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Abstract— This paper mathematically studies the cooperation
and packet forwarding issues among selfish nodes in ad hoc
networks under a game theoretic framework. Since in such
packet forwarding games there usually exist an infinite number
of Nash equilibria, a critical issue is how to perform equilibrium
refinement, that is, how to apply extra optimality criteria to
remove those equilibrium strategies that are less robust, less
rational, or less likely. In this work, besides Pareto optimality and
subgame perfection, other important optimality criteria, such as
social welfare maximization, absolute fairness, and proportional
fairness, have also been considered when performing equilibrium
refinement. Combining with Pareto optimality and subgame
perfection, each of these criteria can lead to a unique Nash
equilibrium solution. Since nodes are selfish and will try to cheat
whenever possible, the possible cheating behavior has also been
fully exploited, and the analysis has shown that when cheating
behaviors are considered, all these unique equilibrium solutions
will converge to the same format, that is, a node should not help
its opponent more than its opponent has helped it.

I. INTRODUCTION

A wireless ad hoc network is a group of (possibly mobile)
nodes without requiring centralized administration or fixed
network infrastructure, in which nodes can communicate with
other nodes out of their direct transmission ranges through
cooperatively forwarding packets for each other. Since ad hoc
networks can be easily and inexpensively set up as needed,
they have a wide range of applications. In many ad hoc
networks, nodes may belong to different authorities and have
different goals. Consequently, fully cooperative behaviors such
as unconditionally forwarding packets for others cannot be
taken for granted. On the contrary, in order to save limited
resources, such as battery power, nodes may tend to be
“selfish”. We refer to such ad hoc networks as autonomous
ad hoc networks.

In autonomous ad hoc networks, one major challenge is
to stimulate cooperation among selfish nodes. In this paper
we will investigate the cooperation issues in a game theoretic
framework by mainly focusing on the most basic networking
function, namely packet forwarding. Recently, some efforts
have been made toward analyzing the cooperation in ad hoc
networks in a game theoretic framework, such as [1]–[7].
In [1], Srinivasan et al. provide a mathematical framework
for cooperation in ad hoc networks. In [3], Felegyhazi et al.
identify the conditions under which cooperation strategies can
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form an equilibrium. In [4], Michiardi et al. study the coop-
eration among selfish nodes in a cooperative game theoretic
framework. In [5], Altman et al. study the packet forwarding
problem in a non-cooperative game theoretic framework. The
study of selfish behaviors in ad hoc networks has also been
addressed in [6], [7]. All of them use Nash equilibrium as
optimality criterion.

However, there still exist some important issues that have
not been fully addressed. First, there usually exist an infinite
number of Nash equilibrium cooperation strategies, and in
general not all of them are good. Therefore, one critical issue
is how to remove those equilibria that are less robust, less
rational, or less likely. This can be achieved by performing
equilibrium refinement through introducing extra optimality
criteria. In the literature, the following two extra criteria have
been considered: Pareto optimality and subgame perfection
[1], [5]. However, neither of them can reduce the solutions
to a unique solution. To further remove those less robust,
less rational, or less likely strategies, in this paper we have
also introduced the following extra criteria: social welfare
maximization, absolute fairness, and proportional fairness, and
we have shown that when combining with Pareto optimality
and subgame perfection, each of them can lead to a unique
equilibrium cooperation strategy.

Second, the nodes’ selfish nature has not been fully ex-
ploited in the existing works. In general, to maximize its
own profit, a selfish node will not be willing to reveal its
private information to others, and may even tend to cheat,
such as reporting false information to others. However, some
of the existing works, such as [1], assume that nodes will
honestly report their private information to the others. Conse-
quently, besides the above optimality criteria, cheat-proofing
should also be adopted as the optimality criterion, that is,
the cooperation strategy should guarantee that no node can
increase its payoff through cheating. In this paper, the possible
cheating behaviors have been fully exploited, and the analysis
has shown that none of the obtained unique solutions are cheat-
proof. Further, the analysis has also shown that when the
possible cheating behaviors are considered, all these unique
solutions will converge to the same format, that is, a player
should not help his opponent more than its opponent has
helped him.

The rest is organized as follows. Section II studies a
simple yet illustrating two-player packet forwarding game and
the corresponding Nash equilibria. Section III investigates
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the equilibrium refinement under various optimality criteria.
Section IV studies the cheat-proofing of the obtained equilibria
and derives the optimal cooperation strategies. The related
works are discussed in Section V. Finally Section VI concludes
this paper.

II. GAME MODEL

In this section we focus on a simple yet illuminating two-
player multi-stage packet forwarding game, which is modeled
as follows. There are two players in this game, denoted by
N = {1, 2}. Each player needs its opponent to forward a
certain number of packets in each stage. To simplify the
illustration, we assume that all packets have the same size.
For each player i, the cost to forward a packet is ci, and the
gain it can get for any packet that its opponent has forwarded
for it is gi. Here the cost can be the consumed energy and
the gain is usually application-specific. Let Bi be the number
of packets that player i will request its opponent to forward
at each stage. The values of Bi, ci, and gi will be reported
by both players to each other, either honestly or dishonestly,
before the game is started. It is also reasonable to assume that
gi ≥ ci, and there exists a cmax with ci ≤ cmax.

Let Ai = {0, 1, . . . , B3−i} denote the set of actions that
player i can take in each stage, where ai ∈ Ai denotes that
player i will forward ai packets for its opponent in this state.
We refer to an action profile a = (a1, a2) as an outcome and
denote the set A1×A2 of outcomes by A. Then in each stage
players’ payoffs are calculated as follows provided the action
profile a being taken:

u1(a) = a2 × g1 − a1 × c1, (1)

u2(a) = a1 × g2 − a2 × c2. (2)

That is, the payoff of a player is the difference between the
total gain it obtained with the help of its opponent and the
total cost it spent to help its opponent. We refer to u(a) =
(u1(a), u2(a)) as the payoff profile associated with the action
profile a. According to the backward induction principle [8],
if this game will only be played for known finite times, the
only Nash equilibrium (NE) is a∗ = (0, 0), no matter whether
the two players move simultaneously or not. That is, if the
game will only be played for one time, no node will help its
opponent. The same result also holds for the case when the
stage game will be played for only finite times and the game
termination time is known by both players.

Next we show that cooperation can still be achieved if the
game will be played for infinite times, or for finite times
but no player knows the exact game termination time. Let
G denote the repeated version of the above one-stage packet
forwarding game. Let si denote player i’s behavior strategy,
and let s = (s1, s2) denote the strategy profile. Next we
consider the following two utility functions:

Ui(s) = lim
T→∞

1
T

T∑
t=0

ui(s), (3)

Ui(s, δ) = (1 − δ)
∞∑

t=0

δtui(s) (4)

Utility function (3) can be used when the game will be played
for infinite times. The discounted version (4) can be used when
the game will be played for finite times, but no one knows
the exact termination time. Here the discount factor δ (with
0 < δ < 1) characterizes each player’s expected playing time.
Since in general the results obtained based on (3) can also
be applied to the scenarios when (4) is used as long as δ
approaches to 1, in this section we will mainly focus on (3).

Now we analyze the possible NE for game G. According to
the Folk theorem [8], for every feasible and enforceable payoff
profile, there exists at least one NE to achieve it, where the
set of feasible payoff profiles for the above game is

V0 = convex hull{v ∣∣ ∃a ∈ A with u(a) = v}. (5)

and the set of enforceable payoff profiles, denoted by V1, is

V1 = {v ∣∣ v ∈ V0 and ∀i : vi ≥ vi,

where vi = min
a−i∈A−i

max
ai∈Ai

ui(a−i, ai)}. (6)

Fig. 1 depicts these sets for the game with B1 = 1 and B2 =
2, where the vertical axis denotes player 1’s payoff and the
horizontal axis denotes player 2’s payoff. The payoff profiles
inside the convex hull of {(0, 0), (g1,−c2), (g1 − 2c1, 2g2 −
c2), (−2c1, 2g2)} (including the boundaries) are the set of
feasible payoff profiles V0, the set of payoff profiles inside the
shading area (including the boundaries) are the set of feasible
and enforceable payoff profiles V1. We can easily check that as
long as g1g2 > c1c2, there exist an infinite number of NE. To
simplify our illustration, in this paper, whenever introducing
no ambiguity, we will use x = (x1, x2) to denote the set of
NE strategies corresponding to the enforceable payoff profile
(x2g1 − x1c1, x1g2 − x2c2).

palyer 2

player 1

(0, 0)

(-c1, g2)

(-2c1, 2g2)

(g1-2c1, 2g2-c2)

(g1, -c2)

(g1-c1, g2-c2)

Fig. 1. Feasible and enforceable payoff profiles

III. NASH EQUILIBRIUM REFINEMENTS

Based on the above analysis we can see that the infinitely
repeated game G may have an infinite number of NE. How-
ever, not all the obtained NE payoff profiles are simultaneously
acceptable to both players. For example, the payoff profile
(0, 0) will not be acceptable from both players’ point of view
if they are rational. Further, the existence of multiple NE
payoff also requires nodes to make an agreement on which NE
strategy should be used, which also introduces extra trouble.
Next we show how to perform equilibrium refinement, that is,
how to introduce new optimality criteria to eliminate those NE
solutions which are less rational, less robust, or less likely.

1456



3

When performing equilibrium refinement, the following op-
timality criteria will be considered: Pareto optimality, subgame
perfection, social welfare maximization, proportional fairness,
and absolute fairness. In the literature, Pareto optimality has
been used to refine the equilibrium in [1], and subgame
perfection has been considered to remove empty threats in [6].
However, as to be shown later, both are not able to reduce
the solution set to a unique point, which is also one major
motivation for us to introduce fairness constraint.

A. Subgame Perfection

Our first step towards refining the NE solutions is to
rule out those empty threats. This motivates the equilibrium
refinement based on more credible punishments known as
subgame perfect equilibrium, which eliminates those equilibria
in which the players’ threats are empty. According to the
perfect Folk theorem [8], every strictly enforceable payoff
profile v ∈ V2 is a subgame perfect equilibrium payoff profile
of the game G, where

V2 = {v ∣∣ v ∈ V0 and ∀i : vi > vi,

where vi = min
a−i∈A−i

max
ai∈Ai

ui(a−i, ai)}. (7)

That is, after applying the criterion of subgame perfection,
only a small set of NE strategy profiles are removed.

B. Pareto Optimality

Our second step towards refining the set of NE solutions is
to apply the criterion of Pareto optimality1. It is easy to check
that only those payoff profiles lying on the boundary of the
set V0 could be Pareto optimal. Let V3 denote the subset of
feasible payoff profiles which are also Pareto optimal. For the
case depicted in Fig. 1, V3 is the set of payoff profiles which lie
on the segment between (g1,−c2) and (g1−2c1, 2g2−c2) and
on the segment between (g1 −2c1, 2g2 − c2) and (−2c1, 2g2).
After applying the criterion of Pareto optimality, a large
portion of NE have been removed from the feasible set, but
still there may exist an infinite number of NE strategy profiles.
Let V4 = V3 ∩ V2 denote the set of payoff profiles which are
both Pareto optimal and achievable through subgame perfect
equilibria.

C. Social Welfare Maximization

Here the social welfare is referred to as the sum of the
players’ payoff, that is, U1(δ, s) + U2(δ, s) when the strategy
profile s is used. Next we consider the equilibrium refinement
based on the optimality criterion of maximizing the social
welfare, that is,

arg max
s

(U1(δ, s) + U2(δ, s)). (8)

Since in each stage t we have

u1(at) + u2(at) = at
1(g2 − c1) + at

2(g1 − c2), (9)

1Given a payoff profile v ∈ V0, v is said to be Pareto optimal if there is
no v′ ∈ V0 for which v′

i > vi for all i ∈ N ; v is said to be strongly Pareto
optimal if there is no v′ ∈ V0 for which v′i ≥ vi for all i ∈ N and v′

i > vi

for some i ∈ N [8].

then for each player i its optimal strategy is always to forward
all the packets that its opponent has requested him to forward
if g3−i > ci and refuse to forward any packet that its opponent
has requested him to forward if g3−i < ci. That is, the optimal
strategy is x∗ = (x∗

1, x
∗
2) where

x∗
1 =

⎧⎪⎨
⎪⎩

B2 if g2 > c1

arbitrary if g2 = c1

0 if g2 < c1

(10)

x∗
2 =

⎧⎪⎨
⎪⎩

B1 if g1 > c2

arbitrary if g1 = c2

0 if g1 < c2

(11)

Here arbitrary means that arbitrary feasible value. It is easy
to see that from the selfish nodes’s point of view, many of the
obtained payoff profiles are even not enforceable, for example,
given ci and gi, if B1 � B2, we may have U1(δ, (B2, B1)) <
0. In another words, the goal of maximizing individual’s payoff
may conflict with the goal of maximizing the overall payoff.
Since in many situations such criterion conflicts with the
nodes’ selfish nature, most likely it is not acceptable.

D. Proportional Fairness

Next we try to further refine the solution set based on
the criterion of proportional fairness. Here a payoff profile
is proportionally fair if U1(s)U2(s) can be maximized, which
can be achieved by maximizing u1(s)u2(s) in each stage. Then
we can reduce the solution set to a unique point as follows:

x∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
c2
g2

+
g1
c1

2 B1, B1) if B1
B2

< 2
c2
g2

+
g1
c1

(B2, B1) if 2
c2
g2

+
g1
c1

≤ B1
B2

≤
c1
g1

+
g2
c2

2

(B2,
c1
g1

+
g2
c2

2 B2) if B1
B2

>
c1
g1

+
g2
c2

2

(12)

E. Absolute Fairness

In many situations, absolute fairness may also be an im-
portant criterion. We first consider absolute fairness in payoff,
which refers to that the payoff of these two players should
be equal. By combining the criterion of Pareto optimality, the
optimal strategy profile should be

x∗ =

{
( g1+c2

g2+c1
B1, B1) if B1

B2
≤ g2+c1

g1+c2
,

(B2,
g2+c1
g1+c2

B2) if B1
B2

≥ g2+c1
g1+c2

.
(13)

Another similar criterion is absolute fairness in cost, which
refers to that the cost spent by these two players for each
other should be equal. By combining the criterion of Pareto
optimality, the optimal strategy profile should be

x∗ =

{
( c2

c1
B1, B1) if B1

B2
≤ c1

c2
,

(B2,
c1
c2

B2) if B1
B2

≥ c1
c2

,
(14)

We can see that the obtained payoff profile is unique, feasible,
and strictly enforceable.
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IV. CHEAT-PROOF NASH EQUILIBRIUM STRATEGIES

It is worth noting that the above unique solutions (12), (13)
and (14) require players to reveal their private information
to their opponents. While due to players’ selfishness, it’s
unrealistic to expect them to honestly reveal their private
information. Further, to maximize their own payoffs, selfish
players may tend to cheat whenever they believe cheating
can increase their payoffs. In this paper, we refer to a NE
as cheat-proof if no player can further increase its payoff
by revealing false private information to its opponents. After
examining the three solutions (12), (13) and (14) (see below),
it is surprising to see that none of them is cheat-proof. Since all
these unique solutions are strongly Pareto optimal, the increase
of its opponent’s payoff will lead to the decrease of its own
payoff. Therefore players have no incentive to honestly report
their private information. On the contrary, they will cheat
whenever cheating can increase their payoff.

B1/B2

x2/x1

0 τ/
1τ1 τ/

2τ2

τ/
1

τ1

τ/
2

τ2

correspond to π/
1

correspond to π1

range
I

range
II

range
III

range
IV

range
V

(a) τ ′
1 < τ2

B1/B2

x2/x1

0 τ/
1τ1 τ/

2τ2

τ/
1

τ1

τ/
2

τ2

range
I

range
II

range
III

range
IV

range
V

correspond to π1

correspond to π/
1

(b) τ ′
1 > τ2

Fig. 2. Player 1 falsely reports the value of π1

We first study the solution (12). Let πi = ci/gi denote
player i’s cost-gain (CG) ratio. We first analyze whether player
i can increase its payoff by reporting a false CG ratio given
that player 2 will honestly report its CG value. That is, we
fix the value of π2, let π1 be player 1’s true value, and let π′

1

be the value that player 1 will falsely report with π′
1 > π1.

Let τ1 = 2
π2+

1
π1

, τ2 =
π1+

1
π2

2 , τ ′
1 = 2

π2+
1

π′
1

, τ ′
2 =

π′
1+

1
π2

2 . It

is easy to check that τ1 < τ ′
1 and τ2 < τ ′

2. Recall that Bi is
the maximum number of packets that player i will request its

opponent to forward for it in each stage. Let (x1, x2) denote
the number of packets in average they will forward for each
other in each stage according to the solution (12) given that
the true values of B1 and B2 are known by both players.
The relationship between x2/x1 and B1/B2 under different
situations is illustrated in Fig. 2(a) and Fig. 2(b). In these
two figures, the dashed curve corresponds to the relationship
between x2/x1 and B1/B2 given that player 1 honestly reports
its CG value, which is π1; while the solid curve corresponds to
the relationship between x2/x1 and B1/B2 given that player
1 falsely report its CG value, which is π′

1.
From the results illustrated in Fig. 2 we can see that by

falsely reporting a higher CG ratio, in most situations player
1 can increase the ratio of x2/x1. Next we study the effect
of falsely reporting a high CG ratio on player 1’s payoff. We
first consider the situation that τ ′

1 ≤ τ2, which is illustrated
in Fig. 2(a). In this case the whole feasible space can be
partitioned into 5 subareas along the feasible range of B1/B2:

• For any value of B1/B2 inside range I, the solution

corresponding to π1 is (
π2+

1
π1

2 B1, B1), and the solution

corresponding to π′
1 is (

π2+
1

π′
1

2 B1, B1). Since π′
1 > π1,

by falsely reporting a higher CG ratio player 1 can for-
ward less packets for player 2 than it should, consequently
increasing its own payoff.

• For any value of B1/B2 inside range II, the solution
corresponding to π1 is (B2, B1), and the solution corre-

sponding to π′
1 is (

π2+
1

π′
1

2 B1, B1). Since B2 >
π2+

1
π′
1

2 B1,
by falsely reporting a higher CG ratio player 1 can for-
ward less packets for player 2 than it should, consequently
increasing its own payoff.

• For any value of B1/B2 inside range III, the solution
corresponding to π1 is (B2, B1), and the solution corre-
sponding to π′

1 is also (B2, B1). That is, in this situation
by changing the value of π1 to π′

1, player 1’s payoff will
not change.

• For any value of B1/B2 inside range IV, the solution

corresponding to π1 is (B2,
π1+

1
π2

2 B2), and the solution

corresponding to π′
1 is (B2, B1). Since B1 >

π1+
1

π2
2 B2,

by falsely reporting a higher CG ratio player 1 can request
player 2 to forward more packets for it than player 2
should, consequently increasing its own payoff.

• For any value of B1/B2 inside range V, the solution cor-

responding to π1 is (B2,
π1+

1
π2

2 B2), and the solution cor-

responding to π′
1 is (B2,

π′
1+

1
π2

2 B2). Since
π′
1+

1
π2

2 B2 >
π1+

1
π2

2 B2, by falsely reporting a higher CG ratio player
1 can request player 2 to forward more packets for it
than player 2 should, and consequently increases its own
payoff.

Similar results can also be obtained for the case that τ ′
1 >

τ2, where now player 1 can increase its own payoff over all
possible values of B1/B2 by falsely reporting a higher π1

value given that π2 is fixed. In summary, by falsely reporting
a higher π1 value, in most situations player 1 can increase its
payoff, and in no situations player 1’s payoff will be decreased.
Further, the higher player 1 reports the value of CG ratio, the
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more benefit player 1 can get. Similarly, player 2 can also
increase its benefit by falsely reporting a higher CG ratio.

τ τ/

τ/

τ

x2/x1

B1/B2

0

range
I

range
II

range
III

correspond to c1

correspond to c’1

(a)

c1/c2

x2/x1

B1/B2

0

range
I

range
II

range
III

correspond to c1

correspond to c’1

c’1/c2

c1/c2

c’1/c2

(b)

Fig. 3. Player 1 falsely reports its cost

Next we consider the solution (13). Now let τ = g2+c1
g1+c2

,

and τ ′ = g2+c′1
g1+c2

, where c1 < c′1. Fig. 3(a) illustrates the
relationship between x2/x1 and B1/B2 for the two different
reported cost values c1 and c′1, where g1, g2 and c2 are fixed.
Similar as in Fig. 2, the dashed curve corresponds to the case
that player 1 reports a true cost value, while the solid curve
corresponds to the case that player 1 reports a false cost value.
From Fig. 3(a) we can see that by falsely reporting a higher
cost value, in all situations player 1 can increase the ratio of
x2/x1. Next we study the effect of falsely reporting a higher
cost on player 1’s payoff. As shown in Fig. 3(a), the whole
space can be partitioned into 3 subareas along the feasible
range of B1/B2:

• For any value of B1/B2 inside range I, the solution
corresponding to c1 is (B1/τ,B1), and the solution
corresponding to c′1 is (B1/τ ′, B1). Since τ ′ > τ , by
falsely reporting a higher cost player 1 can forward less
packets for player 2 than it should, then increase its own
payoff.

• For any value of B1/B2 inside range II, the solution
corresponding to c1 is (B2, τB2), and the solution cor-
responding to c′1 is (B1/τ ′, B1). Since B1/τ ′ < B2 and
B1 > τB2, by falsely reporting a higher cost, player 1
can forward less packets for player 2 than it should and

request player 2 to forward more packets for it than player
2 should, then increase its own payoff.

• For any value of B1/B2 inside range III, the solution
corresponding to c1 is (B2, τB2), and the solution cor-
responding to c′1 is (B2, τ

′B2). Since τ ′ > τ , by falsely
reporting a higher cost, player 1 can always request player
2 to forward more packets for it than player 2 should do,
and consequently increase its own payoff.

In summary, by falsely reporting a higher c1 value, in all
situations player 1 can increase its payoff given that c2 and g2

are fixed. Further, the higher player 1 reports the value of c1,
the more benefit player 1 can get. Applying similar analysis
it is also easy to show that by falsely reporting a lower g1

value, in all situations player 1 can increase its payoff given
that c2 and g2 are fixed. Similarly, player 2 can also increase
its benefit by falsely reporting a higher c2 or a lower g2 given
that g1 and c1 are fixed.

Now we consider the solution (14). Fig. 3(b) illustrates the
relationship between x2/x1 and B1/B2 for the two different
reported cost values c1 and c′1 with c′1 > c1 and c2 fixed.
From Fig. 3(b) we can see that by falsely reporting a higher
c1 value, in all situations player 1 can increase the ratio of
x2/x1. Applying similar analysis as before, we can conclude
that given c2 fixed, by falsely reporting a higher c1 value,
player 1 can always increase its payoff. Further, the higher
player 1 reports the value of c1, the more benefit player 1 can
get. Similarly, player 2 can also increase its payoff by falsely
reporting a higher c2 value given c1 fixed.

From the above analysis we can see that for any player i,
honestly revealing its own private information such as gi and ci

is always disadvantageous due to the reason that its opponent
can utilize these information to get extra benefit. Since all
the solutions we considered are (strongly) Pareto optimal
solutions, the increase of its opponent’s payoff usually leads
to the decrease of its own payoff. So in the packet forwarding
game with players being selfish, there is no incentive for
the players to honestly reveal their private information. On
the contrary, to maximize their own payoff, they will try to
cheat whenever they believe that such cheating behaviors can
increase their payoff.

What is the consequence if both players will cheat? Let’s
first examine the solution (12). In this case, based on the above
analysis, both players will report a ci/gi value as high as
possible. Since we have assumed gi ≥ ci and ci ≤ cmax,
both player will set gi = ci = cmax, and the solution (12)
will become the following form:

x∗ = (min(B1, B2), min(B1, B2)). (15)

After applying similar analysis for the solutions (13) and (14),
it is surprising to see, but easy to understand, that both will
also converge to the form (15). Accordingly, the corresponding
payoff profile is

v∗ = ((g1 − c1)min{B1, B2}, (g2 − c2) min{B1, B2}) .
(16)

Besides gi and ci, players can also report false Bi infor-
mation. However, it is easy to check that a rational player
should always report a true Bi value. Next we use player
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1 as an example to show this. If B1 ≤ B2, reporting a
higher B1 can only increase the number of packets it should
forward for player 2, which introduces no gain to it, while by
reporting a lower B1, although it can decrease the number
of packets forwarded for player 2, the number of its own
packets forwarded by player 2 will also be decreased and
cannot introduce gain to it too due to g1 ≥ c1. Similarly,
if B1 > B2, reporting a higher B1 will not affect the solution,
while reporting a lower B1 may also reduce the number of
packets that player 2 will forward for it, which introduces no
gain as long as g1 ≥ c1. Therefore, player 1 should not report
a false B1 value. The same analysis also applies to player 2.

In summary, when possible cheating behavior are consid-
ered, all the above solutions converge to the same form as in
(15) with payoff being (16), that is, in the two-player packet
forwarding game, in order to maximize its own payoff and
be resistant to possible cheating behavior, a player should
not forward more packets than its opponent does for it. A
simple NE strategy to achieve the payoff profile (16) is as
follows: For each player i ∈ N , in each stage t it should
forward min(B1, B2) packets for its opponent unless there
was a previous stage t′ in which its opponent has forwarded
less than min(B1, B2) packets for it, in which case it chooses
to stop forwarding packets for its opponent forever.

V. DISCUSSION

The strategies proposed in [1], [6] may look similar to
the one described above. In [1] Srinivasan et al. studied the
cooperation in ad hoc networks by focusing on the energy-
efficient aspects of cooperation, where in their solution the
nodes are classified into different energy classes and the
behavior of each node depends on the energy classes of the
participants of each connection. They have demonstrated that
if two nodes belong to the same class, they should apply the
same packet forwarding ratio. However, they require nodes to
honestly report their classes, and a node can easily cheat to
increase its own performance, such as the approach mentioned
in [3] (Section VIII).

In [6], Urpi et al. claimed that it is not possible to force a
node to forward more packets than it sends on average (Lemma
6.2), and then concluded that cooperation can be enforced in a
mobile ad hoc network, provided that enough members of the
network agree on it, and if no node has to forward more traffic
that it generates (Theorem 6.3). However, the above analysis
has shown that a strategy profile can still be enforceable even
this may require a node to forward more packets than it
sends on average, as illustrated in solutions (12), (13) and
(14). Second, in mobile ad hoc network, due to the multihop
nature, in general the number of packets a node forwards
should be much more than the number of packets it generates.
Accordingly, their strategy cannot enforce cooperation at all
in most scenarios.

One major contribution of our analysis lies in that we have
exploited all the possible NE strategies, demonstrated why
some strategies are not good, why they cannot be acceptable
by the players, and why the solution (15) is the only one that
should be adopted. In other words, we have provided more
insight and physical meaning for the solution (15).

The works presented in [9], [10] are also related to ours
in the sense that cheating behavior has also been considered.
They have proposed auction-based schemes to stimulate packet
forwarding participation, where by using VCG-based second
price auctioning these schemes force selfish nodes to honestly
report their true private information (such as cost) to maximize
their profit. However, in their schemes, a trusted third-party
auctioneer is required per route selection and central banking
services are needed to handle billing information, which
usually cannot be satisfied in mobile ad hoc network. In our
work, we focus on the scenario that neither trusted third-party
auctioneer nor central banking service is available.

VI. CONCLUSION

In this paper we have formally studied how to stimulate
cooperation among selfish in autonomous ad hoc networks
under a game theoretic framework. We have mainly focused on
a simple yet illuminating two-player packet forwarding game.
Since in such packet forwarding games there usually exist an
infinite number of Nash equilibria, we have introduced various
optimality criteria to further refine the obtained equilibria,
which lead to the unique Nash equilibrium solutions which
are more robust, more rational, and more likely. The following
criteria have been considered when performing refinement:
Pareto optimality, subgame perfection, social welfare maxi-
mization, absolute fairness, and proportional fairness. Since
nodes are selfish and will try to cheat whenever possible, the
possible cheating behavior has also been fully exploited. Our
analysis has shown that when cheating behaviors are consid-
ered, all these unique equilibrium solutions will converge to
the same format, that is, a selfish node should not help its
opponent more than its opponent has helped it.
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