when b, p,

G, nm+1 and hm+1 are given. Then let Sm+1,k, 1 ≤ m < M, k ∈
K+ = K ∪ {0}, be the signal space with signal from which

SUm+1 will choose channel Hk, we have

Sm+1,k(b, p,G,nm+1,hm+1)

= {sm+1,cm+1 |BEm+1(b, p,G,nm+1,hm+1, sm+1,cm+1) = k,

∀cm+1 ∈ C}. (6)

In other words, given the necessary conditions mentioned

before, SUm+1 will choose channel Hk if and only if its sens-

ing result sm+1,cm+1 ∈ Sm+1,k. In such a case, SUm+1’s access
action can be predicted according to the signal distribution

f(s) by

Pr(am+1 = k|b, p,G,nm+1,hm+1) =
∑

s∈Sm+1,k

f (s). (7)

Moreover, according to the definition of vm,k, we have

vm,k =
{
1+ vm+1,k, if am = k,
vm+1,k, otherwise.

(8)

Note that for the last SU, i.e., SUM, Pr(vM,k = x| · ) can be
easily derived as

Pr(vM,k = 1|b, p,G,nM,hM, sM,cM , aM, θ)

=
{
1, if aM = k,
0, otherwise.

(9)

Then the recursive form of Pr(vm,k = x| · ) can be expressed

as

Pr(vm,k = x|b, p,G,nm,hm, sm,cm , am, θ)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
u∈K+

∑
s∈Sm+1,u

Pr(vm+1,k = x−1|b, p,G,nm+1,hm+1, sm+1,cm+1

= s, am+1 = u, θ) f (s|θ), am = k,∑
u∈K+

∑
s∈Sm+1,u

Pr(vm+1,k = x|b, p,G,nm+1,hm+1, sm+1,cm+1

= s, am+1 = u, θ) f (s|θ), am �= k,

(10)

where hm+1 = (hm, sm,cm), and nm+1 = nm + eam with eam
being a standard basis vector whose amth coordinate is 1

while other coordinates are 0 (if am > 0) or nm+1 = nm (if

am = 0).

With (3), (4), (5) and (10), the best response of SUm can

be calculated. The proposed backward induction algorithm is

summarized in Algorithm 1.
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Algorithm 1 Find the optimal access decision a∗
m for SUm by

backward induction.

Given b, p, G, nm, hm and sm,cm .

If SUm = M, then

• calculate Pr(vm,k|b, p,G,nm,hm, sm,cm , θ), ∀k ∈ K, with
(9)

• compute Pr(θ|b, p,hm, sm,cm), ∀k ∈ K, using (5)
• Km = {k|bm,k(b, p,hm, sm,cm) ≥ b,∀k ∈ K}
• calculate Ūm,k(b, p,G,nm,hm, sm,cm), ∀k ∈ Km, with (3)
• BEm(b, p,G,nm,hm, sm,cm) is obtained by (4)

else // 1 ≤ m < M

• get BEM(b, p,G,nM,hM, sM,cM
) by following the previ-

ous steps
• for i=M-1:m

– hi+1 = (hi, si,ci)
– calculate Pr(θ|b, p,hi, si,ci) using (5)
– ∀k ∈ K+

∗ ni+1 =
{
ni + ek, k �= 0

ni, k = 0

∗ calculate Si+1,k(b, p,G,ni+1,hi+1)with (6)
∗ calculate Pr(vi,k|b, p,G,ni,hi, si,ci , θ)with (10)

– Ki = {k|bi,k(b, p,hi, si,ci) ≥ b,∀k ∈ K}
– calculate Ūi,k(b, p,G,ni,hi, si,ci), ∀k ∈ Ki, using (3)

– obtain BEi(b, p,G,ni,hi, si,ci) by (4)

• end for

End If

a∗
m ← BEm(b, p,G,nm,hm, sm,cm)
End

From Algorithm 1 we can see that the algorithm guaran-

tees to converge since there is finite SUs and finite channels

in the system, and the number of recursion of the algorithm

is O(M), which is quite efficient even when the size of sec-

ondary system is large. Within each recursion, the maximum

computation of an SU is (2K2)
M+1

, Therefore, the total com-

putational complexity of the algorithm is O((2K2)
M+1

), i.e.,
exponential in both the space size of channel state and sig-

nal and linear in the number of SUs. However, by introducing

belief threshold, the complexity has been reduced by nearly

(100∗ b )%. In addition, considering the channel gain can be

modeled as a Finite-State Markov chain [36], the computa-

tion can be conducted off-line and the results can be put into

a look-up table, to which an SU refers for decision in no time.

In the next section, wewill show that Algorithm 1 leads to

sub-game perfect NE [37] for the proposed game and under

certain conditions the NE is unique.

2.5. Subgame perfect Nash equilibrium

In this section, we first give the formal definitions of NE,

subgame and subgame perfect NE.

Definition 2 (Nash equilibrium). Given (b, p,G), M SUs’ ac-

tion profile a∗ = {a∗
1, a

∗
2, . . . , a

∗
M} is a Nash equilibrium if and

only if ∀m ∈ M, a′
m ∈ A \ a∗

m, a∗
m satisfies

Ūm,a∗
m

≥ Ūm,a′
m
, (11)

where Ūm,a∗
m
and Ūm,a′m are defined in (3).

Definition 3 (Subgame). A subgame of the M SUs’ channel

access game consists of the following three elements: (1) it

starts from the ith SU, i = 1,2, . . . ,M; (2) it has the initial

condition b, p, and G; (3)∀i ≤ m ≤ M, there are current ob-

servations nm, hm and sm,cm for SUm.

Definition 4 (Subgame Perfect NE). An NE is a subgame per-

fect NE if and only if it is a NE for every subgame [37].

With the above definitions, we show in Theorem 1 that

the action profile derived by Algorithm1 is a subgame perfect

NE.

Theorem 1. The action profile a∗ = {a∗
1, a

∗
2, . . . , a

∗
M} which is

derived by Algorithm 1 is a subgame perfect NE.

Proof. We first show that a∗
m is the best response of the mth

SU in the subgame which starts from the ith SU, 1 ≤ i ≤ M.

Ifm = M, we can have from Algorithm 1 that a∗
M

= k if for

any k′ ∈ A \ k, there is ŪM,k ≥ ŪM,k′ . This means a∗
M
is the best

response when all other SUs’ strategies are given.

If m < M, suppose a∗
m = k1 is derived by BEm(·) and SUm’s

other choices are a′
m = k′

1
, k′

1
�= k1. Then for any k

′
1

∈ A \ k1,
we have Ūm,k1

≥ Ūm,k′
1
, which means that SUm has no incen-

tive to deviate from a∗
m given the prediction of other SUs’

decision. Therefore, a∗
m = BEm( · ) is SUm’s best response in

the subgame starting with the ith SU. In summary, since the

statement is true for any 1 ≤ i ≤ M, a∗ = {a∗
1
, a∗

2
, . . . , a∗

M
} is

NE for the subgame starting with the ith SU. According to

the Definition 4, we can finally conclude that Theorem 1 is

true. �

Note that the subgame perfect NE may not be unique. For

example, if the equality of (11) holds for certain SUs, then

each of such SUs has at least two channels that can bring it

maximal expected utility. Choosing any one of such channels

will lead to a different subgame perfect NE. However, the NE

can be unique as stated in Theorem 2.

Theorem 2. If (11) strictly holds for all SUs, then NE a∗ =
{a∗

1, a
∗
2, . . . , a

∗
M} is unique.

Proof. We prove Theorem 2 by contradiction. Suppose that

when (11) strictly holds for all SUs, there exist two Nash equi-

libria a∗ = {a∗
1
, a∗

2
, . . . , a∗

M
} and a∗′ = {a∗′

1
, a∗′

2
, . . . , a∗′

M
} where

a∗
m �= a∗′

m for some m ∈ M since a∗ and a∗′
are different Nash

equilibria. In such a case, we have Ūm,a∗
m

> Ū
m,a∗′

m
and Ū

m,a∗′
m

>

Ūm,a∗
m
. Obviously, the above two inequalities cannot hold at

the same time. Therefore, the NE is unique when (11) strictly

holds for all SUs. �

3. Two-user two-channel scenario

In this section, we analyze the interactions among SUs for

the two-user two-channel scenario, i.e., K = 2 andM = 2.We

first derive SUs’ optimal access actions under different b and
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p by assuming the channel quality G and the sensing results

are given. Then, we discuss the SUs’ expected actions before

knowing the sensing results. Finally, we study some general

properties of SUs’ expected actions under different channel

qualities.

3.1. Optimal actions and action regions with sensing results

To give more insight of the proposed approach, we as-

sume that SUs’ prior belief on both channels are the same,

i.e., b0,1 = b0,2 = b0. Note that such an assumption is reason-

able since PUs in these two channels can have similar access

patterns. We also give the definition of action region as fol-

lows.

Definition 5 (Action region). An action region is an area in

the plane of b0 and p, where an SU adopts a specific strategy.

Then as discussed in the previous section, we use back-

ward induction to derive SUs’ optimal actions. In the follow-

ing, we first analyze SU2’s strategies and obtain the corre-

sponding optimal access action regions given the sensing re-

sults as described in Theorem 3.

Theorem 3. Suppose Hi is the preferential channel of SU2.

When c1 �= c2 and s1,c1
�= s2,c2

, or c1 = c2 and s1,c1
= s2,c2

,

there are four possible action regions , �i, i = 0,1,2,3, for SU2
on the plane of b0 and p as follows.

• �0 = {(b0, p)|b2,i < b, b2,−i < b} with the optimal action

a∗
2

= 0,

• �1 = �̄ i
0

∪ ({(b0, p)| b2,i

b2,−i
>

R2,−i(G)

R2,i(G)
} ∩ �0 ∩ �̄ i,−i

0
) ∪

({(b0, p)| b2,i

b2,−i
>

R2,−i(G)

R2,i(G,2)
} ∩ �̄0 ∩ �̄ i,−i

0
) with the optimal

action a∗
2

= i,

• �2 = �̄−i
0

∪ ({(b0, p)| b2,−i
b2,i

>
R2,i(G)

R2,−i(G)
} ∩ �0 ∩ �̄ i,−i

0
) ∪

({(b0, p)| b2,−i
b2,i

>
R2,i(G)

R2,−i(G,2)
} ∩ �̄0 ∩ �̄ i,−i

0
) with the optimal

action a∗
2

= −i,
• �3 = � − �0 − �1 − �2 with the optimal action a∗

2
=

−a1,

where −i ∈ K\i, �0 = {(b0, p)|b1,i < b, b1,−i < b}, �̄0 = �−
�0, �̄ i

0
= {(b0, p)|b2,i ≥ b > b2,−i}, �̄−i

0
= {(b0, p)|b2,−i ≥

b > b2,i}, �̄ i,−i
0

= {(b0, p)|b2,i ≥ b, b2,−i ≥ b}, � = {(b0, p)|
1 > b0 > 0,1 > q > 0}, and b1, i, b1,−i, b2, i and b2,−i are given
by (2).

On the other hand, when c1 = c2 and s1,c1
�= s2,c2

, or c1 �= c2
and s1,c1

= s2,c2
, there will be only two possible optimal actions

on the whole plane of b0 and p, that is, �0 and �̄0 = � − �0.

Proof. See proof in Appendix A. �

Based on SU2’s optimal action regions, we can analyze

SU1’s strategies and derive the corresponding optimal action

regions as follows.

Theorem4. Suppose Hj is the preferential channel of SU1. Then,

SU1’s optimal actions and the corresponding action regions,

�i, i = 0,1,2, can be written as follows.

• �0 with the optimal action a∗
1

= 0,

• �1 = ∪
d
φd with the optimal action a∗

1
= j,

• �2 = ∪
d
φ̄d with the optimal action a∗

1
= − j,

where− j ∈ K\ j, d ∈ D = {0,1,2,3}, φd and φ̄d are respec-

tively defined as

φd =
({

(b0, p)

∣∣∣∣ b̄1, j(b0, p,G, s1,c1 |�d)

b̄1,− j(b0, p,G, s1,c1 |�d)

>
R1,− j(G)

R1, j(G)

}
∩ �̄ j,− j

0

)
∪ �̄ j

0
, (12)

and

φ̄d =
({

(b0, p)

∣∣∣∣ b̄1, j(b0, p,G, s1,c1 |�d)

b̄1,− j(b0, p,G, s1,c1 |�d)

<
R1,− j(G)

R1, j(G)

}
∩ �̄ j,− j

0

)
∪ �̄− j

0
, (13)

where − j ∈ K\ j, �̄ j
0

= {(b0, p)|b1, j ≥ b > b1,− j}, �̄− j
0

=
{(b0, p)|b1,− j ≥ b > b1, j}, and �̄ j,− j

0
= {(b0, p)|b1, j ≥

b, b1,− j ≥ b}
Proof. See proof in Appendix B. �

From the analysis of SUs’ optimal strategies and the cor-

responding action regions in Theorems 3 and 4, we have the

following observations.

• When SUs have the same preferential channel, they will

share the preferential channel in region φ1 and share the

non-preferential channel in region φ̄3.

• When SUs have their own preferential channel, respec-

tively, they will share SU1’s preferential channel in region

φ3 and share SU2’s preferential channel in region φ̄1.

• Given s1,c1
, SU1’s action will be independent from the ac-

tual signal SU2 receives.

3.2. Expected actions without sensing results

In the previous section, we derive SUs’ optimal strategies

and the corresponding action regions given the sensing re-

sults. In this section, we will analyze the symmetric property

of SUs’ expected actions without the sensing results. Note

that the expected action can be served as the SUs’ prior infor-

mation about their optimal actions before actually perform-

ing sensing.

Definition 6 (Expected action). For any (bx, py) ∈ {(b0, p)},

the expected action of SUi, i ∈ {1, 2}, is defined as

ϕi(bx, py) =
∑

s∈{hi,si,ci }
Pr(s|bx, py) · ai(s, bx, py), (14)

where s is the signal(s) SUi collected, Pr(s|bx, py) is the prob-

ability of receiving s under bx and py, and ai(s, bx, py) is SUi’s

action when it receives s.

Let s1 and s2 denote the sensing signals SU1 and SU2 get

respectively. To show the property of the expected actions,

we first characterize, in Lemmas 1 and 2, the property of SUs’

optimal actions and action regions when receiving opposite

sensing results.

Lemma 1. Given G, SU2 will choose the same optimal strategy

in the action region �d(b0, p) with sensing results (s1, s2) and

the action region �d(b0,1− p) with sensing results (s̄1, s̄2).



B. Zhang et al. / Computer Networks 91 (2015) 117–134 125

Proof. See proof in Appendix C. �

Lemma 2. Given G, SU1 will choose the same optimal strategy

in the action region φd(b0, p) with sensing results s1 and the

action region φd(b0,1− p) with sensing results s̄1.

Proof. See proof in Appendix D. �

With Lemmas above, we are ready to show the symmetric

property of SUs’ expected actions.

Theorem 5. Given G, the expected actions of SU2 are symmet-

rical to p = 0.5.

Proof. From (14), ∀(bx, py) ∈ {(b0, p)}, SU2’s expected action

is defined as

ϕ2(bx, py) = Pr(s1,c1 , s2,c2 |bx, py) · a2(s1,c1 , s2,c2 , bx, py)

+ Pr(s̄1,c1 , s̄2,c2 |bx, py) · a2(s̄1,c1 , s̄2,c2 , bx, py)

+ Pr(s1,c1 , s̄2,c2 |bx, py) · a2(s1,c1 , s̄2,c2 , bx, py)

+ Pr(s̄1,c1 , s2,c2 |bx, py) · a2(s̄1,c1 , s2,c2 , bx, py).

(15)

From Lemma 1, we know that if there is a region �d, d ∈
D,where SU2 has specific strategy when it receives (s1, s2) ∈
{(s1,c1

, s2,c2
), (s̄1,c1

, s2,c2
), (s1,c1

, s̄2,c2
), (s̄1,c1

, s̄2,c2
)}, then the

region for SU2 having the same strategy when receiving

(s̄1, s̄2) is� ′
d
. Moreover, with Lemma 1, we have� ′

d
(b0, p) =

�d(b0,1− p). In such a case, ∀(bx, py) ∈ �d, there is (bx,1−
py) ∈ � ′

d
, thus we have

a2(s1, s2, bx, py) = a2(s̄1, s̄2, bx,1− py). (16)

Furthermore, since Pr(s1, s2|b0, p) represents the proba-

bility of receiving (s1, s2) given b0 and p, we have

Pr(s1, s2|bx, py) = Pr(s̄1, s̄2|bx,1− py). (17)

Then by substituting (16) and (17) into (15), we have

ϕ2(bx, py) = ϕ2(bx,1− py), (18)

which means the expected actions of SU2 is symmetrical to

p = 0.5. �

Theorem 6. Given G, the expected actions of SU1 are symmet-

rical to p = 0.5.

Proof. From (14), ∀(bx, py) ∈ {(b0, p)}, SU1’s expected action

is defined as

ϕ1(bx, py) = Pr(s1,c1 |bx, py) · a1(s1,c1 , bx, py)

+ Pr(s̄1,c1 |bx, py) · a1(s̄1,c1bx, py). (19)

From Lemma 2, we know that if there is a region φd,

d ∈ D, where SU1 has specific strategy when receiving s1 ∈
{s1,c1

, s̄1,c1
}, there is a corresponding region φ′

d
for SU1 hav-

ing the same strategy when receiving s̄1. Moreover, with

Lemma 2, we have φ′
d
(b0, p) = φd(b0,1− p). Then, ∀(bx, py)

∈ φd, there is (bx,1− py) ∈ φ′
d
, and thus we have

a1(s1, bx, py) = a1(s̄1, bx,1− py). (20)

Note that for φ̄d, d ∈ D, we also have the above conclusions.

Furthermore, since Pr(s1|b0, p) represents the probability

of receiving s1 given b0 and p, we have

Pr(s1|bx, py) = Pr(s̄1|bx,1− py). (21)

Then by substituting (20) and (21) into (19), we have

ϕ1(bx, py) = ϕ1(bx,1− py), (22)

which means the expected actions of SU1 are symmetrical to

p = 0.5. �

The symmetry property of SU’s expected action is mainly

due to the fact that an original positive signal obtained with

a low sensing accuracy p can be treated as a negative one

obtained with a high sensing accuracy 1− p, and vice versa.

With such a property, an SU is able to obtain its expected ac-

tions on thewhole b0 and p plane by calculating the expected

actions on any half of the plane with p < 0.5 or p > 0.5, and

thus accelerate its process of decision making.

3.3. Expected actions under different channel quality

In this section, we discuss the impact of the channel qual-

ity on SUs’ expected actions. Since in regions�0 and�0, SUs’

believes do not depend on the channel quality but the signals

they received, here, we constrain our discussion on the re-

gion �̄0 ∩ �̄0, where both SUs are allowed to access at least

one of the channels. We first show in Theorem 7 that if G sat-

isfies some conditions, then SU1’s expected action only de-

pends on its sensing action regardless SU2’s sensing action.

In all the following, the superscript (i, j) is used to denote the

case c1 = i and c2 = j.

Theorem 7. ∀(bx, py) ∈ �̄0 ∩ �̄0, we have ϕ(i,i)
1

(bx, py) =
ϕ(i,−i)
1

(bx, py), if G ∈ G = {G|χ1(G) ∩ χ2(G) ∩ χ3(G)}, where
χ1, χ2 and χ3 are functions of G defined in (s29), (s30) and

(s31) of [41], respectively.

Proof. See proof in the Supplementary [41]. �

In Theorem 7, χ1(G) represents the SUs’ preferential

channel and χ2(G) represents the difference between the

gain of preferential channel and non-preferential channel,

which determines SU1’s access action regions χ3(G) when
b0 and p are given. From Theorem 7, we can see that if the

channel quality G is one of the element in the set G, SU1’s

access action regions will be the same as long as it senses

the same channel and gets the same sensing result. In such

a case, SU1’s expected actions are the same in two scenar-

ios where SU1 senses a specific channel while SU2 senses the

same channel or a different channel, i.e., SU1’s expected ac-

tion is independent of SU2’s sensing action.

Next, we will show in Theorem 8 that when G satisfies

some conditions, SU2’s expected actionwill be the same once

it senses a different channel from SU1 regardless which exact

channel it performs sensing.

Theorem 8. ∀(bx, py) ∈ �̄0 ∩ �̄0, we have ϕ(i, j)
2

(bx, py) =
ϕ( j,i)
2

(bx, py), i �= j, if G ∈ G = {G|χ1(G) ∩ χ2(G) ∩ χ4(G)},
where χ1, χ2 and χ4 are functions of G defined in (s29), (s30)

and (s41) of [41], respectively.

Proof. See proof in the Supplementary [41]. �

Similarly, in Theorem 8, SU2’s access action regions χ4(G)
is determined by the SUs’ preferential channel χ1(G) and the
difference between the gain of preferential channel and non-

preferential channel χ2(G). From Theorem 8, we can see that
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if the channel quality G is one of the element in the set G,

SU2’s access action regions will be the same for the two sce-

narios, where SU2 senses a different channel from SU1 and

collects the same information for the channels. Note that SU1
may have different action regions in the two aforementioned

scenarios. However, with G ∈ G, the changes happen in the

regions �1 and/or �3, where SU2’s access action will not

change according to SU1’s action. In such a case, SU2’s ex-

pected action are the same in the two scenarios for any given

b0 and p.

4. Multi-user multi-channel scenario

In this section, we extend our discussion for two-user

two-channel scenario to multi-user multi-channel scenario,5

i.e., K > 2 andM > 2, where we derive the optimal action for

each user and the corresponding action regions with sensing

results.

From previous analysis, we know that for an SU, for exam-

ple SUm, based on the quality of all channels G, the sensing

results revealed by the previous SUs nm, the number of SUs

that have accessed the channels before it hm, and the sensing

result obtained by itself sm,cm , the SU can estimate the state

of all channels, predict the actions of SUs after it, and then

make its decision of accessing the channel. For simplicity, let


m = {nm} × {hm} × {sm,cm} be the set of possible informa-
tion that can be collected by SUm, and |
m| be the total num-

ber of elements in 
m. We also denote φm,k(G,γm,τ ) be the
action region for SUm accessing Hk when given G and γm, τ ∈

m, ∀τ ∈ {1,2, . . . , |
M|}.

In our model, the number of the total SUs is assumed to

be finite, and thereforewe still can adopt backward induction

and first derive the optimal action and action region for the

last SU.

4.1. Optimal action and action region for SUM

Since SUM is the last SU, it does not need to predict

but just makes the access decision based on the collected

information, i.e., γM,τ ∈ 
M = {nM} × {hM} × {sM,cM
}, ∀τ ∈

{1,2, . . . , |
M|}. In such a case, given G and γM, τ , SUM’s best

response can be derived according to (4) as

a∗
M = BEM(b, p,G,γM,τ )

=
{
arg max

k∈KM

b̄M,k(b,p,G,γM,τ )RM,k, if Km �= ∅

0, otherwise,

(23)

where b̄M,k(b, p,G,γM,τ ) = bM,k(b, p,γM,τ )αM,k(G,nM,k + 1)
and bM, k is given by (2).

Therefore, the action region for the optimal action a∗
M

= i

can be computed by

φM,i(G,γM,τ )

=
{
(b, p)|b̄M,iRM,i = max

k∈K+
b̄M,k(b, p,G,γM,τ )RM,k

}
. (24)

5 Here, multi channels refers that there are more than 2 channels in the

primary system among which, however, each SU is allowed to choose only

one to sense.

4.2. Optimal action and action region for SUm withm < M

In this section, we derive the optimal access action and

action region for SUm (m < M) by establishing the recurrence

relation between SUm and SUm+1.
Note that the information SUm collects is γm, τ ∈ 
m,

τ ∈ {1,2, . . . , |
m|}. To find out the signal space Sm+1,k and

further estimate SUm+1’s access action, SUm needs to con-

sider the access action it may take, i.e., am, and the signal

SUm+1 may obtain, i.e., sm+1,cm+1 . However, based on γm, τ ,

for any am ∈ A and sm+1,cm+1 ∈ {s+, s−}, the best response of
SUm+1 also depends on which action region the given b and
p are in. If we denote 
m+1 = { ∩

τ,kτ
φm+1,kτ (G,γm+1,τ )|τ =

1,2, . . . , |
m+1|, kτ ∈ K} be the set of SUm+1’s action region

where it has specific optimal action. Then∀λm+1 ∈ 
m+1 and
for any given γm, τ , am and sm+1,cm+1 , SUm+1’s best response
can be obtained as

BEm+1(b, p,G,γm+1,τ |λm+1)

= BEm+1(b, p,G,γm,τ , am, sm+1,cm+1 |λm+1). (25)

With (25), we have Sm+1,k according to (6) and then the

recursive form of Pr(vm,k = x|(b, p) ∈ λm+1,G,γm,τ , am, θ)
according to (10).

Finally, SUm’s best response can be derived according to

(4) as

BEm(b, p,G,γm,τ |λm+1) ={
arg max

k∈K
b̄m,k(b,p,G,γm,τ |λm+1)Rm,k, if Km �= ∅

0, otherwise,

(26)

where

b̄m,k(b, p,G,γm,τ |λm+1)

=
∑
θ∈�

M−m+1∑
x=0

[αm,k(G,nm,k + x)Pr(θ|b, p,γm,τ )

·Pr(vm,k = x|(b, p) ∈ λm+1,G,γm,τ , am = k, θ)]. (27)

Letφm,i(as,G,γm,τ |λm+1) be the action regionwhere SUm

will access Hi conditioning on region λm+1, we have

φm,i(G,γm,τ |λm+1)

=
{
(b, p)|b̄m,iRm,i = max

k∈Km

b̄m,k(b, p,G,γm,τ |λm+1)Rm,k

}
.

(28)

Then, given G and γm, τ ∈ 
m, the action region for the

optimal action a∗
m = i can be computed by

φm,i(G,γm,τ ) = ∪
λm+1∈
m+1

φm,i(G,γm,τ |λm+1). (29)

5. Simulation results

In this section, we first verify the optimal action, action

region and expected action of SUs in the proposed game the-

oretic framework for two-channel two-user scenario. Then

we verify the NE of the proposed approach. Finally, we eval-

uate the system performance for multi-user multi-channel

scenario in terms of social welfare.
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Fig. 2. Action regions of SU1 and SU2 with c1 = 2, c2 = 2, G = [10,1;1,10] and b01 = b02 = b0.

In the following, we assume that all SUs have the same

initial belief b0 and sensing accuracy p, and b0 and p are re-

spectively set to one of the values in {0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9}. The maximum transmission power of SUm

is set to Pm = 1, m ∈ M, the noise variance of each channel is

set to N2
0

= 1, and the belief threshold is set to b = 0.7. Since

the simulation results are similar for different MAC schemes,

here we only show those with CSMA where the probability

of successful transmission decreases as the number of SUs

selecting the same channel increases. In such a case, the SU’s

utility is defined as [25]

UCSMA
m,k (G, θk,Nk) = Rm,k(G)1(θk = 1)/Nk. (30)

5.1. Optimal actions and action region with sensing results

We consider a network composed by 2 PUs and 2 SUs, i.e.,

K = 2, M = 2. Moreover, SUs’ transmitters and receivers are

deployed in such places that g11 = g22 = 10 and g12 = g21 =
1, that is, channel H1 is SU1’s preferential channel while

channel H2 is SU2’s preferential channel. Fig. 2 shows the op-

timal action regions when both SUs sense channel H2, i.e.,

c1 = 2 and c2 = 2. Since both SUs sense channel H2, SUs’ be-

lieves on channel H1 remain unchanged while their believes

on channel H2 will be updated according to the sensing re-

sults.

From Fig. 2(b) and (c), we can see that there are four ac-

tion regions when both sensing results are positive, while

there are only two action regions when one of the sensing

results is positive and the other is negative. Such phenom-

ena verify the theoretical results in Theorem 3. As shown in

Fig. 2(b), in �0, SU2’s initial believes on both channels are

below the belief threshold. With two positive signals for H2,

SU2’s belief on H2 is pulled down to a lower level in region

p < 0.5 where the positive signals work as negative ones. In

the p > 0.5 part of �0, even with positive signals, the initial

belief is too low to be improved to the belief threshold. As a

result, SU2 is not allowed to access either of the two chan-

nels. In�1, SU2’s initial belief is not that low, so the belief on

H2 can be improved to or even higher than the belief thresh-

old by two positive signals in p > 0.5, with which SU2 has a

stronger belief thatH2 is empty when compared toH1. More-

over, accessing H2 can bring a larger payoff due to the higher

channel gain, evenwhen considering SU1 may also access the

same channel. Therefore, SU2 chooses H2. While in�2, SU2’s

initial believes on two channels are above the belief thresh-

old. However, SU2’s belief on H2 is pulled down to below the

belief threshold due to the fact the positive signals are ob-

tained under the condition of p < 0.5. In such a case, SU2 has

no choice but access the non-preferential channelH1, sharing

H1 with SU1. Nevertheless, when (b0, p) shifts from region�2

to�3, the increase of belief onH2 enables SU2 to choose from

both channels. Although SU2’s belief on H1 is still stronger

than that on H2, the gain from higher belief can no longer

compensate the loss from low channel gain and sharing the

channel with SU1. Consequently, the best strategy for SU2 is

to access a different channel from SU1.

The action regions of SU1 are shown in Fig. 2(a). We can

see that there are three possible action regions for SU1, which

verifies the results in Theorem 4. Recalling that H1 is SU1’s

preferential channel, in action region �1 where SU1’s initial

believes on H1 is over the belief threshold, SU1 chooses to

access H1 because the higher channel gain can bring a larger

payoff, even when the belief on H2 may be higher.

5.2. Expected actions without sensing results

In this section, we evaluate the SUs’ expected actions for

the case K = 2, M = 2, and analyze the impact of channel

quality on SUs’ expected actions by studying the same case as

described in the previous section. The outcomes of the simu-

lation are shown in Fig. 3.

From Fig. 3 we can see that the expected actions of

both SU1 and SU2 are symmetrical to p = 0.5, which verifies

Theorems 5 and 6. We can also see that SU1’s expected ac-

tions in Fig. 3(a) and (c) are the same as those in Fig. 3(b) and

(d) respectively. Such a phenomenon is because the channel

gain satisfies the condition in Theorem 7, due to which SU1’s

expected action only depends on its sensing action regard-

less SU2’s sensing action. Furthermore, since the channel gain

also meets the requirement in Theorem 8, SU2’s expected ac-

tion will be the same once it senses a different channel from

SU1 regardless which exact channel it performs sensing. Such

a conclusion is verified by Fig. 3(b) and (c) where SU2’s ex-

pected actions are the same.

5.3. Nash equilibrium

In this section, we verify that the proposed approach leads

to Nash equilibrium, i.e., any deviation to other strategies will

lead to a utility loss. To this aim, we compare our approach,

i.e., CRG, with three existing strategies, i.e., CUCB [42], MY-

OPIC [25], and CRG_WO [1].



128 B. Zhang et al. / Computer Networks 91 (2015) 117–134

Sensing Accuracy p

P
ri
o

r 
B

e
lie

f 
b 0

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

0

0.2

0.4

0.6

0.8

1

1.2

Sensing Accuracy p
P

ri
o

r 
B

e
lie

f 
b 0

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) c1 = 2, c2 = 2

Sensing Accuracy p

P
ri
o

r 
B

e
lie

f 
b 0

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

0

0.2

0.4

0.6

0.8

1

1.2

Sensing Accuracy p

P
ri
o

r 
B

e
lie

f 
b 0

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) c1 = 2, c2 = 1

Sensing Accuracy p

P
ri
o

r 
B

e
lie

f 
b 0

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

0.2

0.4

0.6

0.8

1

1.2

1.4

Sensing Accuracy p

P
ri
o
r 

B
e
lie

f 
b 0

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) c1 = 1, c2 = 2

Sensing Accuracy p
P

ri
o
r 

B
e
lie

f 
b 0

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) c1 = 1, c2 = 1

Fig. 3. Expected actions of SU1 and SU2 with G = [10,1;1,10].

In the CUCB scheme, an SU, say SUm, learns the availabil-

ity of channel Hj, which is reflected by the Upper Confidence

Bound index Bm, j, through its own reward information and

reward knowledge shared by other SUs [42]. For fair compar-

ison, we assume all SUs broadcast their reward information.

With the spectrum availability information, SUm choose to

sense channel Hj with probability given as follow and access

the channel when the channel is found free:

πm( j) = eBm, j∑M
m=0 e

Bm, j

. (31)

In the MYOPIC strategy where the belief threshold is

added for fair comparison, a myopic SU makes the decision

according to its own signal and the current number of SUs

choosing the same channel [31]. Therefore, the objective of

the SU under MYOPIC strategy is to choose the access chan-

nel that can maximize its current expected utility given by

aMYOPIC
am

=
{
arg max

k∈Km

bm,kUm,k(G, θk = 1,nm,k + 1), if Km �= ∅

0, otherwise.

(32)

In the CRG_WO strategy which is very similar to the CRG

strategy except that there is no belief threshold for SU’s ac-

cess channel selection, an SU makes the access decision to

maximize the expected utility [1], i.e.,

aCRGWO
am = max

k∈K

∑
θ∈�

M−m+1∑
x=1

[Pr(θ|b, p,hm, sm,cm)

·Pr(vm,k = x|b, p,G,nm,hm, sm,cm , am = k, θ)

·Um,k(G, θk,nm,k + x)]. (33)

Assume that among the SUs, SU2 may adopt one of the fol-

lowing four strategies: CRG, CUCB,MYOPIC and CRG_WO. The

rest of SUs all use the proposed strategy CRG. We measure

the ratio between the utility generated by any three other

strategies and the utility generated by CRG, and the results

of scenario where all the channels are homogeneous for SUs

are shown in Fig. 4. From Fig. 4, we can see that the ratio

is smaller than or equal to 1 for any b0 and p in the region

where SU2 is allowed to access at least one of the channels,

which means that the proposed strategy is indeed a Nash

equilibrium.

5.4. System performance

In the following, we study the system performance of sec-

ondary system in terms of social welfare, i.e., the sum of all

SUs’ utilities, in the system with multiple SUs and multi-

ple channels. Besides the schemes mentioned in the previ-

ous section, a centralized strategy named “CEN” is consid-

ered here as a benchmark for comparison and evaluation. In

the centralized strategy, sensing signals from all the SUs is

collected and the best access decision which can maximize

total social welfare is made as follows:

aCENa =
{
arg max

aa∈Aa
b(s1, . . . , sm)U(G, θ, aa), if K �= ∅,

0, otherwise,

(34)

where aa is the access schedule for all the SUs while Aa is the

set of all the possible schedules, b(·) is the belief for system
state based on all the signals collected, and K is the set of

channels to whom the belief is above the belief threshold.

We also verify the performance of the proposed scheme

under different MAC protocols, including CSMA, TDMA and

CDMA. For TDMA where the time of transmission decreases

as the number of SUs selecting the same channel increases

and CDMA where the interference increases as the number

of SUs selecting the same channel increases, the SU’s utilities
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Fig. 4. Normalized utility of SU2 with G = [10,10;10,10;10,10;10,10;10,10].
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are respectively defined as

UTDMA
m,k (G, θk,Nk) = Rm,k(G)1(θk = 1)/Nk, (35)

and

UCDMA
m,k (G, θk,Nk) = Rm,k(G,Nk)1(θk = 1)

= log2

(
1+ gm,kPm

(Nk − 1) ∗ N2
0

)
1(θk = 1).

(36)

In the simulation, all SUs in the system will adopt the

same strategy with the sameMAC protocol. For CSMA, TDMA

and CDMA, the performance of a cognitive radio network

with 12 SUs and 3 channels are shown in Figs. 5,6 and 7, re-

spectively. From Fig. 5 to Fig. 7, we can observe that perfor-

mances of our model with different MAC protocols are very

similar. In such a case, in the following we only focus on an-

alyzing the results with one of the MAC protocols, say CSMA

in Fig. 5.

From Fig. 5(a), we can see that on an average the social

welfare with CRG has been increased to 13.47% and 29.56%

compared to that withMYOPIC and CUCB, respectively. That’s

because in CUCB, although the added reward information is

used to improve the sensing decision making behavior, SUs

make their access decisions purely based on their own sens-

ing result which could be easily affected by the sensing accu-

racy, and thus have the lowest social welfare. By also consid-

ering actions of previous SUs, the system performance with

MYOPIC scheme is improved due to the conflict among SUs

being partly avoided. In our proposed scheme, through learn-

ing sensing signals as well as access actions revealed by pre-

vious SUs and estimating the actions of subsequent SUs, an

SU successfully avoids the conflict with the PU and other SUs

and therefore outperforms SUs in MYOPIC and CUCB. More-

over, from Fig. 5, we can see that the improvement of the so-

cial welfare with CRG is more significant in area where b0 is

large, which indicates that the proposed approach is efficient

for practical systemwhere the probability of channel vacancy

is high.

Notice that the social welfare of CRG is less than that of

CRG_WO for all b0 and that of CUCB when b0 < 0.7. This is

because with belief threshold, SUs with CRG in these cases

give up the access chance to avoid collision with PUs. As we

can observe in Fig. 5(b), the ratio of collision between SUs

and PUs with CRG in the aforementioned cases is much less

when compared to that with CRG_WO and CUCB, while it is

almost the same as that with MYOPIC due to the same belief

threshold.
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Fig. 7. Performance of schemes with CDMA and G = [7,10,1;5,10,4;10,5,1;7,10,1;5,10,4;10,5,1;7,10,1;5,10,4;10,5,1;7,10,1;5,10,4;10,5,1] when p = 0.9.

Finally, our proposed CRG works almost as well as the

centralized scheme CEN, since the performance gap between

them is less than 10%, as illustrated in Fig. 5.

6. Conclusion

In this paper, we successfully address the distributed ac-

cess channel selection problem for SUs by formulating SUs’

decision making process problem in opportunistic spectrum

access as a Chinese restaurant game. With the proposed

game theoretic approach, SUs can make better decisions and

achieve better performance through learning from others

and estimating others’ decisions.We theoretically derive SUs’

optimal access actions and the corresponding action regions

under different initial conditions. We also study some gen-

eral properties such as symmetric property of SUs’ expected

actions under different channel qualities for the two-user

two-channel scenario. Furthermore, we extend the discus-

sion for two-user two-channel scenario to multi-user multi-

channel scenario. Simulation results verify our theoretic re-

sults and demonstrate the effectiveness and efficiency of the

proposed scheme.

Based on the achievements in this paper, it is more in-

teresting to study scenario where SUs can sense/select more

than one channel. Furthermore, since the sensing strategy

will influence SUs’ access behaviors as well as the system

overall performance, how to choose the proper channel(s)

to sense is one of the important problems for future work,

where an algorithm with low overhead and computational

complexity is very necessary for finding the optimal solu-

tions. We are certainly interested in further pursuing these

interesting research directions.
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Appendix A. Proof of Theorem 3

Theorem 3. Suppose Hi is the preferential channel of SU2.

When c1 �= c2 and s1,c1
�= s2,c2

, or c1 = c2 and s1,c1
= s2,c2

,

there are four possible action regions , �i, i = 0,1,2,3, for SU2
on the plane of b0 and p as follows.

• �0 = {(b0, p)|b2,i < b, b2,−i < b} with the optimal action

a∗
2 = 0,

• �1 = �̄ i
0

∪ ({(b0, p)| b2,i

b2,−i
>

R2,−i(G)

R2,i(G)
} ∩ �0 ∩ �̄ i,−i

0
) ∪

({(b0, p)| b2,i

b2,−i
>

R2,−i(G)

R2,i(G,2)
} ∩ �̄0 ∩ �̄ i,−i

0
) with the optimal

action a∗
2

= i,

• �2 = �̄−i
0

∪ ({(b0, p)| b2,−i
b2,i

>
R2,i(G)

R2,−i(G)
} ∩ �0 ∩ �̄ i,−i

0
) ∪

({(b0, p)| b2,−i
b2,i

>
R2,i(G)

R2,−i(G,2)
} ∩ �̄0 ∩ �̄ i,−i

0
) with the optimal

action a∗
2 = −i,

• �3 = � − �0 − �1 − �2 with the optimal action a∗
2

=
−a1,
where −i ∈ K\i, �0 = {(b0, p)|b1,i < b, b1,−i < b}, �̄0 =

� − �0, �̄ i
0

= {(b0, p)|b2,i ≥ b > b2,−i}, �̄−i
0

= {(b0, p)|
b2,−i ≥ b > b2,i}, �̄ i,−i

0
= {(b0, p)|b2,i ≥ b, b2,−i ≥ b}, � =

{(b0, p)|1 > b0 > 0,1 > q > 0}, and b1, i, b1,−i, b2, i and b2,−i
are given by (2).

On the other hand, when c1 = c2 and s1,c1
�= s2,c2

, or c1 �=
c2 and s1,c1

= s2,c2
, there will be only two possible optimal

actions on the whole plane of b0 and p, that is, �0 and �̄0 =
� − �0.

Proof. In case that c1 �= c2 and s1,c1
�= s2,c2

, or c1 = c2 and

s1,c1
= s2,c2

, if (b0, p) falls into region �0, SU2’s belief on

both channels will be below the belief threshold when s1,c1
and s2,c2

are given, indicating SU2 can access neither of the

two channels. Otherwise, SU2 can choose one of the chan-

nels to access. The latter case will be discuss in detail in the

following.

Suppose Hi is SU2’s preferential channel. According to

(4), SU2’s best response to SU1’s action a1 can be written as

follows

BE2(b0, p,G, a1 = 0, s1,c1 , s2,c2)

=

⎧⎪⎪⎨
⎪⎪⎩
i, if b2,iR2,i(G) > b2,−iR2,−i(G)

and (b0, p) ∈ �̄ i,−i
0

, or (b0, p) ∈ �̄ i
0,

−i, if b2,−iR2,−i(G) > b2,iR2,i(G)

and (b0, p) ∈ �̄ i,−i
0

, or (b0, p) ∈ �̄−i
0

.

(37)

BE2(b0, p,G, a1 = i, s1,c1 , s2,c2)

=

⎧⎪⎪⎨
⎪⎪⎩
i, if b2,iR2,i(G,2) > b2,−iR2,−i(G) and

(b0, p) ∈ �̄ i,−i
0

, or (b0, p) ∈ �̄ i
0,

−i, if b2,−iR2,−i(G) > b2,iR2,i(G,2)

and (b0, p) ∈ �̄ i,−i
0

, or (b0, p) ∈ �̄−i
0

,

(38)

and

BE2(b0, p,G, a1 = −i, s1,c1 , s2,c2)

=

⎧⎪⎪⎨
⎪⎪⎩
i, if b2,iR2,i(G) > b2,−iR2,−i(G,2) and

(b0, p) ∈ �̄ i,−i
0

, or (b0, p) ∈ �̄ i
0,

−i, if b2,−iR2,−i(G,2) > b2,iR2,i(G) and

(b0, p) ∈ �̄ i,−i
0

, or (b0, p) ∈ �̄−i
0

,

(39)

where −i ∈ K\i. Given s1,c1
and s2,c2

, SU2’s new belief on Hi

and H−i, i.e., b2, i and b2,−i, can be calculated using (2). �̄ i
0
,

�̄−i
0

, and �̄ i,−i
0

are defined in Theorem 3.

Since R2,i(G) > R2,i(G,2) and R2,−i(G) > R2,−i(G,2), we

have
R2,−i(G)

R2,i(G,2)
>

R2,−i(G,2)

R2,i(G)
. Moreover, a1 = 0 means that (b0, p)

falls into region�0. By reorganizing (37)–(39), we know that

given G, s1,c1
and s2,c2

, if b0 and p fall in region�1, SU2’s op-

timal action is to access channel Hi, i.e., a
∗
2

= i. Similarly, if b0
and p fall in region �2, SU2’s best response is to access H−i,
i.e., a∗

2
= −i. However, if (b0, p) lies in the region �3, the op-

timal action of SU2 is to choose a different channel from SU1,

i.e., a∗
2 = −a1.

In case that c1 = c2 and s1,c1
�= s2,c2

, or c1 �= c2 and s1,c1
=

s2,c2
, SU2’s belief on the two channels will be the same, i.e.,

b2,i = b2,−i. In such a case, there will be only two possible

optimal action for SU2, that is, �0 and �̄0 = � − �0 where

SU2’s optimal action is only affected by SU1’s optimal action

regardless b0 and p. �

Appendix B. Proof of Theorem 4

Theorem4. Suppose Hj is the preferential channel of SU1. Then,

SU1’s optimal actions and the corresponding action regions,

�i, i = 0,1,2, can be written as follows.

• �0 with the optimal action a∗
1 = 0,

• �1 = ∪
d
φd with the optimal action a∗

1
= j,

• �2 = ∪
d
φ̄d with the optimal action a∗

1
= − j,

where− j ∈ K\ j, d ∈ D = {0,1,2,3}, φd and φ̄d are defined

in (42) and (43), respectively.

Proof. First of all, if (b0, p) falls into region �0, SU1’s belief

on both channels will be below the belief threshold when

s1,c1
is known, which means SU1 cannot access either of the

two channels. Otherwise, SU1 can choose one of the channels

to access. In the following, we will discuss the latter case in

detail.

Due to the negative network externality, SU1’s actions

in �̄0 must take into account the action of SU2. From

Theorem 3, we can see that there are four possible action

regions for SU2 in the plane of b0 and p, i.e., �d, d ∈ D =
{0,1,2,3}. In each of these regions, we can derive the op-

timal strategy and corresponding optimal action region for

SU1.

Let b̄1, j(b0, p,G, s1,c1
|�d) be SU1’s pseudo belief on chan-

nel Hj under region (b0, p) ∈ �d, which is defined as follows

b̄1, j(b0, p,G, s1,c1 |�d)

=
∑
θ∈�

∑
x∈{1,2}

α1, j(G, x)Pr(θ|b0, p, s1,c1)

·Pr(v1, j = x|(b0, p) ∈ �d,G, s1,c1 , a1 = j, θ)1(θ j = 1),

(40)
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where αm,k(G, x) is the portion of maximal rate SUm can ob-

tain in Hk when there are x SUs sharing this channel, i.e.,

αm,k(G, x) = Rm,k(G,x)

Rm,k(G)
.

Suppose Hj is SU1’s preferential channel, according to (5),

SU1’s best response can be expressed as

BE1(b0, p,G, s1,c1 |�d)

=

⎧⎪⎪⎨
⎪⎪⎩
j, if b̄1, jR1, j(G) > b̄1,− jR1,− j(G) and

(b0, p) ∈ �̄ j,− j
0

, or (b0, p) ∈ �̄ j
0
,

− j, if b̄1,− jR1,− j(G) > b̄1, jR1, j(G) and

(b0, p) ∈ �̄ j,− j
0

, or (b0, p) ∈ �̄− j
0

.

(41)

where − j ∈ K\ j, �̄ j
0

= {(b0, p)|b1, j ≥ b > b1,− j}, �̄− j
0

=
{(b0, p)|b1,− j ≥ b > b1, j}, and �̄ j,− j

0
= {(b0, p)|b1, j ≥

b, b1,− j ≥ b}.
According to (41), for each �d, SU1 will access channel Hj

when (b0, p) lies in the action region φd defined as follows:

φd =
({

(b0, p)| b̄1, j(b0, p,G, s1,c1 |�d)

b̄1,− j(b0, p,G, s1,c1 |�d)

>
R1,− j(G)

R1, j(G)

}
∩ �̄ j,− j

0

)
∪ �̄ j

0
, (42)

and access channel H− j when (b0, p) lies in the action region

φ̄d defined as follows:

φ̄d =
({

(b0, p)| b̄1, j(b0, p,G, s1,c1 |�d)

b̄1,− j(b0, p,G, s1,c1 |�d)

<
R1,− j(G)

R1, j(G)

}
∩ �̄ j,− j

0

)
∪ �̄− j

0
. (43)

By combining the results for all four action regions of SU2,

we can derive SU1’s optimal strategies and the corresponding

action regions as stated in Theorem 4. �

Appendix C. Proof of Lemma 1

Lemma 1. Given G, SU2 will choose the same optimal strategy

in the action region �d(b0, p) with sensing results (s1, s2) and

the action region �d(b0,1− p) with sensing results (s̄1, s̄2).

Proof. Let �d(b0, p) and � ′
d
(b0, p), d ∈ D, be SU2’s ac-

tion regions with (s1, s2) ∈ {(s1,c1
, s2,c2

), (s̄1,c1
, s2,c2

),
(s1,c1

, s̄2,c2
), (s̄1,c1

, s̄2,c2
)} and (s̄1, s̄2), respectively. Given

G and suppose Hi, i ∈ K, is SU2’s preferential channel.

According to the definition in Theorem 3, we have

� ′
1(b0, p) =

{
(b0, p)| b2,i(b0, p, s̄1, s̄2)

b2,−i(b0, p, s̄1, s̄2)
>

R2,−i(G)

R2,i(G,2)

}
,

(44)

� ′
2(b0, p) =

{
(b0, p)|R2,−i(G,2)

R2,i(G)
<

b2,i(b0, p, s̄1, s̄2)

b2,−i(b0, p, s̄1, s̄2)

<
R2,−i(G)

R2,i(G,2)

}
, (45)

and

� ′
3(b0, p) =

{
(b0, p)| b2,i(b0, p, s̄1, s̄2)

b2,−i(b0, p, s̄1, s̄2)
<

R2,−i(G,2)

R2,i(G)

}
.

(46)

According to (2) and following Bayesian rule, we have

b2,i(b0, p, s̄1, s̄2) = b2,i(b0,1− p, s1, s2), (47)

and

b2,−i(b0, p, s̄1, s̄2) = b2,−i(b0,1− p, s1, s2). (48)

Substituting (47) and (48) into (44), (45) and (46), we

have

� ′
1(b0, p) =

{
(b0, p)| b2,i(b0,1− p, s1, s2)

b2,−i(b0,1− p, s1, s2)
>

R2,−i(G)

R2,i(G,2)

}
= �1(b0,1− p), (49)

� ′
2(b0, p) =

{
(b0, p)|R2,−i(G,2)

R2,i(G)
<

b2,i(b0,1− p, s1, s2)

b2,−i(b0,1− p, s1, s2)

<
R2,−i(G)

R2,i(G,2)

}
= �2(b0,1− p), (50)

and

� ′
3(b0, p) =

{
(b0, p)| b2,i(b0,1− p, s1, s2)

b2,−i(b0,1− p, s1, s2)
<
R2,−i(G,2)

R2,i(G)

}
= �3(b0,1− p). (51)

Therefore, given G, if SU2 has action region �d(b0, p), d ∈
D, with (s1, s2), then with (s̄1, s̄2), the corresponding action
region where SU2 will adopt the same strategy is �d(b0,1−
p). �

Appendix D. Proof of Lemma 2

Lemma 2. Given G, SU1 will choose the same optimal strategy

in the action region φd(b0, p) with sensing results s1 and the

action region φd(b0,1− p) with sensing results s̄1.

Proof. Given G, let φd(b0, p) and φ′
d
(b0, p), d ∈ D, be SU1’s

action region in �d with s1 ∈ {s1,c1
, s̄1,c1

} and � ′
d
with s̄1,

respectively. Here, �d is SU2’s action region defined in

Theorem 3 with s1 and s2 ∈ {s2,c2
, s̄2,c2

} while � ′
d
is SU2’s

action region with the same strategy and (s̄1, s̄2). With

Lemma 1, we have� ′
d
(b0, p) = �d(b0,1− p).

Suppose Hj is SU1’s preferential channel, then, according

to the definition of φd and φ′
d
in Theorem 4, we have

φd(b0, p)

=
{
(b0, p)| b̄1, j(b0, p,G, s1|�d(b0, p))

b̄1,− j(b0, p,G, s1|�d(b0, p))
>

R1,− j

R1, j

}
, (52)

and

φ′
d(b0, p)

=
{
(b0, p)| b̄1, j(b0, p,G, s̄1|� ′

d
(b0, p))

b̄1,− j(b0, p,G, s̄1|� ′
d
(b0, p))

>
R1,− j

R1, j

}
. (53)
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Let a1 and a′
1
be SU1’s actions in regions �d(b0, p) and

� ′
d
(b0, p), respectively. According to the definition of �d(b0,

p) and� ′
d
(b0, p), for any s2 ∈ S2,u(a1,s1)

in�d(b0, p), we have

s̄2 ∈ S2,u(a′
1
,s̄1)

in � ′
d
(b0, p). Then for ∀x ∈ {1, 2} and ∀u ∈

K, since SU2 is the last user, given a1 and a2, the value of

Pr(v2, j = x− 1|b0, p, a1 = j, a2 = u, s1, s2, θ) is either 0 or 1,
which means it is independent with s2 and p. Therefore, we

have

Pr(v1, j = x|(b0, p) ∈ �d(b0, p), s1, a1 = j, θ)

=
∑
u∈K

∑
s2∈S2,u(a1 ,s1)

Pr(v2, j = x− 1|(b0, p) ∈ �d(b0, p),

a1 = j, a2 = u, s1, s2, θ) f (s2|θ)
=

∑
u∈K

Pr(v2, j = x− 1|(b0, p) ∈ �d(b0, p), a1 = j,

a2 = u, s1, s2, θ)
∑

s2∈S2,u(a1 ,s1)

f (s2|θ)

= y(p), (54)

where y(p) is defined as a function of p.

Similarly, we have

Pr(v1, j = x|(b0, p) ∈ � ′
d(b0, p), s̄1, a

′
1 = j, θ)

=
∑
u∈K

Pr(v2, j = x− 1|(b0, p) ∈ � ′
d(b0, p),

a′
1 = j, a2 = u, s̄1, s̄2, θ)

∑
s̄2∈S2,u(a′

1
,s̄1)

f (s̄2|θ)

= y(1− p). (55)

Moreover, ∀θ ∈ �, let Pr(θ|s1) = g(p),we have Pr(θ|s̄1) =
g(1− p). Then, according to (40), (54), (55) and Lemma 1, we
have

b̄1, j(b0, p,G, s̄1|� ′
d(b0, p))

= b̄1, j(b0,1− p,G, s1|�d(b0,1− p)), (56)

and

b̄1,− j(b0, p,G, s̄1|� ′
d(b0, p))

= b̄1,− j(b0,1− p,G, s1|�d(b0,1− p)). (57)

By substituting (56) and (57) into (52) and (53), we have

φ′
d(b0, p) = φd(b0,1− p). (58)

�
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