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Secure Cooperation in Autonomous Mobile Ad-Hoc
Networks Under Noise and Imperfect Monitoring:

A Game-Theoretic Approach
Wei Yu and K. J. Ray Liu

Abstract—In autonomous mobile ad-hoc networks, one major
challenge is to stimulate cooperation among selfish nodes, espe-
cially when some nodes may be malicious. In this paper, we address
cooperation stimulation in realistic yet challenging contexts where
the environment is noisy and the underlying monitoring is imper-
fect. We have first explored the underlying reasons why stimulating
cooperation under such scenarios is difficult. Instead of trying to
enforce all nodes to act fully cooperatively, our goal is to stimulate
cooperation in a hostile environment as much as possible through
playing conditional altruism. To formally address the problem, we
have modeled the interactions among nodes as secure routing and
packet forwarding games under noise and imperfect observation,
and devised a set of reputation-based attack-resistant cooperation
strategies without requiring any tamper-proof hardware or central
banking service. The performance of the devised strategies has also
been evaluated analytically. The limitations of the game-theoretic
approaches and the practicability of the devised strategies have
also been investigated through theoretical analysis and extensive
simulation studies. The results have demonstrated that although
sometimes a gap may exist between the ideal game model and the
reality, game-theoretic analysis can still provide thoughtful insights
and useful guidelines when designing cooperation strategies.

Index Terms—Cooperation, game theory, mobile ad-hoc net-
work, security.

I. INTRODUCTION

I N mobile ad-hoc networks, nodes communicate with others
out of their direct transmission range through cooperatively

forwarding packets for each other without requiring a fixed net-
work infrastructure. However, in many applications, nodes may
belong to different authorities and pursue different goals. Con-
sequently, fully cooperative behavior, such as unconditionally
forwarding packets for others, cannot be taken for granted. On
the contrary, in order to save limited resources, nodes may tend
to be “selfish.” In this paper, we refer to such mobile ad-hoc net-
works as autonomous mobile ad-hoc networks.

Before ad-hoc networks can be successfully deployed in an
autonomous way, the issue of cooperation must be resolved
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first. In the literature, many schemes have been proposed to
enforce cooperation in ad-hoc networks [1]–[13], which can
be roughly classified into two categories: 1) reputation based
(e.g., [2]–[8] and [10]–[12]) and 2) pricing based (e.g., [1], [9],
and [13]–[15]). One important observation is that without in-
troducing any pricing mechanisms, in general, it is impossible
to enforce all nodes to act fully cooperatively [12], [13]. How-
ever, pricing-based mechanisms have the drawback that they
require either tamper-proof hardware or a central banking ser-
vice, which may not always be available in autonomous ad-hoc
networks.

In this paper, instead of trying to enforce all nodes to act
fully cooperatively, our goal is to stimulate cooperation among
selfish nodes as much as possible without relying on any tamper-
proof hardware or central banking service. Further, instead of
addressing this issue in ideal scenarios, we focus on realistic sce-
narios where communication channels are error prone, the un-
derlying monitoring is imperfect, and some nodes may be mali-
cious whose goal is to cause damage to the network, which make
achieving the aforementioned goal an extremely challenging
task.

Like most existing work, we also focus on the most basic
networking mechanism in ad-hoc networks, namely packet
forwarding. However, in our work, we have jointly considered
routing and packet forwarding by modelling the interactions
among nodes as multistage secure routing and packet for-
warding game under noise and imperfect observation. We have
explored the challenges to stimulate cooperation under such
realistic settings, and identified the underlying reasons why
in many situations cooperation cannot be enforced. Then, we
devised a set of reputation-based attack-resistant cooperation
strategies without requiring any tamper-proof hardware or
central banking service, and evaluated the performance of
the devised strategies. When devising cooperation strategies,
besides the Nash equilibrium, the issues of fairness, cheat
proofness, and robustness to attacks have also been considered.
Furthermore, the limitation of the game-theoretic approaches
and the practicability of the devised strategies in reality have
also been investigated through theoretical analysis and exten-
sive simulation studies. Meanwhile, although our focus is on
mobile ad-hoc networks, networks with fixed topology have
also been investigated when necessary.

The rest of this paper is organized as follows. In Section II,
we provide an overview of the related work. In Section III,
we describe the system model, pose the challenges for coop-
eration stimulation in realistic contexts, and model the interac-
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tions among nodes as multistage secure routing and packet for-
warding game under noise and imperfect observation. The set of
devised attack-resistant cooperation stimulation strategies is de-
scribed in Section IV, and the theoretical analysis of the devised
strategy is presented in Section V. Extensive simulations have
also been conducted to evaluate the effectiveness of the devised
strategies under various scenarios, where the results are sum-
marized in Section VI. Section VII compares our approaches
with the existing approaches. Finally, Section VIII concludes
this paper.

II. STATE OF THE ART

One way to stimulate cooperation among selfish nodes is to
use payment-based methods, such as those proposed in [1], [9],
and [13]–[15]. For example, a cooperation stimulation approach
was proposed in [14] by using a virtual currency called nuglets
as payment for packet forwarding, which was then improved
in [15] by using credit counters. Both of these schemes require
tamper-proof hardware in each node. Another payment-based
system, Sprite [1], releases the requirement of tamper-proof
hardware, but requires some central banking service trusted
by all nodes. In [19], pricing-based truthful and cost-efficient
routing protocols for mobile ad-hoc networks were proposed.
A similar approach was also presented in [13]. Although these
schemes can effectively stimulate cooperation among selfish
nodes, the requirement of tamper-proof hardware or central
billing service greatly limits their applications.

An alternative way to stimulate cooperation among selfish
nodes is to use reputation-based methods with necessary
monitoring [2]–[4], [11]. In [2], a reputation-based system
was proposed to mitigate nodes’ misbehavior, where each
node launches a “watchdog” to monitor its neighbors’ packet
forwarding activities. Following that, Core was proposed to en-
force cooperation among selfish nodes [3], and CONFIDANT
was proposed to aim at detecting and isolating misbehaving
node and thus making it unattractive to deny cooperation [4],
and ARCS was proposed to simultaneously stimulate coop-
eration among selfish nodes and defend against attacks [11].
However, all of these schemes are heuristics. Further, the un-
derlying monitoring mechanisms used by these schemes (e.g.,
watchdog) may not be robust to various attacks and cheating
behavior.

Besides that, progress has also been made toward mathemati-
cally analyzing cooperation enforcement in autonomous ad-hoc
networks by applying game theory, such as [5]–[8], [10], [12].
In [5], Srinivasan et al. provided a mathematical framework for
cooperation in ad-hoc networks by focusing on the energy effi-
ciency aspect of cooperation. In [12], Felegyhazi et al. defined
a game model and identified the conditions under which coop-
eration strategies can form an equilibrium. In [8], Michiardi and
Molva studied the cooperation among selfish nodes in a cooper-
ative game-theoretic framework. In [10], Altman et al. studied
the packet forwarding problem in a noncooperative game-the-
oretic framework and provided a simple punishing mechanism
considering an end-to-end performance objective of the nodes.
The study of selfish behavior in ad-hoc networks has also been
addressed in [6] and [7]. All of these schemes focus on selfish

behavior and most of them study cooperation enforcement under
a repeated game framework.

Our work also falls in the category of reputation-based co-
operation stimulation analysis for autonomous ad-hoc networks
under a game-theoretic framework. However, there are several
major differences which distinguish our work from the existing
work. First, we study this problem under more realistic and
more challenging scenarios, where the communication medium
is error prone, the underlying monitoring mechanism is not per-
fect, and some nodes may be malicious. Second, instead of en-
forcing cooperation among nodes, which has been shown to not
be achievable in most situations, our goal is to stimulate co-
operation among selfish nodes as much as possible. Third, we
have identified the reasons why in many situations cooperation
cannot be enforced. Furthermore, we have also studied the lim-
itation of game-theoretic approaches in reality.

Since the schemes presented in [5], [6], [12] directly relate to
our work, next we briefly summarize their results. In [5], Srini-
vasan et al. focused on the energy efficiency aspect, where in
their Tit for Tat (TFT)-based solution, the nodes are classified
into different energy classes and the behavior of each node de-
pends on the energy classes of the participants of each connec-
tion. They demonstrated that if two nodes belong to the same
class, they should apply the same packet forwarding ratio. Sim-
ilar TFT-based approaches were also considered by Felegyhazi
et al. in [12]. In [6], Urpi et al. claimed that it is not possible to
force a node to forward more packets than it sends on average,
and then concluded that cooperation can be enforced in a mobile
ad-hoc network provided that enough members of the network
agree on it, and if no node has to forward more traffic that it
generates.

In our previous work [16], [17], we proved that in order to
maximize its own payoff and be robust to possible cheating be-
havior, a player should not forward more packets than its op-
ponent does. We have also shown that this strategy can achieve
Pareto optimality, cheat proofness, and absolute fairness. How-
ever, in [17], we have assumed perfect monitoring. In this paper,
we focus on the scenario that the underlying monitoring is not
perfect, which makes the task even more challenging. Mean-
while, instead of trying to identify the conditions under which
the proposed strategy is optimal, as is done in [17] in this paper,
we have also explored under what scenarios the proposed strate-
gies cannot work well, through both analytical analysis and ex-
tensive simulations. In other words, this work can be regarded
as a continuation of [17], but provides more thoughtful insights.
Furthermore, in this paper, we have also studied the possible
limitations of game-theoretic approaches to solve cooperation
issues.

III. DESIGN CHALLENGES AND GAME DESCRIPTION

A. System Description and Design Challenges

In this paper, we investigate how to stimulate cooperation
among selfish nodes under realistic scenarios. We consider an
autonomous mobile ad-hoc network with a finite population of
users, denoted by . We do not assume the availability of any
tamper-proof hardware or central banking service; therefore, the
scheme should be completely reputation based. We focus on the
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situation that each user will stay in the network for a relatively
long time. But we do not require them to keep connected all of
the time, and we allow users to leave and join the network when
necessary. It is worth pointing out that our goal is not to enforce
all of the users to act in a fully cooperative fashion, which has
been shown in [12]and [13] to not be achievable in most situa-
tions. Instead, our goal is to stimulate cooperation among nodes
as much as possible through playing conditional reciprocal al-
truism and, at the same time, take into consideration the possible
cheating and malicious behavior as well as fairness concerns.

We assume that each user has a unique registered and verifi-
able identity, and may send information to the others or request
information from the others. In other words, certain third-party
authorities may be required to issue such identities. We focus
on the information-push model, where it is the source’s duty
to guarantee the successful delivery of packets to their desti-
nations. But the obtained results can be easily extended to the
information-pull model. We assume that for each user ,
forwarding a packet will incur cost and letting a packet be suc-
cessfully delivered to its destination can bring it gain . Here,
the cost corresponds to the efforts spent by , such as energy,
and the gain is usually user specific and/or application specific.

In general, due to the multihop nature, when a node wants to
send a packet to a certain destination, a sequence of nodes will
usually be requested to help forward this packet. We refer to the
sequence of the ordered nodes as a route, the set of intermediate
nodes on a route as relays, and the procedure to discover a route
as route discovery. In general, the route discovery can be parti-
tioned into three stages. In the first stage, the requester notifies
other nodes in the network that it wants to find a route to a cer-
tain destination. In the second stage, other nodes in the network
will make their decisions on whether they will agree to be on the
discovered route. In the third stage, the requester will determine
which route should be used.

In general, not all packet forwarding decisions can be per-
fectly executed. For example, when a node has decided to
help another node to forward a packet, the packet may still be
dropped due to link breakage or the transmission may fail due
to channel errors. In this paper, we refer to those factors that
may cause decision execution error as noise, which include
environmental unpredictability and system uncertainty, channel
noise, mobility, etc. We use to denote the average packet
dropping probability due to noise. It is worth mentioning that
the packet dropping probability may vary over time due to the
varying channel conditions, mobility, etc. In this paper, for
packet dropping due to noise, i.i.d. and non-i.i.d. cases will be
studied.

We also assume that some underlying monitoring schemes
have been employed (such as those proposed in [2], [18], and
[19]) which can let the source know whether its packets have
been successfully delivered to their destinations. Meanwhile, if
a packet has been dropped by some relay, the underlying moni-
toring mechanism can let the source know who has dropped this
packet. However, we do not assume any perfect monitoring; in-
stead, we assume that even a node has successfully forwarded a
packet, with a probability of no more than , it can be observed
as dropping a packet (i.e., false alarm). On the other hand, when
a packet has been dropped by a certain relay, with a probability

of no more than , this can be observed as a forwarding event
(i.e., misdetect). Here, and characterize the capability of
the underlying monitoring mechanism. It is easy to understand
that and may vary according to the underlying monitoring
mechanism and the monitoring environment.

Before devising cooperation stimulation strategies for au-
tonomous mobile ad-hoc networks, we first summarize some
challenges that we may meet.

• Existence of noise: In many existing cooperation enforce-
ment schemes, such as [5] and [12], each node decides its
next step action based solely on the quality of service it has
received in the current and/or previous stages, such as nor-
malized throughput. However, if noise exists, some packets
may be dropped unintentionally during the delivery. This
can reduce the quality of service experienced by some
nodes. As a consequence, these nodes will also lower the
service quality provided by them. Such an avalanche effect
may quickly propagate throughout the network and after
some time, no nodes will forward packets for the others
[12]. When designing cooperation stimulation strategies in
realistic scenarios, the effect of noise has to be thoroughly
considered.

• Imperfect monitoring: Since nodes usually base only on
what they have observed to make their decisions, imperfect
monitoring can always be taken advantage of by greedy
or malicious nodes. For example, when the misdetect ratio

is high, a node can always drop other nodes’ packets
but still claim that it has forwarded. None of the existing
approaches have been designed with the consideration of
noise and imperfect monitoring, which greatly limits their
potential applications in realistic scenarios.

• Presence of malicious users: If no malicious nodes exist
and all nodes want to enjoy high-quality network service,
stimulating cooperation may be less challenging according
to the following logic: since misbehavior conducted by
some nodes can lead to the decrease of service quality ex-
perienced by some other nodes, which may consequently
reduce the service quality provided by them. After some
time, such quality degradation will propagate back to
those nodes that initially conducted such misbehavior
[12]. Therefore, nodes have no incentive to intentionally
behave maliciously. However, since an attackers’ goal
is usually to decrease the network service quality, they
would like to see such misbehavior propagation. This
makes cooperation stimulation extremely challenging.
Further, it has been recognized that malicious behavior in
autonomous ad-hoc networks will not be uncommon due
to the loose access control [11], while security issues have
been overlooked in the past when designing cooperation
stimulation strategies.

• Topology dependency: It has been pointed out in [12] that
network topology plays an important role when designing
cooperation enforcement strategies, and usually it is im-
possible to find a strategy to enforce all nodes to play fully
cooperatively in static ad-hoc networks. For example, if a
user is in a bad location such that no users rely on him or
her to forward packets, it is usually impossible for him or
her to find other users to help him or her.
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TABLE I
SUMMARY OF NOTATIONS

• Changing topology and opponents: In ad-hoc networks, at
each time instance, each node may request different nodes
to forward packets for it due to the topology change or
other reasons, and/or be requested by different nodes. This
also poses a big challenge to cooperation stimulation: since
nodes are selfish, unless a relay node is sure with high
confidence that those requesters will return the favor later,
it has no incentive to forward packets for them.

• Variable service request rates: Similar to changing op-
ponents, we have identified that the variable request rate
also plays an important role. For example, if a node has
too many packets to send, it is usually impossible to let
the other nodes forward all of the packets for it, unless it
can return enough favors to the others. Further, due to the
topology change, a node that is requested may not need the
requester’ help immediately, though it may need it later.

• Nonrepeated model: Most previous work addresses coop-
eration enforcement under a repeated game model, such as
[5], [6], [10], [12], and [16], which assume either random
connection or fixed setup. However, the repeated model
rarely holds in reality. This leads to a new challenge that the
favor cannot be returned immediately, which is one major
hurdle for effective cooperation stimulation.

In [20], Dawkins demonstrated that reciprocal altruism is
beneficial for every ecological system when favors are granted
simultaneously. However, when favors cannot be granted si-
multaneously, altruism may not guarantee satisfactory future
payback, especially when the future is not predictable. The
situation will be further deteriorated when the observation is
imperfect with a high false alarm ratio and misdetect ratio. In

this paper, one critical goal is to design attack-resistant coop-
eration stimulation strategies for autonomous mobile ad-hoc
networks which can even work well under a noisy and hostile
environment with imperfect monitoring.

B. Multistage Secure Routing and Packet Forwarding Game

Similar to [17], in this paper, we to model the dynamic inter-
actions among nodes in autonomous mobile ad-hoc networks as
a multistage secure routing and packet forwarding game, where
the notations are summarized in Table I:

• Players: A finite set of network users, denoted by .
• Types: Each player has a type where

. Meanwhile, no player knows the
others’ types a priori.

• Strategy space:
1) Route participation stage: For each player, after re-

ceiving a request asking it to be on a certain route, it
can either accept or refuse this request.

2) Route selection stage: For each player who has a packet
to send, after discovering a valid route, it can either use
or not use this route to send the packet.

3) Packet forwarding stage: For each relay, once it has
received a packet requiring it to forward, its decision
can be to either forward or drop this packet.

• Utility functions: Based on the notations in Table I, we
model the players’ utility as follows:
1) For any selfish player , its objective is to maximize

(1)
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2) For any attacker , its objective is to maximize

(2)

Here, is introduced to determine the relative importance
of the attackers’ cost compared to the other nodes’ cost.
That is, it is worth spending cost to cause damage

to other nodes only if . If the game will be
played for an infinite duration, their utilities will become

and , respectively.
On the right-hand side of (1), the numerator denotes the net

profit (i.e., total gain minus total cost) that the selfish node ob-
tained, and the denominator denotes the total number of packets
that needs to send. This utility represents the average net profit
that can obtain per packet. We can see that maximizing (1) is
equivalent to maximizing the total number of successfully de-
livered packets subject to the total cost constraint. If , this
is equal to maximizing the throughput.

The summation in the right-hand side of (2) represents the net
damage of the other nodes by . Since, in general, this value may
increase monotonically, we normalize it by using the network
lifetime . Now, this utility represents the average net damage
that caused to the other nodes per time unit. From (2), we can
see that in this game setting, the attackers’ goal is to waste the
other nodes’ cost (or energy) as much as possible. Other possible
alternatives, such as minimizing the others’ payoff, will also be
discussed later.

The aforementioned game can be divided into many sub-
games as will be explained. Once a player wants to send a packet
to a certain destination, a subgame will be initiated which con-
sists of, at most, three stages: in the first stage, the source will
request some players to be on a certain route to the destination;
in the second stage, the source will decide whether it should
use this route to send the packet; in the third stage, each relay
player will decide whether it should help the source to forward
this packet once a packet is received. We refer to each subgame
as a single routing and packet forwarding subgame.

IV. ATTACK-RESISTANT COOPERATION STIMULATION

A. Statistical Drop Packet Attack Detection

Before devising attack-resistant cooperation stimulation
strategies, we first study how to handle possible malicious
behavior. We focus on two classes of attacks: dropping packet
attack and injecting traffic attack. Next, we show how to detect a
dropping packet attack under noise with imperfect monitoring.

Let denote the number of packets that node has
agreed to forward for node by time and let denote
the times that has observed forwarding a packet for it. If
has never intentionally dropped ’s packets, given , and

, in average we should have

(3)

with . Then, a simple detection rule can
be as follows: node will mark node as intentionally dropping
packets if the following holds:

(4)

where is a function of , ,
and . In general, there is a tradeoff when selecting

. A large
may incur a high misdetect ratio, while a small

may result in high false alarm
ratio. One way to find a good is to
apply the Neyman–Pearson hypothesis testing theory [21].
Let denote the false alarm probability resulting from
using a certain in (4), and let denote the miss
probability resulting from using a certain in (4). Given a
certain acceptable false alarm probability , we say that
is optimal if

subject to (5)

If packet dropping due to noise can be modeled as an indepen-
dent identically distributed (i.i.d.) random process with drop
probability , and the observation errors are also independent
identically distributed random processes and independent of
each other, then according to the central limit theorem [22], for
any , we have

(6)

where is the cumulative distribution function of the normal
distribution with mean 0 and variance 1. Then, we can let

(7)

In this case, the false alarm ratio will be no more than
when is large, and the obtained detector (4) with
being defined in (7) is an optimal Neyman–Pearson detector
subject to the false alarm probability . Since,
in general, can still approach 1 even for a small posi-
tive , will be a very small value com-
pared to for a large . However, in general, neither
packet dropping nor observation error is i.i.d. Under such cir-
cumstances, if the aforementioned detection rule is used, the
false alarm ratio will usually be larger than . In order
to maintain the same false alarm probability as in i.i.d. cases,
in non-i.i.d. cases, the threshold should
also be increased.

Let , which can be explained as ’s confidence on its
detection decision. The value of lies in the range of [0,1], with
0 indicating that has not marked as malicious and 1 indicating
that is sure that is malicious. Then, we have for
the i.i.d. scenarios and for the non-i.i.d. scenarios.

Once node has marked node as intentionally dropping
packets, one possible rule is that it should not work with again.
However, such a rule has a drawback that if has been mistak-
enly marked as malicious, it can never recover, since will not
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give it any chance. To overcome this drawback, we modify this
decision rule such that will be given a chance to recover, which
will be described in the following subsection.

B. Cooperation Strategy With Attacker Detection

The strategies for nonmalicious players involve decision
making in the following three stages: route participation stage,
route selection stage, and packet forwarding stage.

1) Route Participation Stage: We first study what decision a
selfish node should make when it receives a route participation
request from node . First, if has detected as malicious with
confidence , with probability , it should immediately
refuse this request. Second, even if has not been marked as
malicious by should accept this request only if it believes
that it can get help from later. However, whether can get
help from depends on a lot of uncertain factors, such as ’s and
’s future requests, the changing network topology, ’s strategy,

and so on. Due to the unpredictability of future and favors not
being granted simultaneously, stimulating to act cooperatively
is difficult.

In this paper, we focus on the scenario that nodes will stay in
the network for a relatively long time. We consider the following
strategy: a node may first forward some packets for other nodes
without getting instantaneous payback. However, in order to be
robust to possible malicious behavior (e.g., injecting traffic at-
tack) or greedy behavior (e.g., request more but return less), a
node should not be too generous. Before formalizing the afore-
mentioned strategy, we first introduce a simple procedure: let

be ’s confidence on whether is malicious, then randomly
picks a value between 0 and 1, and will give another chance if

. We refer to this procedure as the recovery check pro-
cedure. Let be ’s estimate of . Then, the afore-
mentioned strategy can be translated as follows: will accept
’s route participation request only if has passed the recovery

check and the following holds:

(8)

Similar to [11], we refer to as ’s estimated
balance with , and refer to as the cooperation level.
Setting to be means that will always help , set-
ting to be means that will never help , and
setting to be a finite value means that will condi-
tionally help . Meanwhile, can be either constant or
variable depending on ’s past interactions with . It is easy to
see that a good choice of is a key to optimizing ’s
performance.

In order for the aforementioned strategy to work well, node
needs to have a good estimate of for any other node
and needs to select a good cooperation level. We first study

how to get a good estimate of . If can have accurate
knowledge of monitoring errors experienced by , denoted by

and , then we should have

(9)

Then, a good estimate of can be

(10)

However, in general, cannot accurately estimate and . In
such scenarios, a more conservative estimate can be

(11)

Consequently, can take advantage of such inaccuracy to for-
ward less packets for , or ask to forward more packets for it.
This will be further investigated in Section V.

Now we study how to select a good cooperation level. First,
finding an optimal cooperation level is usually impossible unless
nodes can accurately predict the future. In general, cooperation
level is related to both ’s and ’s request rate. For
example, if has a relatively low request rate compared to the
others, a relatively small should be able to work well.
However, if ’s request rate is much higher than the other nodes
in the network or exhibits too high of a bursty pattern, a larger

may be needed. Meanwhile, may also
change according to ’s interactions with . For example, if
and have helped each other many times, slightly increasing
their cooperation levels may be a good choice from both nodes’
point of view. Extensive simulations have been conducted to
study the effect of the cooperation level, and the results suggest
that when all nodes almost have equal request rates, a relatively
small cooperation level can work well.

2) Route Selection Stage: Next, we study the strategy in the
route selection stage. Once a set of routes have been discovered
by node with all relays on these routes having agreed to for-
ward packets for it, the following strategy will be taken by :
first, will not further consider this route if any relay cannot
pass the recovery check; second, among all of those routes with
all nodes having passed recovery check, will pick the one with
the minimum number of hops.

3) Packet Forwarding Stage: Now we consider the strategy
in the packet forwarding stage. For any selfish node, once it
has agreed to forward a packet for a certain node, it should not
intentionally drop this packet unless the following can hold:

(12)

That is, , where and are the actual false alarm
ratio and misdetect ratio experienced by the node. If (12) holds,
this means that the chance that it will be marked as malicious
even after dropping all of the packets will still be no more than
forwarding all packets due to high monitoring inaccuracy. How-
ever, if (12) cannot hold, intentionally dropping packets will not
be a good strategy if it still needs others’ help, since such drop-
ping may cause it to be detected as malicious and, consequently,
cannot get help from other nodes in the future.

Let denote ’s confidence on whether is malicious.
By combining the attacker detection strategy and the routing
and packet forwarding strategies described before, we devise the
following attack-resistant cooperation stimulation strategy:

Attack-resistant cooperation stimulation strategy: For each
single routing and packet forwarding subgame, assuming that
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is the initiator who wants to send a packet to at time ,
and a route “ ” has been discovered by

. After has sent requests to all of the relays on this route
asking them to participate, for each nonmalicious player on this
route, the following strategies should be taken.

1) In the route participation stage: For any relay , it will
accept this request if and only if can pass the recovery
check and ; other-
wise, it should refuse.

2) In the route selection stage: will use this route if and
only if all relays on this route have passed the recovery
check and this route has the minimum number of hops
among all of those routes with all relays having passed re-
covery check; otherwise, should not use this route.

3) In the packet forwarding stage: For any relay , it will
forward this packet if and only if it has agreed to be on this
route and (12) does not hold; otherwise, it should drop.

4) Attacker detection: Let be an acceptable false alarm ratio
from ’s point of view. Then, it will mark a relay as
malicious if (4) holds with with being
calculated as in (7). Consequently, updates
as .

V. GAME-THEORETIC ANALYSIS AND LIMITATIONS

A. Strategy Analysis Under No Attacks

We first consider the decisions made by the relays in the
packet forwarding stage. As long as (12) does not hold and the
source can get an accurate estimate of , from any selfish
node’s point of view, the only gain after intentionally dropping
a packet is saving cost , while the penalty includes the in-
crease of the probability being marked as malicious by and the
decrease of the number of packets that will forward for in
the future. Therefore, has no incentive to intentionally drop
packets in such scenarios.

What is the consequence of an inaccurate estimate of ?
Let us assume that and are the actual false alarm and
misdetect ratios experienced by , and does not know it. In
this case, may use (10) to estimate , and we have

(13)

If , then we have , and consequently

(14)

In other words, node can take advantage of imperfect moni-
toring to increase its performance by forwarding less packets for
node . However, if the underlying monitoring mechanism can
guarantee and to be small enough, the damage caused to
node will be very limited. Further, if node also experiences
a lower false alarm ratio, the damage will be further reduced,
since the aforementioned analysis is also applicable to . We
can also check that if the false alarm ratio and misdetect ratio
experienced by node and are the same, then we can still have

.

Next, we consider the source’s decision in the route selection
stage. If no relays on the selected route have been marked as
malicious by the source, it is easy to see that this is an optimal
selection. What is the consequence if some relays have been
marked as malicious? First, with very small probability, those
nodes can pass the recovery check, so even if they are malicious,
the long-term average damage is still negligible. Second, since
these nodes may have been mistakenly marked as malicious,
such chance can allow them to recover their reputation, and may
consequently increase the source’s future payoff, since it may
have more resources to select and use.

Finally, we analyze the relay’s decision in the route participa-
tion stage. The optimality of the proposed strategy in this stage
depends on a lot of uncertain factors, such as the nodes’ future
request pattern, the changing topology, the nodes’ future staying
time, the selection of good cooperation level, etc. Since most of
these factors cannot be known a priori, the optimality of the pro-
posed strategies cannot be guaranteed. It is usually impossible
to find an optimal strategy without being able to accurately pre-
dict the future. However, our simulation results show that when
the nodes’ request rates do not vary a lot, a relatively small co-
operation level can work well.

If the future is predictable or at least partially predictable,
such as the network being kept alive for a long time, all nodes
staying in the network will keep generating and sending packets,
and any pair of nodes will meet and request each other’s help
again and again, and then each node can set its cooperation level
to be a very large positive constant without affecting its overall
performance (any extra constant cost will not affect the overall
payoff as long as ). Then, the proposed
strategies can form a Nash equilibrium, and are Pareto optimal,
are subgame perfect, and achieve absolute fairness (in cost), pro-
vided that each node can accurately estimate for any
other node , and is large enough to accommodate
possible variable and bursty requests between them. The proof
is easy by following the aforementioned analysis, which is not
used here due to space limitations (In [17], we have provided a
detailed proof of similar statements.) Unfortunately, such ideal
scenarios usually do not exist in reality. That is, a gap exists
between the ideal game model and the reality. Accordingly,
the devised strategy cannot maintain its optimality in reality.
However, our simulation results demonstrate that the devised
strategy can still work well in most scenarios, which suggests
that game-theoretic approaches can still provide thoughtful in-
sights and useful guidelines when devising cooperation strate-
gies even when some gap exists between the ideal model and
the reality.

B. Attacking Strategy and Damage Analysis

Thus far, we mainly focus on the scenarios that no nodes are
malicious. Next, we analyze the possible damage that can be
caused by the attackers. Specifically, we focus on the following
two important attacks: dropping packets and injecting traffic.
That is, to damage the network, the attackers can either drop
other nodes’ packet, or inject a lot of traffic to consume other
nodes’ resources. We first consider dropping a packet attack.
According to the devised strategy, for attacker to avoid being
marked as malicious by node , the highest packet drop ratio
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Fig. 1. Effects of mobility on cooperation stimulation.

Fig. 2. Effects of traffic pattern on cooperation stimulation.

that it can employ should satisfy the following inequality to
avoid being detected:

(15)

where and are the actual false alarm ratio and misdetect
ratio experienced by . That is, the observed times of packet for-
warding are no less than the value corresponding to the normal
behaviors. Since, in general, we can

(16)

the maximum possible that the attacker can use without being
detected is

if

if
(17)

These results tell us that if the attackers can make the misde-
tection ratio large enough (i.e., ), it can arbitrarily
drop the packet without being detected.

Now we study the case for . In this case, the
attacker can set the drop ratio to be

(18)

Then we have

(19)

where can be regarded as the extra damage caused by
the attackers without being detected.

If an attacker can successfully exploit the underlying moni-
toring to avoid being detected, such as experiencing a high ,
then the extra number of packets it can drop without being de-
tected can increase dramatically. According to (19), the extra
damage may increase nonlinearly with the increase of . This
suggests that it is critical to have a robust monitoring scheme to
ensure that the monitoring error will not be too large. Actually,
from (19), we can also see that even for is
still upperbounded by , which is still small as long as

and are small.
For an injecting traffic attack, since each selfish node will

try to maintain , for any
node , the extra number of packets that node can request
node to forward is always bounded. According to (14), the
maximum possible ratio between and is up-
perbounded by
provided . Meanwhile, if the underlying mon-
itoring mechanism can ensure that and are small, the
ratio will be small. However, if can successfully manage to let

, such as making the misdetect ratio approach 1,
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it can always request to forward the packet without returning
any favors.

It is worth noting that under the proposed strategies, regard-
less of what goal the attackers may have, the selfish nodes’
payoff can always be guaranteed as long as , and are
small. Meanwhile, if [defined in (2)] is small enough, from
an attacker’s point of view, maximizing (2) is almost equiva-
lent to minimizing the selfish nodes’ payoff. Otherwise, max-
imizing (2) may not cause as much damage as minimizing the
selfish nodes’ payoff since, in this case, the attackers may not be
willing to continuously drop packets without being detected due
to the reason that this also requires the attackers to forward a lot
of packets for other nodes and may not be in their best interest.

VI. SIMULATION STUDIES

In this section, we conduct extensive simulations to evaluate
the effectiveness of the devised strategy and identify when and
why in some situations these strategies cannot work well.

In our simulations, both static and mobile ad-hoc networks
have been studied, with mobile ad-hoc networks being our
focus. In these simulations, nodes are randomly deployed
inside a rectangular area of 1000 1000 m, and each mobile
node moves according to the random waypoint model [23],
which can be characterized by the following three parameters:
the pause time, the minimum velocity and the maximum
velocity . We set m/s, m/s, and
the average pause time as 100 s. The medium-access control
(MAC) layer protocol implements the IEEE 802.11 DCF with
a four-way handshaking mechanism [24]. The link bandwidth
is 2 Mb/s, and the data packet size is 512 B. DSR [25] is used
as the underlying route discovery protocol. The maximum
transmission range is 250 m. Inside the transmission range, the
channel errors are characterized in terms of outage probability.
Outage is defined as the event that the received signal-to-noise
ratio (SNR) falls below a certain threshold . Here, for the
transmission distance , the probability of outage is defined
as

(20)

The transmission power has been adjusted in such a way that
%.

In these simulations, each node randomly picks another node
as the destination to send packets. The total number of selfish
nodes is 100. Both and are set to be 5%, and is set to
be 0.1%. Each packet has a delay constraint, which is set to be
10 s. If a packet is dropped by some relay, no retransmission will
be applied. For each node , we set and . The
nodes are indexed from 1 to , where is the total number of
nodes.

To conduct performance evaluation and comparison, the fol-
lowing are measured for each selfish node in the simulations:

• Normalized throughput: this is defined as the ratio between
the total number of successfully delivered packets and the
total number of packets scheduled to be sent;

• probability of no route available: this is defined as the per-
centage of packets dropped due to no available valid route;

Fig. 3. Effect of negative cooperation level on cooperation stimulation.

• cost per successful packet delivery: this is the ratio between
the total number of forwarded packets and the total number
of successfully delivered packets originating from it;

• balance: this is the difference between the total number of
packets that this node forwarded for the others and the total
number of packets that the others forwarded for it.

According to (1), it is easy to see that a selfish node’s payoff
can be calculated based on its normalized throughput and the
cost per successful packet delivery.

A. Mobile Ad-Hoc Networks versus Static Ad-Hoc Networks

We first study the effect of mobility on cooperation stimula-
tion. In this set of simulations, three types of networks are gen-
erated: mobile, partial mobile, and static. In the partial mobile
ad-hoc network, the nodes with indices ranging from 1 to 50 are
mobile, and the other half are static. All nodes employ the same
traffic pattern: the packet interarrival time follows exponential
distribution with the mean being 2 s. All nodes set their coop-
eration level to be 60. The simulation results are illustrated in
Fig. 1.

First, from the throughput comparison, we can see that for
the static case except for several nodes, the majority of nodes
(85%) experience extremely bad throughput. This is due to the
reason that, at most times, they cannot find a route with all re-
lays willing to help it (shown in the second figure). For those
several nodes with high normalized throughput, the reason is
that the destinations are in the transmission range of the sources.
These results suggest that the devised strategies cannot be used
in static ad-hoc networks. Actually, in [12] and [13], the authors
have demonstrated that in networks with fixed topology, cooper-
ation enforcement is impossible to achieve by relying solely on
reputation. The most basic reason is that the service that a node
can provide is usually not needed by its neighbors; therefore, its
neighbors have no incentive to help it.

From these results, we can also see that when all nodes are
mobile, the normalized throughput can be fairly high. For ex-
ample, except for four nodes, all of the other nodes have nor-
malized throughput that is more than 80%. Even for those four
nodes, their normalized throughput is still more than 70%. We
can also see that for the majority of the nodes (96%), almost
none of their packets are dropped due to no available routes, that
is, cooperation among nodes has been effectively stimulated.
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Fig. 4. Effect of cooperation level on cooperation stimulation.

Now we study the partial mobile case. From the throughput
comparison, we can see that for those mobile nodes, no one has
normalized a throughput of less than 40%, and the majority (33
out of 50) have a normalized throughput of higher than 80%.
However, for those static nodes, the situation is totally reversed:
half of them have a normalized throughput of less than 40%.
This suggests that mobility can help stimulating cooperation.
The underlying reason is that mobility can make the service ex-
change more effectively. An analogy to this is the effect of busi-
nessperson: without them, we can only exchange service locally,
the service we can get will be very limited; while with the help of
businesspeople, service can be exchanged globally. From now
on, we will mainly focus on mobile ad-hoc networks with all
nodes being mobile.

B. Bursty Traffic Pattern versus a Nonbursty Traffic Pattern

Next, we investigate the effect of traffic pattern on cooper-
ation stimulation. In these simulations, two traffic patterns are
considered: bursty and nonbursty. In the bursty case, packets
are generated in a bursty pattern with an average bursty length
10, while in a nonbursty pattern, the packet arrival follows a
Poisson process. In both cases, the average packet arrival rate is
0.5 packet/s. The simulation results are illustrated in Fig. 2.

It is surprising to see that the bursty case has slightly better
normalized throughput than the nonbursty case. This can be
explained using the unsuccessful forward ratio experienced by
each node (shown in the second figure): in the bursty case, the
unsuccessful forward ratio experienced by each other is 1%
lower than the nonbursty case. This is because in the nonbursty
case, when a packet needs to be sent, with a high probability, the
existing route may have broken since this route may have been
discovered a long time ago, while in the bursty case, though link
breakages also occur frequently, as long as the current route is
good, almost all of the packets can be delivered successfully.
However, if nodes with the bursty pattern have much higher
rates or if the burst length is much longer, the performance of
the bursty case may be decreased, as will be shown later.

C. Effect of Negative Cooperation Level

In this set of simulations, some nodes set their cooperation
level to be negative. Specifically, the first ten nodes set
to be , and all of the others set to be 60. The results
are illustrated in Fig. 3. From these results, we can see that the

majority of nodes (six out of ten) who set to be nega-
tive have a normalized throughput of less than 65%. Meanwhile,
they also cause some other nodes to experience lower normal-
ized throughput (six out of 90 have a normalized throughput of
no more than 70%). These results suggest that as long as a node
wants to stay in the network for a long time and needs to send
packets continuously, they should not set their cooperation level
to be negative.

D. Effect of Cooperation Level on Cooperation Stimulation

In this set of simulations, each node sets its traffic rate to be
0.5 packet/s following the Poisson arrival. In each simulation, a
different value is used, ranging from 10 to 240. The re-
sults are illustrated in Fig. 4. From the first figure, we can see that
once , both the average normalized throughput and
the average payoff experienced by selfish nodes do not increase
further, which suggests that in this case, setting
can almost approach the optimal solution in terms of normal-
ized throughput. However, from the second figure, we can see
that with the increase of , the balance variation expe-
rienced by nodes also increases, which leads to high unfairness.
That explains why we have set in our simulations:
a good tradeoff between payoff and fairness.

E. Effect of Inhomogeneous Request Rates

In this set of simulations, each node’s traffic rate is deter-
mined as follows: let be a node’s index ranging from 1 to 100,
then its traffic rate will be set as packet/s. Based
on the configuration of and traffic pattern, three cases are
studied: in case 1 and 3, for each node, its traffic follows the
Poisson arrival, while in case 2, each node’s traffic follows a
bursty arrival. Meanwhile, in case 1 and 2, all nodes set
to be 60, while in case 3, each node with index set to be

. The results are shown in Fig. 5.
We first study the throughput comparison. From these results,

we can see that case 3 has the highest normalized throughput
while case 2 has the lowest normalized throughput. This sug-
gests that bursty traffic may decrease the performance, while if
a node has too much traffic to send, increasing their cooperation
level can increase their performance. From these results, we can
also see that with an increase of the traffic rate, the throughput
decreases too. Although increasing can slightly increase
the performance, it cannot completely solve the problem. The
reason is that the service provided by those nodes with a high
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Fig. 5. Effect of inhomogeneous request rates on cooperation stimulation.

traffic rate is not needed by those nodes with lower rates. This
can be shown more clearly in the following simulations.

By checking the second figure (probability of no route avail-
able) in Fig. 5, we can see that in case 2 (bursty case), a lot of
packets will be dropped due to no available routes, especially
when the node’s traffic rate is high, which explains why they
have the lowest throughput. From the third figure (cost per suc-
cessful delivery) in Fig. 5, we can see that with an increase of
the traffic rate, the hop number per route may decrease slightly,
which is a little bit surprising, but makes sense: when a node
with a high traffic rate has used up the quota assigned by those
nodes with a lower rate, they are forced to use short routes, such
as a one-hop route. This is also confirmed by the results in the
fourth figure, which indicates that for the first 20 nodes, their
overall balance almost reaches the maximum.

Next, we study an extremely asymmetric case, where in this
set of simulations, except the first ten nodes which have a packet
arrival rate of 5 packet/s, all of the other nodes have a packet
arrival rate 0.5 packet/s. According to the first ten nodes’
values, three cases are studied: in case 1, they let ,
in case 2 they set , and in case 3, they set

. For the other nodes in all of the three cases, .
The results are illustrated in Fig. 6. From these results, we can
see that by increasing from 60 to 120, a lot of gain can be
obtained (normalized throughput increases from 8% to 22%),
while increasing from 120 to 180 introduces almost no
gain, and the normalized throughput is still only about 22%.
This suggests that although increasing can provide some
gain, they cannot change the inherent problem.

F. Effects of Different Dropping Packet Attacks

In this set of simulations, we study the effect of different drop-
ping packet attacks. Four dropping packet attack strategies are

studied: not participating in any route discovery, dropping all
packets passing through it, dropping half of the packets passing
through it, and selectively dropping packets passing through it,
and, at the same time, keep from being detected. Fig. 7 illus-
trates the evolution of the normalized throughput and payoff
averaged among all selfish nodes over time. From these results,
first we can see that dropping all packets can cause the max-
imum damage. The reason is that we have set to be a large
value (200), so each attacker can drop up to 199 of any other
node’s packets without being marked as malicious. However,
we can also see that with time increasing, the selfish nodes’ per-
formance will also increase. From these results, we can also see
that adaptive dropping can even increase the selfish nodes’ per-
formance. This is because the damage it can cause is very lim-
ited in order to avoid being detected, while keeping forwarding
packets for selfish nodes can reduce the selfish nodes’ average
hop number per selected route. Although intuitively adaptive
dropping may cause a lot of damage, in reality, this may not
be the case.

G. Effect of Attacker Number

In this set of simulations, we study the selfish nodes’ av-
erage performance in the presence of a different number of at-
tackers, with the number of attackers ranging from 5 to 30. All
attackers launch an injecting traffic attack, and will not forward
any packets for selfish nodes. The results are illustrated in Fig. 8.
From these results, we can see that with the increase of attacker
number, the average normalized throughput among all selfish
nodes is kept almost unchanged, and the average payoff only
decreases very slightly. This can be explained using the second
figure, where the total damage is defined as the total number
of packets that selfish nodes have forwarded for each attacker.
From this figure, we can see that after some time, no more
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Fig. 6. Effect of inhomogeneous request rates, an extreme case.

Fig. 7. Comparison of different dropping packet attacks.

Fig. 8. Performance comparison under a different number of attackers.

damage can be caused to selfish nodes due to the reason that
they have used up all of the quota assigned to them. This sug-
gests that the proposed strategy is robust to injecting a traffic
attack.

H. Cooperation Level Versus Damage

In this final set of simulations, the effect of on selfish
nodes’ performance under the injecting traffic attack is studied,
with the selfish nodes’ varying from 20 to 100. The results
are illustrated in Fig. 9. From these results, we can see that after

Fig. 9. Effect of cooperation level on damage.

passes 60, the selfish nodes’ average performance (nor-
malized throughput and payoff) were kept almost unchanged.
Similar to the results illustrated in Fig. 8, for each given ,
the damage caused by the attackers will not change after some
time due to using up all of the assigned quota. Meanwhile, the
damage will increase linearly with the increase of . By
also taking the fairness issue into consideration, these results
also suggest can be a good choice. However, we
need to keep in mind that the selection of also depends
on the underlying traffic rate. It is easy to understand that with
the increase of the traffic rate, we should also increase ,
especially when mobility is low and traffic may exhibit strong
bursty pattern and/or variable rates.

VII. DISCUSSION AND FUTURE WORK

Comparing to the pricing-based schemes, such as those in [1],
[9], [13]–[15], the major drawback of reputation-based schemes
is that some nodes may not get enough help to send out all of
their packets. As we have demonstrated in Section III, the reason
lies in the combining effect of 1) favors cannot be granted si-
multaneously and 2) the future is unpredictable. The pricing-
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based schemes do not suffer such problems in that a node can
get immediate monetary payback after providing services. The
drawback of pricing-based schemes lies in the requirement of
tamper-proof hardware or a central banking service. If such
a requirement can be effectively satisfied with low overhead,
pricing-based schemes can be a better choice than reputation-
based schemes. However, it is worth pointing out that pricing-
based schemes also suffer from noise and imperfect monitoring
and possible malicious behavior. The study of robust pricing-
based schemes has been put in our future calender.

The differences between our work and the existing reputa-
tion-based work (e.g., [5]–[8], [10], [12]) are as follows. First,
we address this issue under a very realistic scenario: noisy envi-
ronment, imperfect monitoring, existence of attackers, mobile
nodes, an inhomogeneous traffic rate, future unpredictability,
and so on. This makes our task extremely challenging, and op-
timal solutions may not be always available. Second, our goal is
not to enforce all nodes to act fully cooperatively, but to stimu-
late cooperation among nodes as much as possible. The simula-
tion results have demonstrated that our solution can work well
under various scenarios and the damage caused by the attackers
is limited as long as the underlying monitoring mechanism will
not introduce too much uncertainty.

In most existing works, such as in [5], [6], [10], [12], each
node makes its decision based solely on its own experienced
quality of service, such as throughput. One advantage of such a
scheme is that only end-to-end acknowledge is required, which
introduces very little monitoring overhead. Another advantage
is that each node only needs to keep its own past state, which
introduces very little storage overhead. In our solution, we re-
quire the underlying monitoring mechanism to provide per-node
monitoring, and each node needs to keep track of its balance
with other nodes. Although this can introduce higher overhead,
such extra overhead is necessary to stimulate cooperation under
noise and imperfect monitoring and in the presence of mali-
cious behavior, as we have demonstrated through Sections III
and V. Otherwise, attackers can easily break down the network
and greedy users can easily increase their payoff by taking ad-
vantage of noise and monitoring inaccuracy.

From the analysis in Section V, we can see that the underlying
monitoring plays an extremely critical role in successfully stim-
ulating cooperation among nodes. If the monitoring error is too
high (i.e., high and ), then this can be easily taken advan-
tage of by malicious and selfish nodes. A robust and effective
monitoring system will be key to the successful deployment of
autonomous mobile ad-hoc networks in hostile environments,
which also poses new research challenges. Further, the overhead
associated with the underlying monitoring has not been included
in our analysis, which may be crucial in practical implementa-
tion. In general, the higher accuracy of the monitoring scheme,
the larger overhead it may incur. Due to space limitations, these
issues will be addressed in a future work.

It is also worth mentioning that the security of the proposed
strategy also relies on the existing secure protocols to achieve
secure access control and secure authentication, and to defend
those attacks launched during the route discovery procedure,
such as those in [11], [18], [26]–[34]. In general, besides drop
packet and inject traffic, a variety of other types of attacks exist,

such as jamming, slander, etc. In this paper, our focus is not to
address all of these attacks, but to provide insight on stimulating
cooperation in a hostile environment under noise and imperfect
monitoring. To the best of our knowledge, we are the first one to
formally address this issue under such realistic scenarios. How-
ever, since the security of a system is determined by its weakest
link, exploiting the possible system vulnerability has also been
put in our future calender.

VIII. CONCLUSION

In this paper, we have investigated the issues of coopera-
tion stimulation for autonomous mobile ad-hoc networks in a
realistic context, where the communication channels are error
prone, the underlying monitoring is imperfect, and the envi-
ronment is hostile with possible malicious behavior. We have
identified the underlying reasons why stimulating cooperation
among nodes under scenarios is extremely challenging. Unlike
most existing work whose goal is to enforce all nodes to act
fully cooperatively, our goal is to stimulate cooperation among
selfish nodes as much as possible through reciprocal altruism.
We have devised a set of reputation-based attack-resistant coop-
eration stimulation strategies, which are completely self-orga-
nizing and fully distributed, and do not require any tamper-proof
hardware or central banking or billing services. Both theoretical
analysis and extensive simulation studies have demonstrated
that although a gap may exist between the game model and re-
ality, the game-theoretic approach can still provide thoughtful
insights and useful guidelines when devising cooperation strate-
gies, and the devised strategies can effectively stimulate coop-
eration among selfish nodes under various scenarios and mean-
while be robust to attacks.

REFERENCES

[1] S. Zhong, J. Chen, and Y. R. Yang, “Sprite: A simple, cheat-proof,
credit-based system for mobile ad-hoc networks,” in Proc. INFOCOM:
22nd Annu. Joint Conf. IEEE Computer Communications Societies,
San Francisco, CA, 2003, vol. 3, pp. 1987–1997.

[2] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing mis-
behavior in mobile ad hoc networks,” in Proc. 6th Annual Int. Conf.
Mobile Computing and Networking, New York, 2000, pp. 255–265.

[3] P. Michiardi and R. Molva, “Core: A collaborative reputation mecha-
nism to enforce node cooperation in mobile ad hoc networks,” in Proc.
6th IFIP TC6/TC11 Joint Working Conf. Communications Multimedia
Security, Deventer, The Netherlands, 2002, pp. 107–121.

[4] S. Buchegger and J.-Y. Le Boudec, “Performance analysis of the confi-
dant protocol,” in Proc. 3rd ACM Int. Symp. Mobile Ad Hoc Networking
Computing, New York, 2002, pp. 226–236.

[5] V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao, “Coop-
eration in wireless ad hoc networks,” in Proc. 22nd Annu. Joint Conf.
IEEE Computer Communications Societies, San Francisco, CA, 2003,
pp. 808–817.

[6] A. Urpi, M. Bonuccelli, and S. Giordano, “Modeling cooperation in
mobile ad hoc networks: A formal description of selfishness,” pre-
sented at the Modeling Optimization Mobile, Ad Hoc Wireless Net-
works, Sophia-Antipolis, France, 2003.

[7] J. Crowcroft, R. Gibbens, F. Kelly, and S. Ostring, “Modelling incen-
tives for collaboration in mobile ad hoc networks,” Performance Eval.,
vol. 57, no. 4, pp. 427–439, Aug. 2004.

[8] P. Michiardi and R. Molva, “A game theoretical approach to evaluate
cooperation enforcement mechanisms in mobile ad hoc networks,” pre-
sented at the Modeling Optimization Mobile, Ad Hoc Wireless Net-
work, Sophia-Antipolis, France, 2003.

[9] L. Anderegg and S. Eidenbenz, “Ad Hoc-VCG: A truthful and
cost-efficient routing protocol for mobile ad hoc networks with selfish
agents,” in Proc. 9th Annu. Int. Conf. Mobile Computing Networking,
New York, 2003, pp. 245–259.



330 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 2, JUNE 2008

[10] E. Altman, A. A. Kherani, P. Michiardi, and R. Molva, “Non-coop-
erative forwarding in ad-hoc networks,” in Proc. 4th Int. Networking
Conf., Waterloo, ON, Canada, May 2005, pp. 486–498.

[11] W. Yu and K. J. R. Liu, “Attack-resistant cooperation stimulation in
autonomous ad hoc networks,” IEEE J. Sel. Areas Commun., vol. 23,
no. 12, pp. 2260–2271, Dec. 2005, special issue.

[12] M. Felegyhazi, J.-P. Hubaux, and L. Buttyan, “Nash equilibria of
packet forwarding strategies in wireless ad hoc networks,” IEEE Trans.
Mobile Comput., vol. 5, no. 5, pp. 463–476, May 2006.

[13] S. Zhong, L. Li, Y. G. Liu, and Y. R. Yang, “On designing incen-
tive-compatible routing and forwarding protocols in wireless ad-hoc
networks,” Wireless Netw., vol. 13, no. 6, pp. 799–816, 2007.

[14] L. Buttyán and J.-P. Hubaux, “Enforcing service availability in mobile
Ad-Hoc wans,” in Proc. 1st ACM Int. Symp. Mobile Ad Hoc Networking
Computing, 2000, pp. 87–96.

[15] L. Buttyán and J.-P. Hubaux, “Stimulating cooperation in self-orga-
nizing mobile ad hoc networks,” Mobile Netw. Appl., vol. 8, no. 5, pp.
579–592, Oct. 2003.

[16] W. Yu and K. J. R. Liu, “On optimal and cheat-proof packets for-
warding strategies in autonomous ad hoc networks,” in Proc. 40th
Annu. Conf. Information Sciences Systems, 2006, pp. 1455–1460.

[17] W. Yu and K. J. R. Liu, “Game theoretic analysis of cooperation and
security in autonomous mobile ad hoc networks,” IEEE Trans. Mobile
Comput., vol. 6, no. 5, pp. 459–473, May 2007.

[18] W. Yu, Y. Sun, and K. J. R. Liu, “HADOF: Defense against routing
disruptions in mobile ad hoc networks,” in Proc. IEEE INFOCOM,
Mar. 2005, pp. 1252–1261.

[19] W. Yu and K. J. R. Liu, “Secure cooperative mobile ad hoc networks
against injecting traffic attacks,” IEEE Trans. Inf. Forensics Security,
vol. 2, no. 2, pp. 227–239, Jun. 2007.

[20] R. Dawkins, The Selfish Gene, 2nd ed. Oxford, U.K.: Oxford Univ.
Press, 1990.

[21] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd
ed. New York: Springer, 1994.

[22] O. Kallenberg, Foundations of Modern Probability. New York:
Springer-Verlag, 1977.

[23] J. Yoon, M. Liu, and B. Noble, “Sound Mobility Models,” in Proc. 9th
Annu. Int. Conf. Mobile Computing Networking, New York, 2003, pp.
205–216.

[24] “IEEE computer society lan man standards committee,” Wireless LAN
medium access control (MAC) and physical layer (PHY) specifica-
tions, IEEE Std. 802.11–1007, Inst. Elect. Elect. Eng.

[25] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc
wireless networks, mobile computing,” in Mobile Computing, Edited
by Tomasz Imielinski and Hank Korth. Norwell, MA: Kluwer, 1996,
ch. 5, pp. 153–181.

[26] L. Zhou and Z. Haas, “Securing ad hoc networks,” IEEE Netw. Mag.,
vol. 13, no. 6, pp. 24–30, Nov./Dec. 1999.

[27] J. P. Hubaux, L. Buttyan, and S. Capkun, “The quest for security in
mobile ad hoc networks,” in Proc. 2nd ACM Int. Symp. Mobile Ad Hoc
Networking Computing, New York, 2001, pp. 146–155.

[28] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A secure on-demand
routing protocol for ad hoc networks,” Wireless Netw., vol. 11, no. 1–2,
pp. 21–38, 2005.

[29] P. Papadimitratos and Z. Haas, “Secure routing for mobile ad hoc
networks,” presented at the SCS Communication Networks and Dis-
tributed Systems Modeling Simulation Conf., San Antonio, TX, Jan.
2002.

[30] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M. Belding-
Royer, “A secure routing protocol for ad hoc networks,” in Proc. 10th
IEEE Int. Conf. Network Protocols, Washington, DC, 2002, pp. 78–89.

[31] M. G. Zapata and N. Asokan, “Securing ad hoc routing protocols,” in
Proc. 1st ACM Workshop Wireless Security, New York, 2002, pp. 1–10.

[32] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Rushing attacks and defense
in wireless ad hoc network routing protocols,” in Proc. 2nd ACM Work-
shop Wireless Security, New York, 2003, pp. 30–40.

[33] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Packet leashes: A defense
against wormhole attacks in wireless networks,” in Proc. 22nd Annu.
Joint Conf. IEEE Computer Communications Societies, 2003, vol. 3,
pp. 1976–1986.

[34] Y.-C. Hu, A. Perrig, and D. B. Johnson, “SEAD: Secure efficient dis-
tance vector routing for mobile wireless ad hoc networks,” Ad Hoc
Netw. J., vol. 1, pp. 175–192, 2003.

Wei Yu received the B.S. degree in computer science
from the University of Science and Technology of
China (USTC), Hefei, China, in 2000, the M.S. de-
gree in computer science from Washington Univer-
sity, St. Louis, MO, in 2002, and the Ph.D. degree in
electrical engineering from the University of Mary-
land, College Park, in 2006.

From 2000 to 2002, he was a Graduate Research
Assistant at Washington University. From 2002 to
2006, he was a Graduate Research Assistant with the
Communications and Signal Processing Laboratory

and the Institute for Systems Research, University of Maryland. He joined
Microsoft Corporation, Redmond, WA, in 2006. His research interests include
network security, wireless communications and networking, game theory,
wireless multimedia, handwriting recognition, and pattern recognition.

K. J. Ray Liu (F’03) received the B.S. degree from
the National Taiwan University, Taipei, Taiwan,
R.O.C., and the Ph.D. degree from the Univer-
sity of California, Los Angeles, both in electrical
engineering.

He is Professor and Associate Chair, Graduate
Studies and Research, of the Electrical and Computer
Engineering Department, University of Maryland,
College Park, where he is Director of Communi-
cations and the Signal Processing Laboratory. He
leads the Maryland Signals and Information Group,

conducting research that encompasses broad aspects of information tech-
nology, including signal processing, communications, networking, information
forensics and security, and biomedical and bioinformatics imaging.

Dr. Liu is the recipient of best paper awards from the IEEE Signal Processing
Society (twice), IEEE Vehicular Technology Society, and EURASIP, IEEE
Signal Processing Society Distinguished Lecturer, EURASIP Meritorious Ser-
vice Award, and the National Science Foundation Young Investigator Award.
He also received various teaching and research recognitions from the University
of Maryland, including university-level Distinguished Scholar–Teacher Award,
Invention of the Year Award, and college-level Poole and Kent Company
Senior Faculty Teaching Award. He is Vice President—Publications and
on the Board of Governors of the IEEE Signal Processing Society. He was
the Editor-in-Chief of IEEE Signal Processing Magazine and the founding
Editor-in-Chief of the EURASIP Journal on Applied Signal Processing.


