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On the Robustness of Space-Time Coding Techniques
Based on a General Space-Time Covariance Model
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Abstract—The robustness of space-time coding techniques for
wireless channels that exhibit both temporal and spatial corre-
lation is investigated. A general space-time covariance model is
developed and employed to evaluate the exact pairwise error prob-
ability for space-time block codes. The expressions developed for
the pairwise error probability are used in conjunction with the
union bound to determine an upper bound for the probability
of a block error. The block error probability is evaluated for
several space-time codes and for wireless channels that exhibit
varying degrees of spatial and temporal correlation. Numerical
results are presented for a two-dimensional Gaussian scatterer
model which has been shown to be consistent with recent field
measurements of wireless channels. The results demonstrate that
the best-case wireless channel is uncorrelated in both space and
time. Correlation between transmission paths, due to insufficient
spacing of the transmit antennas or scatterers located in close prox-
imity to the mobile, can result in a significant performance degra-
dation. The conditions that result in uncorrelated transmission
paths are quantified in terms of the effective scattering radius and
the spacing of the transmit and receive antennas.

Index Terms—Receiver diversity, space-time coding, transmitter
diversity, wireless channels, wireless communications.

I. INTRODUCTION

W IRELESS systems employing multiple transmit and re-
ceive antennas have the potential for tremendous gains

in channel capacity through exploitation of independent trans-
mission paths due to scattering. Transmit diversity, achieved
through the use of space-time coding techniques at the base
station, is a recent innovation motivated by the need for higher
throughput in the wireless channel. A simple two-branch trans-
mit diversity scheme was proposed by Alamouti [1]. It was
demonstrated that this scheme provides the same diversity or-
der as a wireless system employing a single transmit antenna
and two receive antennas and utilizing maximal-ratio combin-
ing (i.e., classical receive diversity). The bit error rate perfor-
mance of the proposed scheme was evaluated assuming that the
path from each transmit antenna to each receive antenna experi-
ences mutually uncorrelated Rayleigh amplitude fading. Abun-
dant space-time codes to achieve transmit diversity have been
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proposed, for example, see [2]–[5] and the references therein.
In these works, a Rayleigh channel model was used to eval-
uate the performance of the proposed codes and the transmit
antennas were assumed to be sufficiently spaced such that the
transmission paths are independent.

The majority of the research to date on space-time coding
techniques has employed the assumption of uncorrelated trans-
mission paths without regard for the conditions under which
this assumption is justified. The degree of correlation between
channel transmission paths from a transmit antenna to a receive
antenna depends significantly on the scattering environment and
on the antenna separation at the transmitter and receiver. For ex-
ample, if the majority of the channel scatterers are located in
close proximity to the mobile, then the transmission paths will
be highly correlated unless the transmit antennas are sufficiently
separated in space.

In recently published work, Wang et al. [6] derive the exact
pairwise error probability for space-time coding over quasi-
static or fast-fading Rayleigh channels in the presence of spatial
fading correlation. For analytical tractability, the authors as-
sume the channel matrix can be decomposed as a product of
the square roots of the transmit and receive correlation matri-
ces, respectively. The effects of spatial correlation on space-
time coding performance are investigated for several scenarios,
but it is unclear how the parameters chosen relate to phys-
ical scattering parameters such as effective scattering radius,
etc.

Early research that characterized the spatial and temporal
characteristics of the mobile radio channel was performed by
Jakes [7] and Clarke [8]. In these works, a geometric scatter-
ing model was employed that places scatterers uniformly on a
circular ring a fixed distance from the mobile. More recently,
Chen et al. [9] extended this circular ring scatterer model to
include multiple antennas at the base station, a single antenna
at the mobile, and Doppler effects due to motion of the mo-
bile. An example illustrating the effects of spatial and tempo-
ral correlation on antenna spacing and interleaving depth was
given for a simple space-time repetition code. Shiu et al. [10]
investigated the effects of fading correlation on the capacity
of multiple-antenna wireless systems by employing the Jakes
model to multiple antennas at the base station as well as the
mobile. However, Doppler effects due to mobile motion were
not considered. Abdi [11] developed a space-time correlation
model for multiple antenna wireless systems by employing the
circular ring scattering geometry but allowing a non uniform
distribution of scatterers. Specifically, the von Mises density
was used to describe the angle of arrival of the multipath with
respect to the mobile. Doppler effects are included in this model.
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Independently, Safar [12] derived a special case of this model
in which the angle of arrival was uniformly distributed.

What is currently needed is an evaluation of space-time cod-
ing performance for wireless channels that exhibit both spa-
tial and temporal correlation. Additionally, the channel model
should be parameterized to permit investigation over a wide
range of wireless channels. In the work presented here, we de-
velop a general space-time covariance model based upon scat-
terer geometry, transmit and receive antenna geometry, and a
linear motion model for the mobile. The model is applicable to
arbitrary scatterer geometry and includes Doppler effects due
to mobile motion. The covariance model is evaluated for a two-
dimensional (2-D) Gaussian scattering model and is used to
quantify the performance of space-time coding techniques for
wireless channels that exhibit both temporal and spatial correla-
tion. The conditions under which the transmission paths can be
considered to be uncorrelated are quantified in terms of the re-
quired antenna spacing and scattering radius. Additionally, the
block error probability is evaluated for several space-time codes
in terms of physical parameters such as transmit and receive
antenna spacing, scattering radius, and normalized Doppler fre-
quency.

The paper is organized as follows. The channel model is
presented in Section II followed by the derivation of the ex-
act pairwise error probability for space-time codes. Details of
the space-time covariance model are presented in Section III.
Numerical results that illustrate the block error probability for
several space-time codes with varying scattering conditions are
presented in Section IV followed by the conclusions.

II. CHANNEL MODEL AND PAIRWISE ERROR PROBABILITY

Consider a wireless system employing M transmit antennas
and N receive antennas. The signal received at the qth antenna
at time t is

yq (t) =
√

ρ

M

M∑
p=1

hp,q (t)cp(t) + zq (t) (1)

where hp,q (t) is the complex path gain between the pth transmit
antenna and the qth receive antenna at time t and is modeled as
complex Gaussian with zero mean and unit variance. cp(t) de-
notes the space-time code symbol transmitted by the pth antenna
at time slot t, and zq (t) is independent complex Gaussian noise
with zero mean and unit variance. In (1), ρ denotes the signal-to-
noise ratio (SNR) per receive antenna. Each space-time signal is
described by a T × M matrix C with the columns correspond-
ing to the space dimension and the rows corresponding to the
time dimension

C =




c1(1) c2(1) · · · cM (1)
c1(2) c2(2) · · · cM (2)

...
...

. . .
...

c1(T ) c2(T ) · · · cM (T )


 . (2)

The space-time code symbol cp(t) is chosen as the entry in the
code matrix corresponding to the pth column and tth row. The
space-time signal is transmitted over T time slots and employs
M transmit antennas.

Equation (1) can be rewritten in vector form as [14]

Y =
√

ρ

M
DH + Z (3)

where the NT × MNT matrix D is constructed from the
space-time signal matrix C as follows:

D =




D1 D2 · · · DM · · · 0 0 · · · 0
0 0 · · · 0 · · · 0 0 · · · 0

...
. . .

...
0 0 · · · 0 · · · D1 D2 · · · DM



(4)

with

Di = diag(ci(1), ci(2), . . . , ci(T )), i = 1, 2, . . . ,M. (5)

The MNT × 1 channel vector H is defined by

H = (h′
1,1, . . . ,h

′
M,1, · · · ,h′

1,N , . . . ,h′
M,N )′ (6)

with

hi,j = (hi,j (1), hi,j (2), . . . , hi,j (T ))′ (7)

and ′ denoting the matrix transpose operation. The NT × 1
received signal vector Y is defined by

Y = (y1(1), . . . , y1(T ), . . . , yN (1), . . . , yN (T ))′ (8)

and the NT × 1 noise vector Z is given by

Z = (z1(1), . . . , z1(T ), . . . , zN (1), . . . , zN (T ))′. (9)

Suppose Dα and Dβ correspond to two distinct space-time
signals Cα and Cβ , respectively. Assuming the channel matrix
H is known, the hypothesis test for choosing between Cα and
Cβ is(

Y −
√

ρ

M
DαH + Z

)† (
Y −

√
ρ

M
DαH + Z

)

Cβ

>
<
Cα

(
Y −

√
ρ

M
DβH + Z

)† (
Y −

√
ρ

M
DβH + Z

)

(10)

where the symbol † denotes the matrix conjugate transpose oper-
ation. This test corresponds to choosing between two (complex)
Gaussian vectors with equal covariance matrices and unequal
mean vectors. The pairwise error probability given the channel
vector H is [15]

Pr(Cα → Cβ |H) = Q
(√

ρ

2M
‖(Dα − Dβ )H‖2

)
(11)

where ‖x‖ denotes the norm of the vector x; i.e., ‖x‖2 = x†x
and Q(x) denotes the Gaussian Q function. An alternative form
of the Gaussian Q function due to Craig [16] is employed in the
sequel. It is defined as

Q(x) =
1√
2π

∫ ∞

x

exp(−t2/2) dt

=
1
π

∫ π/2

0

exp
(
− x2

2 sin2 θ

)
dθ. (12)
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Considering now the expectation over the channel vector H,
we have

Pr(Cα → Cβ )

= E

{
Q

(√
ρ

2M
‖(Dα − Dβ )H‖2

)}

=
1
π

∫ π/2

0

E

{
exp

(
− ρ

M

‖(Dα − Dβ )H‖2

4 sin2 θ

)}
dθ.

(13)

Assuming that the channel vector H is complex Gaussian with
zero mean vector and covariance matrix R, a result due to Turin
[17], [18] regarding the characteristic function of a quadratic
form of a complex Gaussian vector may be used to evaluate the
expectation appearing in (13)

E

{
exp

(
− ρ

M

‖(Dα − Dβ )H‖2

4 sin2 θ

)}

=
1

det
(
I + ρ

M
(Dα −Dβ )R(Dα −Dβ )†

4 sin2 θ

)

=
K∏

i=1

(
1 +

ρ

M

λi

4 sin2 θ

)−1

(14)

with K corresponding to the rank of the matrix

(Dα − Dβ )R(Dα − Dβ )† (15)

and {λi}K
i=1 its eigenvalues. The final expression for the pair-

wise error probability between Cα and Cβ is now given by

Pr(Cα → Cβ ) =
1
π

∫ π
2

0

K∏
i=1

(
1 +

ρ

M

λi

4 sin2 θ

)−1

dθ. (16)

Given space-time codes Cα and Cβ and the channel (space-
time) covariance matrixR = E{HH†}, the pairwise error prob-
ability can be calculated from (16).

An upper bound on the probability of incorrectly decoding a
space-time block code may be obtained by employing the union
bound. Specifically, let Pblock denote the probability that the
space-time block code is erroneously decoded. Then,

Pblock ≤
∑
α

Pr(Cα )
∑
α �=β

Pr(Cα → Cβ ). (17)

In the sequel, the expression for the upper bound on the block
error probability (17) is evaluated to assess space-time code
performance. Define the diversity order δ as

δ = lim
ρ→∞

log Pblock

log ρ
. (18)

The parameter δ describes the asymptotic slope of the block
error probability versus SNR. For example, a diversity order of
two implies a reduction of 10−2 in the block error probability for
each 10 dB increase in SNR. In the sequel, the achieved diversity
order is also used to assess space-time code performance.

III. SPACE-TIME COVARIANCE MODEL

In this section, we present a space-time covariance model that
is applicable to arbitrary scatterer geometry, multiple antennas
at the base station and the mobile, and includes Doppler effects
due to mobile motion. The resulting model is then evaluated for
the special case of the circular ring scattering geometry.

The complex path gain between the pth antenna at the base
and the qth antenna at the mobile is denoted by hp,q (t). It
consists of contributions from K discrete scatterers with the
mth scatterer characterized by its amplitude Am , phase ψm , and
spatial location 	xm . All scatterers are assumed to be coplanar
with the mobile and base station. The spatial locations of the
array phase centers for the mobile and base are 	xmobile and
	xbase, respectively. The spatial location of the pth antenna at
the base is denoted by 	xp

base and the spatial location of the qth
antenna at the mobile is denoted by 	xq

mobile. Fig. 1 illustrates
the geometry for the scattering model. Assuming a plane wave
with frequency fc is transmitted by the base, the expression for
the complex path gain hp,q (t) is

hp,q (t) =
K−1∑
m=0

Am exp(jψm ) exp[−j2πfcτm (t)]

× exp
[
+j	km

base · 	xp
base + j	km

mobile · 	xq
mobile

]
.

(19)

In the previous expression, τm (t) denotes the path delay asso-
ciated with the mth scatterer and

	km
mobile =

2π

λ
(cos θm , sin θm , 0) (20)

	km
base =

2π

λ
(cos φm , sin φm , 0) (21)

with λ denoting the transmitted wavelength. The angle θm cor-
responds to the angle of arrival at the mobile associated with the
signal reradiated from the mth scatterer. The angle φm corre-
sponds to the angle of departure from the base associated with
the mth scatterer. The expression for the correlation between
the transmission paths associated with the signal received at the
qth element of the mobile array and transmitted from the pth
element of the base array and the signal received by the sth el-
ement of the mobile array and transmitted from the rth element
of the base array at time lag ∆t is

E{hp,q (t)h∗
r,s(t + ∆t)}

= E

{
K−1∑
m=0

K−1∑
n=0

Am An exp(jψm − jψn )

× exp[j2πfc(−τm (t) + τn (t + ∆t))]

× exp
[
+j	km

base · 	xp
base + j	km

mobile · 	xq
mobile

]

× exp
[
−j	kn

base · 	xr
base − j	kn

mobile · 	xs
mobile

] }
. (22)

Assuming the phases associated with the mth and nth scatter-
ers ψm and ψn , are independent and uniformly distributed on
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Fig. 1. Scattering model geometry.

(−π, π) and independent of all other random quantities, we have

E{hp,q (t)h∗
r,s(t + ∆t)}

= E

{
K−1∑
m=0

A2
m exp[j2πfc(−τm (t) + τm (t + ∆t))]

× exp
[
+j	km

base · (	xp
base − 	xr

base)
]

× exp
[
+j	km

mobile · (	xq
mobile − 	xs

mobile)
] }

. (23)

In order to specify the path delay associated with the mth
scatterer, τm (t), some assumptions about the motion of the mo-
bile must be made. In what follows, we assume a linear motion
model. Specifically, the spatial location of the mobile as a func-
tion of time is given by

	xmobile(t) = 	x0
mobile + 	vt (24)

with 	x0
mobile denoting the initial location of the mobile and

	v = |	v| cos (γ) denoting the velocity vector. The quantity |	v| is
the magnitude of velocity vector, and γ is the angle the vector
makes with the x-axis of the coordinate system. Using this
model, the expression for the path delay is

τm (t) =
|	xbase − 	xm | + |	xm − 	xmobile|

c

=
|	xbase − 	xm | + |	xm −

(
	x0

mobile + 	vt
)
|

c
. (25)

In this expression, c denotes the speed of light, and |	x| denotes
the norm of the vector 	x. If |	x0

mobile − 	xm | 	 |	vt|, the path
delay can be approximated by

τm (t) ≈ τ0
m +

|	v|t
c

cos αm (26)

where τ0
m corresponds to the static (time-invariant) portion of

the path delay and αm is the angle between the mobile velocity
vector 	v and the line joining the initial mobile location and the
location of the mth scatterer. In other words, the approximation

to the path delay is appropriate if the distance traveled by the
mobile at time t is much less than the distance between the
initial mobile location and the location of the mth scatterer.

Returning to the evaluation of the space-time correlation func-
tion (23) and employing the linear motion model for the mobile
and the approximation developed for the path delay, we have

E{hp,q (t)h∗
r,s(t + ∆t)}

= exp(−j2πfc∆t)E

{
K−1∑
m=0

A2
m

× exp
[
j2πfc

(
|	v|∆t

c
cos αm

)]

× exp
[
+j	km

base · (	xp
base − 	xr

base)
]

× exp
[
+j	km

mobile · (	xq
mobile − 	xs

mobile)
]}

. (27)

Define

	xp
base − 	xr

base = dpr
base (cos ξpr

base, sin ξpr
base, 0) (28)

and

	xq
mobile − 	xs

mobile = dqs
mobile (cos ξqs

mobile, sin ξqs
mobile, 0) .

(29)

The term dpr
base corresponds to the distance between the pth

and rth array elements at the base, and ξpr
base corresponds to the

angle between the line joining the array elements and the x-axis.
Similarly, dqs

mobile corresponds to the distance between the qth
and sth array elements at the mobile, and ξqs

mobile corresponds
to the angle between the line joining the array elements and the
x-axis.

Utilizing (20) and (21) and cos αm = − cos (γ − θm ), (27)
becomes

E{hp,q (t)h∗
r,s(t + ∆t)}

= exp(−j2πfc∆t)E

{
K−1∑
m=0

A2
m
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× exp[−j2πfd∆t cos (θm − γ)]

× exp
[
+j

2π

λ
dpr
base cos (φm − ξpr

base)
]

× exp
[
+j

2π

λ
dqs
mobile cos (θm − ξqs

mobile)
]}

(30)

where fd = fc(|	v|)/(c) corresponds to the maximum
Doppler shift associated with the mobile. Given the array ge-
ometry at the mobile and the base station; the velocity vector
associated with the mobile; and the joint probability density
for Am , φm , and θm , (30) can be used to compute the desired
space-time correlation.

A special case of the previous result is of interest. Consider
the case for which most of the scatterers are in the vicinity
of the mobile. From the perspective of the base station, the
angular spread of the multipath is small. Define d = |	x0

mobile −
	xbase| and Rm = |	x0

mobile − 	xm |. d is the distance between the
mobile and the base, and Rm corresponds to the scattering radius
associated with the mth scatterer. If d 	 Rm , then the angle φm

can be approximated by

φm ≈ Rm

d
sin θm (31)

and

cos φm ≈ 1

sinφm ≈ Rm

d
sin θm . (32)

Evaluating (30) for the special case of small angular spread
yields

E{hp,q (t)h∗
r,s(t + ∆t)}

= exp(−j2πfc∆t) exp
[
j2π

(
dpr
base

λ
cos ξpr

base

)]

× E

{
M −1∑
m=0

A2
m exp

[
j2π

(
dqs
mobile

λ
cos ξqs

mobile

− fd∆t cos γ

)
cos θm

]

× exp
[
j2π

(
dpr
base

λ

Rm

d
sin ξpr

base

)
sin θm

]

× exp
[
j2π

(
dqs
mobile

λ
sin ξqs

mobile − fd∆t sin γ

)
sin θm

]}
(33)

In this result, the scattering geometry is specified by the joint
probability distribution of the scattering radius about the mobile
Rm and the angle θm associated with the mth scatterer. The
equation is applicable to arbitrary scattering geometry subject
to the small angular spread approximation d 	 max{Rm}M

m=1.
Equation (33) describes the correlation between the transmis-

sion path from the pth transmit antenna to the qth receive antenna

and the transmission path from the rth transmit antenna to the
sth receive antenna with time separation ∆t. In order to apply
this result, the mobile velocity vector and initial distance from
the base must be specified as well as the array geometry at the
base and the mobile. Additionally, the joint probability distribu-
tion of the scatterer radius Rm and angle θm with respect to the
mobile must be given. In most cases of practical interest, (33)
must be numerically integrated to yield a result. However, for the
case of the circular ring scattering model attributed to Jakes [7],
a closed-form expression for the complex path correlation can
be obtained. This result is useful for validating the proposed
space-time covariance model since it can be compared with pre-
viously published results. In the following section, we present
numerical results for a 2-D Gaussian scattering model which is
based upon measurements [19]–[22]. These results demonstrate
the flexibility of the proposed space-time covariance model and
provide a performance assessment of several space-time codes
based upon a realistic scattering model.

For the Jakes model, the radius of each scatterer is fixed,
i.e., Rm = R, and the angle of arrival θm is independent for
each scatterer and uniformly distributed on (−π, π). It is further
assumed that the scatterer amplitude is fixed, i.e., Am = A. With
these assumptions, evaluating the expectation in (33) yields

E{hp,q (t)h∗
r,s(t + ∆t)}

= MA2 exp(−j2πfc∆t) exp
[
j2π

(
dpr
base

λ
cos ξpr

base

)]

× J0

(
2π

[(
dpr
base

λ

R

d
sin ξpr

base

+
dqs
mobile

λ
sin ξqs

mobile − fd∆t sin γ

)2

+
(

dqs
mobile

λ
cos ξqs

mobile − fd∆t cos γ

)2
]1/2


 (34)

where J0( · ) denotes the zeroth-order Bessel function. This re-
sult is in agreement with that derived earlier in [11] for the
special case of isotropic scattering and in [12].

To gain insight into the characteristics of the complex path
correlation due to spatial and temporal effects for the Jakes
model, consider the following special cases:

Case 1) dpr
base = 0 = dqs

mobile. This case corresponds to sin-
gle transmit and receive antennas and considers
only temporal correlation. The magnitude of the
complex path correlation for this case is propor-
tional to |J0(2πfd∆t)|. Uncorrelated space-time
symbols result for normalized Doppler frequency
fd∆t = 0.383.

Case 2) dqs
mobile = 0, sin ξpr

base = π/2, and ∆t = 0. This case
corresponds to a single receive antenna and con-
siders spatial correlation due to the spacing of the
transmit antennas. The mobile is located broadside
to the transmit antenna pair, and temporal effects
are not considered. For this case, the magnitude
of the complex path correlation is proportional to
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|J0 (2πdpr
baseR/(λ d))|. Note that the transmit an-

tenna spacing required to achieve uncorrelated paths
depends on the ratio of the scattering radius to the
distance between the transmitter and receiver R/d.
For the (unrealistic) case of R/d = 1, uncorrelated
paths result for dpr

base = 0.383λ. If R/d = 0.01, then
a transmit antenna spacing of 38.3 λ is required to
achieve uncorrelated paths.

Case 3) dpr
base = 0 and ∆t = 0. This case corresponds to a

single transmit antenna and considers spatial corre-
lation due to the spacing of the receive antennas.
Temporal effects are not considered. For this case,
the magnitude of the complex path correlation is
proportional to |J0 (2πdqs

mobile/λ) |. The receive an-
tenna spacing required to achieve uncorrelated paths
is dqs

mobile = 0.383λ and does not depend on the scat-
tering radius.

These special cases are in agreement with previous results
due to Jakes and Clarke [7], [8].

IV. NUMERICAL RESULTS

In this section, we evaluate the union bound on the block
error probability (17) using a 2-D Gaussian scattering model
for several space-time codes employing two and four transmit
antennas and up to three receive antennas. Linear array geometry
was employed at the base and mobile for all results. Variations
in both spatial and temporal correlation are considered, and the
results are compared to the case of an uncorrelated (space and
time) channel.

The motivation for the use of the 2-D Gaussian scattering
model is due to a recent measurement campaign conducted by
Pedersen et al. [19]–[21] in which the temporal and azimuth dis-
persion of multipath in urban wireless environments was char-
acterized. The study found that the power azimuth spectrum
was accurately modeled using a truncated Laplacian function,
and the power delay spectrum was well-approximated by a neg-
ative exponential function. Recent work by Janaswamy [22]
concluded that the measurements reported by Pedersen et al.
were consistent with a 2-D Gaussian model for the scatterer
locations surrounding the mobile receiver.

The standard deviation of the scattering radius for the 2-D
Gaussian model was varied from σR = 10, 50, 200 m, and the
distance between the mobile and base (array phase centers) was
fixed at d = 1000 m. The parameter σR specifies the radius
about the mobile for which approximately 68% of the scatter-
ers are contained. The smallest value for σR yields the ratio
σR/d = 0.01 and corresponds to angular spread due to multi-
path of approximately 1◦ from the perspective of the base station.
The mobile location was broadside to the base antenna array,
and its velocity was chosen such that the maximum Doppler fre-
quency was approximately fd = 78 Hz corresponding to a car-
rier frequency of 850 MHz and a maximum speed of 100 km/hr.
Variations in the space-time symbol period Ts were consid-
ered to assess the effects due to temporal correlation. Specifi-
cally, values used for the normalized Doppler frequency were
fdTs = 0.0033, 0.01, 0.05, 0.1. The smallest value corresponds

to a slow fading channel with a symbol to fading ratio of approx-
imately 300:1. In other words, space-time symbols separated by
300 symbol periods are approximately uncorrelated. The largest
value corresponds to a channel with a symbol to fading ratio of
10:1 and is denoted as fast fading.

The space-time block codes investigated include the orthogo-
nal code [1]–[3], the orthogonal code with sphere packing [14],
the diagonal algebraic code [4], and the cyclic code [5]. These
codes were chosen because they respresent a wide spectrum of
available space-time codes and yield reasonable performance.

For the presentation that follows, results for spatial corre-
lation are presented first followed by the results for temporal
correlation.

A. Spatial Correlation

This section presents results for the slow fading (fdTs =
0.0033) and uncorrelated wireless channels with variations in
spatial correlation due to transmit antenna spacing, receive an-
tenna spacing and scattering radius standard deviation σR for
the 2-D Gaussian scattering model. Results for two transmit an-
tennas are presented first followed by results for four transmit
antennas. All results for two transmit antennas were evaluated
at 10−2 block error probability, and all results for four transmit
antennas were evaluated at 10−4 block error probability.

1) Two Transmit Antennas: For two transmit antennas, the
orthogonal code due to Alamouti [1] was used with a 16-
quadrature-amplitude modulation (QAM) symbol constellation.
For the diagonal algebraic code, we also chose 16-QAM sym-
bols and the unitary rotation matrix was chosen to be

1√
2

(
1 ejπ/4

1 −ejπ/4

)
. (35)

For all space-time codes, the spectral efficiency was 4 bits/s/Hz.
Fig. 2 shows the block error probability (union bound)

versus SNR and scattering radius standard deviation for two
transmit antennas (λ/2 spacing) and one receive antenna. The
normalized Doppler frequency for this case was fdTs = 0.0033,
representing slow fading. To achieve a block error probability of
10−2 for the uncorrelated channel, approximately 26.4 dB SNR
is required for the diagonal algebraic code. The orthogonal code
and orthogonal code with sphere packing realize performance
improvements of 1.4 and 1.7 dB, respectively, over the diagonal
algebraic code for the uncorrelated channel. For a scattering
radius standard deviation of σR = 10 m, approximately 37.8
dB SNR is required to achieve a block error probability of
10−2 for the diagonal algebraic code. The orthogonal code and
orthogonal code with sphere packing yield improvements of
0.4 dB and 0.7 dB, respectively, for this case. Thus, the channel
with scattering radius standard deviation of σR = 10 m requires
an increase in SNR of 11.4 dB, relative to that required for the
uncorrelated channel, to achieve a block error probability of
10−2 for the diagonal algebraic code. The required increase in
signal-to-noise ratio for the orthogonal code and the orthogonal
code with sphere packing is 12.3 dB and 12.4 dB, respectively.
These results highlight the dependence of space-time coding
performance on spatial correlation for the slow fading channel.
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Fig. 2. Orthogonal code with 16-QAM symbols (solid curve), orthogonal code with sphere packing (dashed curve), diagonal algebraic code (dotted curve). Block
error probability (union bound) versus SNR and scattering radius standard deviation, two transmit antennas (λ/2 spacing), one receive antenna, fd Ts = 0.0033.

Fractional wavelength antenna spacing at the transmitter
combined with small scattering radius yield transmission paths
that are highly correlated and result in degraded performance
relative to the uncorrelated channel. Increasing the spacing of
the transmit antennas mitigates this effect to a certain extent as
will be demonstrated next. Fig. 2 also illustrates that a diversity
order of two is achieved for all space-time codes investigated
for the uncorrelated channel. For example, the block error
probability for the orthogonal space-time code and uncorrelated
channel is reduced from 10−3 at a SNR of 30 dB to 10−5 at
a SNR of 40 dB. Although not evident from the figure, it was
verified that the asymptotic slope of the block error probability
for the 2-D Gaussian scatterer model with σR = 10, 50, 200 m
was the same as that for the uncorrelated channel, and thus these
cases also yield a diversity order of two. For a scattering radius
standard deviation of σR = 10 m, the asymptotic slope of the
block error probability is realized for SNRs greater than 50 dB.

Fig. 3 shows the block error probability (union bound) ver-
sus SNR and transmit antenna spacing for a single receive an-
tenna and normalized Doppler frequency of fdTs = 0.0033 and
scattering radius standard deviation of σR = 10 m. From these
results, it was determined that an antenna spacing of 30 λ is re-
quired to achieve performance within 0.5 dB of the uncorrelated
channel for 10−2 block error probability. For a carrier frequency
of 850 MHz, the transmitted wavelength is λ = 0.35 m and 30
λ = 10.5 m. From Fig. 3, it is seen that increasing the spacing
of the transmit antennas from λ/2 to 5 λ decreases the SNR re-
quired to achieve a block error probability of 10−2 by 6.7 dB for
the diagonal algebraic code, 7.4 dB and 7.5 dB, respectively, for
the orthogonal code and orthogonal code with sphere packing
for a scattering radius standard deviation of σR = 10 m.

Fig. 4 shows the results for two transmit antennas (5 λ spac-
ing) and two receive antennas (λ/2 spacing) and fdTs = 0.0033.
A SNR of 17.3 dB is required to achieve a block error probabil-
ity of 10−2 for the diagonal algebraic code and an uncorrelated
channel. The orthogonal code and orthogonal code with sphere
packing achieve gains of 0.6 dB and 1.1 dB, respectively, over
the diagonal algebraic code for the uncorrelated channel. For the
channel with scattering radius standard deviation σR = 10 m
the required SNRs to achieve 10−2 block error probability are
20.7, 20.4, and 20.0 dB, respectively, for the diagonal algebraic
code, orthogonal code, and orthogonal code with sphere pack-
ing. Comparing Figs. 3 and 4 it is seen that the addition of
one receive antenna (λ/2 spacing) reduces the SNR required
to achieve a block error probability of 10−2 by 9.1 dB for the
diagonal algebraic code, 8.3 dB and 8.5 dB, respectively, for the
orthogonal code and orthogonal code with sphere packing for
the uncorrelated channel. Fig. 4 also illustrates that a diversity
order of four is achieved for the uncorrelated channel, and for
all space-time codes investigated. For example, the block error
probability for the orthogonal space-time code is reduced from
10−7 at a SNR of 30 dB to 10−11 at a SNR of 40 dB. Although
not evident from the figure, it was verified that the asymp-
totic slope of the block error probability for the 2-D Gaussian
scatterer model with σR = 10 m was the same as that for the
uncorrelated channel, and thus this case also yields a diversity
order of four. For this case, the asymptotic slope of the block
error probability is realized for SNRs greater than 40 dB.

2) Four Transmit Antennas: For the case of four transmit
antennas, we investigated three space-time codes having a spec-
tral efficiency of 2 bits/s/Hz. These codes are: the orthogonal
code with sphere packing [13], [14], the cyclic code [5], and the
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Fig. 3. Orthogonal code with 16-QAM symbols (solid curve), orthogonal code with sphere packing (dashed curve), diagonal algebraic code (dotted curve). Block
error probability (union bound) versus SNR and transmit antenna separation, two transmit antennas, one receive antenna, fd Ts = 0.0033, σR = 10 m.

Fig. 4. Orthogonal code with 16-QAM symbols (solid curve), orthogonal code with sphere packing (dashed curve), diagonal algebraic code (dotted curve). Block
error probability (union bound) versus SNR and scattering radius standard deviation, two transmit antennas (5λ spacing), two receive antennas (λ/2 spacing),
fd Ts = 0.0033.

diagonal algebraic code with unitary rotation matrix

1
2




1 ejπ/8 ej2π/8 ej3π/8

1 −ejπ/8 ej2π/8 −ej3π/8

1 jejπ/8 −ej2π/8 −jej3π/8

1 −jejπ/8 −ej2π/8 jej3π/8


 (36)

and QPSK signal constellation. Fig. 5 shows the block error
probability (union bound) versus SNR and scattering radius
standard deviation for four transmit antennas (λ/2 spacing) and
one receive antenna. The normalized Doppler frequency for this
case was fdTs = 0.0033, representing slow fading. To achieve
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Fig. 5. Orthogonal code with sphere packing (dashed curve), diagonal algebraic code (dotted curve), cyclic code (dash-dotted curve). Block error probability
(union bound) versus SNR and scattering radius standard deviation, four transmit antennas (λ/2 spacing), one receive antenna, fd Ts = 0.0033.

a block error probablity of 10−4 for the uncorrelated channel,
a SNR of approximately 22.6 dB is required for the cyclic
code. The diagonal algebraic and the orthogonal code with
sphere packing realize performance improvements of 2.2 dB
and 3.0 dB, respectively, over the cyclic code for the uncor-
related channel. For a scattering radius standard deviation of
σR = 10 m, approximately 41.7-dB SNR is required to achieve
a block error probability of 10−4 for the cyclic code. The di-
agonal algebraic and the orthogonal code with sphere packing
yield improvements of 0.4 dB and 2.0 dB, respectively, for this
case. With reference to Fig. 5, note that 19.1 dB additional SNR
is required to maintain a block error probability of 10−4 for a
scattering radius standard deviation of σR = 10 m compared
with the uncorrelated channel for the cyclic code. The diag-
onal algebraic code and orthogonal code with sphere packing
require an additional SNR of 20.9 and 20.1 dB, respectively,
for the same conditions. Fig. 5 also illustrates that a diversity
order of four is achieved for the uncorrelated channel and for
all space-time codes investigated. For example, the block er-
ror probability for the orthogonal space-time code with sphere
packing is reduced from 10−8 at a SNR of 30 dB to 10−12 at
a SNR of 40 dB. Although not evident from the figure, it was
verified that the asymptotic slope of the block error probability
for the 2-D Gaussian scatterer model with σR = 10, 50, 200 m
was the same as that for the uncorrelated channel and thus these
cases also yield a diversity order of four. For a scattering radius
standard deviation of σR = 10 m, the asymptotic slope of the
block error probability is realized for SNRs greater than 120 dB.

Fig. 6 shows the block error probability (union bound) versus
SNR and transmit antenna spacing for scattering radius stan-
dard deviation σR = 10 m and normalized Doppler frequency

fdTs = 0.0033. It was found that a transmit antenna spacing of
40 λ (14.0 m) is required to achieve performance within 0.5 dB
of that for the uncorrelated channel at a block error probability
of 10−4. From Fig. 6, it is seen that increasing the spacing of the
transmit antennas from λ/2 to 5 λ decreases the SNR required
to achieve a block error probability of 10−4 by 11.3 dB for the
cyclic code and 11.9 and 10.9 dB, respectively, for the diagonal
algebraic code and orthogonal code with sphere packing for a
scattering radius standard deviation of σR = 10 m.

Figs. 7 and 8 show the results for two and three receive
antennas (λ/2 spacing), respectively, and four transmit antennas
(5 λ spacing) for fdTs = 0.0033 and scattering radius standard
deviation σR = 10 m and the uncorrelated channel. For the case
of two receive antennas, the cyclic code achieves a block error
probability of 10−4 at a SNR of 14.4 dB for the uncorrelated
channel. A performance improvement of 1.8 and 2.0 dB,
respectively, is observed for the diagonal algebraic code and
orthogonal code with sphere packing for the uncorrelated chan-
nel. For the case of 3 receive antennas, the cyclic code achieves
a block error probability of 10−4 at a SNR of 10.9 dB for the
uncorrelated channel. A performance improvement of 1.3 and
1.4 dB, respectively, is observed for the diagonal algebraic code
and orthogonal code with sphere packing for the uncorrelated
channel. Comparing Figs. 6–8, it is seen that a system with two
receive antennas requires 8.2 dB less SNR ratio to achieve a
block error probability of 10−4 than a system with one receive
antenna for the cyclic code and uncorrelated channel. It was
found that a system with three receive antennas further reduces
the required SNR by 3.5 dB compared with the case of two
receive antennas for the same conditions. Also, results for four
receive antennas (not shown) demonstrate a further reduction
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Fig. 6. Orthogonal code with sphere packing (dashed curve), diagonal algebraic code (dotted curve), cyclic code (dash-dotted curve). Block error probability
(union bound) versus SNR and transmit antenna spacing, four transmit antennas (λ/2 spacing), one receive antenna, fd Ts = 0.0033, σR = 10 m.

Fig. 7. Orthogonal code with sphere packing (dashed curve), diagonal algebraic code (dotted curve), cyclic code (dash-dotted curve). Block error probability
(union bound) versus SNR and scattering radius standard deviation, four transmit antennas (5λ spacing), two receive antennas (λ/2 spacing), fd Ts = 0.0033.

of 2.1 dB compared with the case of three receive antennas.
Although these comparisons were made for the cyclic code,
comparable results were obtained for the diagonal algebraic
code and orthogonal code with sphere packing. From these
results, it appears that the benefit realized by adding multiple re-
ceive antennas diminishes with increasing numbers of antennas.

B. Temporal Correlation

This section investigates the space-time block code error per-
formance due to variations in temporal correlation. Four cases
for the normalized Doppler frequency were considered, fdTs =
0.0033, 0.01, 0.05, 0.1. The smallest value corresponds to a slow
fading wireless channel, and the largest value corresponds to the
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Fig. 8. Orthogonal code with sphere packing (dashed curve), diagonal algebraic code (dotted curve), cyclic code (dash-dotted curve). Block error probability
(union bound) versus SNR and scattering radius standard deviation, four transmit antennas (5 λ spacing), three receive antennas (λ/2 spacing), fd Ts = 0.0033.

case of fast fading. The symbol to fading ratios for the slow fad-
ing and fast fading cases are 300:1 and 10:1, respectively. All
results for two transmit antennas were evaluated at 10−2 block
error probability, and all results for four transmit antennas were
evaluated at 10−4 block error probability.

1) Two Transmit Antennas: Fig. 9 shows the block error
probability (union bound) versus SNR and normalized Doppler
frequency for two transmit antennas (λ/2 spacing), one receive
antenna, and scattering radius standard deviation σR = 10 m.
For the fast fading channel (fdTs = 0.1), the orthogonal code
with sphere packing requires 31.9-dB SNR to achieve a block
error probability of 10−2. The orthogonal code and diagonal
algebraic code yield improvements of 1.0 and 2.1 dB, respec-
tively, over the orthogonal code with sphere packing for the fast
fading channel. This case corresponds to space-time symbols
with low temporal correlation but high spatial correlation due to
the fractional wavelength spacing at the transmitter and small
scattering radius. For the slow fading channel (fdTs = 0.0033),
the diagonal algebraic code requires 37.8 dB SNR to achieve a
block error probability of 10−2. The orthogonal code and the
orthogonal code with sphere packing yield improvements of
0.5 dB and 0.7 dB, respectively, over the diagonal algebraic
code for this case. With reference to Fig. 9 and considering a
block error probability of 10−2, the best performing space-time
code for the fast fading channel (fdTs = 0.1) and the chan-
nel with normalized Doppler frequency of fdTs = 0.05 is the
diagonal algebraic code. However, this code yields the worst
performance among all codes investigated for the slow fading
channel (fdTs = 0.0033), and the uncorrelated (space and time)
channel. Evidently, the structure of the diagonal algebraic code

permits greater coding gain than what is achievable with either
the orthogonal code or the orthogonal code with sphere packing
for wireless channels that exhibit low temporal correlation be-
tween space-time symbols but high spatial correlation between
transmission paths. On the other hand, for wireless channels
that are both spatially and temporally uncorrelated, the orthogo-
nal code with sphere packing provides the greatest coding gain
among the space-time codes investigated. Although not evident
from the figure, it was verified that all space-time codes exhibit
the same asymptotic slope of block error probability versus SNR
for all values of normalized Doppler frequency investigated and
thus have the same diversity order. For a normalized Doppler
frequency of fdTs = 0.0033, the asymptotic slope of the block
error probability is realized for SNRs greater than 50 dB.

Fig. 10 shows the block error probability (union bound) versus
SNR and normalized Doppler frequency for two transmit anten-
nas (5 λ spacing), one receive antenna, scattering radius standard
deviation σR = 200 m, and the uncorrelated channel. From Fig.
10, it is seen that increasing the spacing of the transmit antennas
from λ/2 to 5 λ combined with an increase in scattering radius
standard deviation from σR = 10 m to σR = 200 m produces a
channel with low spatial correlation and results in error perfor-
mance indistinguishable from the uncorrelated (space and time)
channel for all variations of normalized Doppler frequency that
were investigated. This result implies that reducing the spatial
correlation between transmission paths is itself sufficient to re-
alize the full diversity and coding gains that are achievable for
a particular wireless channel. With reference to Fig. 10, the di-
agonal algebraic code requires 26.4-dB SNR to achieve a block
error probability of 10−2 and the orthogonal code and orthogonal
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Fig. 9. Orthogonal code with 16-QAM symbols (solid curve), orthogonal code with sphere packing (dashed curve), diagonal algebraic code (dotted curve). Block
error probability (union bound) versus SNR and normalized Doppler frequency, two transmit antennas (λ/2 spacing), one receive antenna, σR = 10 m.

Fig. 10. Orthogonal code with 16-QAM symbols (solid curve), orthogonal code with sphere packing (dashed curve), diagonal algebraic code (dotted curve).
Block error probability (union bound) versus SNR and normalized Doppler frequency, two transmit antennas (5λ spacing), one receive antenna, σR = 200 m.

code with sphere packing provide improvements of 1.4 dB and
1.7 dB, respectively, over the diagonal algebraic code.

2) Four Transmit Antennas: Fig. 11 shows the block error
probability (union bound) versus SNR and normalized Doppler
frequency for four transmit antennas (λ/2 spacing), one re-

ceive antenna, scattering radius standard deviation σR = 10 m,
and the uncorrelated channel. For the fast fading channel
(fdTs = 0.1), the cyclic code requires 29.3-dB SNR to achieve a
block error probability of 10−4. The orthogonal code with sphere
packing and the diagonal algebraic code yield improvements of
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Fig. 11. Orthogonal code with sphere packing (dashed curve), diagonal algebraic code (dotted curve), cyclic code (dash-dotted curve). Block error probability
(union bound) versus SNR and normalized Doppler frequency, four transmit antennas (λ/2 spacing), one receive antenna, σR = 10 m.

Fig. 12. Orthogonal code with sphere packing (dashed curve), diagonal algebraic code (dotted curve), cyclic code (dash-dotted curve). Block error probability
(union bound) versus SNR and normalized Doppler frequency, four transmit antennas (5 λ spacing), one receive antenna, σR = 200 m.

0.7 and 1.0 dB, respectively, over the cyclic code for the fast
fading channel. This case corresponds to space-time symbols
with low temporal correlation but high spatial correlation due to
the fractional wavelength spacing at the transmitter and small
scattering radius. For the slow fading channel (fdTs = 0.0033)

the cyclic code requires 41.7 dB SNR to achieve a block er-
ror probability of 10−4. The diagonal algebraic code and the
orthogonal code with sphere packing yield improvements of
0.4 and 2.0 dB, respectively, over the cyclic code for this case.
Although not evident from the figure, it was verified that all
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space-time codes exhibit the same asymptotic slope of block er-
ror probability versus SNR for all values of normalized Doppler
frequency investigated and thus have the same diversity order.
For a scattering radius standard deviation of σR = 10 m, the
asymptotic slope of the block error probability is realized for
SNRs greater than 120 dB.

Fig. 12 shows the block error probability (union bound) ver-
sus SNR and normalized Doppler frequency for four transmit
antennas (5 λ spacing), one receive antenna, scattering radius
standard deviation σR = 200 m, and the uncorrelated chan-
nel. Comparing Figs. 11 and 12 it can be seen that increas-
ing the transmit antenna separation and increasing the scat-
tering radius standard deviation produces a channel with low
spatial correlation and results in performance virtually indis-
tinguishable from the uncorrelated (space and time) channel
despite variations in the normalized Doppler frequency. With
reference to Fig. 12 the cyclic code requires 22.7 dB SNR
to achieve a block error probability of 10−4; the diagonal al-
gebraic code and orthogonal code with sphere packing pro-
vide improvements of 2.1 and 2.9 dB, respectively, over the
cyclic code.

V. CONCLUSION

A general space-time covariance model has been proposed
and used to investigate the robustness of several space-time
codes for wireless channels that exhibit both spatial and
temporal correlation. The best-case wireless channel for all
space-time codes was uncorrelated in space and time.

For the slow fading wireless channel (fdTs = 0.0033), spa-
tial correlation caused by fractional wavelength spacing at the
transmitter or scatterers located in close proximity to the mo-
bile resulted in significant performance degradation. For exam-
ple, for the case of two transmit antennas there was roughly a
12-dB difference in SNR required (averaged over all space-time
codes) to achieve 10−2 block error probability for the uncor-
related channel compared to the channel with scattering radius
standard deviation σR = 10 m for λ/2 transmit antenna spacing.
It was found that increasing the spacing of transmit antennas to
30 λ (10.5 m) yielded performance within 0.5 dB of that for the
uncorrelated channel for all space-time codes. For the case of
four transmit antennas there was roughly a 20-dB difference in
SNR required (averaged over all space-time codes) to achieve
10−4 block error probability for the uncorrelated channel com-
pared to the channel with scattering radius standard deviation
σR = 10 m for λ/2 transmit antenna spacing. For this case, it
was found that increasing the spacing of transmit antennas to 40
λ (14.0 m) yielded performance within 0.5 dB of that for the un-
correlated channel for all space-time codes. In some scenarios,
it may impractical, due to physical constraints, for example, to
achieve the transmit antenna spacing required for performance
comparable to the uncorrelated channel. In such cases, some
performance loss is inevitable and the results presented allow
the performance degradation to be quantified.

Effects due to temporal correlation between adjacent space-
time symbols resulting from mobile motion were also inves-
tigated. If the transmission paths are spatially correlated, a

significant performance degradation is observed for slow fad-
ing (fdTs = 0.0033) compared to fast fading (fdTs = 0.1).
For the case of two transmit antennas, there was roughly a
6.5-dB difference (averaged over all space-time codes) in the
SNR required to achieve 10−2 block error probability for the
fast fading channel compared to slow fading for scattering radius
standard deviation σR = 10 m and λ/2 transmit antenna spac-
ing. For the case of four transmit antennas, there was roughly a
12-dB difference in the SNR required (averaged over all space-
time codes) to achieve 10−4 block error probability for the fast
fading channel compared to the slow fading channel for scat-
tering radius standard deviation σR = 10 m and λ/2 transmit
antenna spacing. If the transmission paths are spatially uncor-
related, however, there is virtually no performance difference
between the slow fading and fast fading channels. In fact, all
variations in the normalized Doppler frequency that were in-
vestigated yield performance virtually indistinguishable to that
observed for the uncorrelated (space and time) channel for
this case.

The numerical results presented indicate that there exists a
tradeoff between spatial correlation and temporal correlation
effects in determining the performance of systems employing
space-time block codes. The best-case wireless channel was
found to be uncorrelated in both space and time. However, it
was also determined that the effects of high spatial correlation
may be compensated to a certain extent by low temporal corre-
lation and vice versa to achieve performance comparable to the
uncorrelated channel.
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