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Abstract—The explosion in demand for wireless data services in
recent years has triggered pervasive deployment of wireless net-
works. How to associate to one of the wireless networks in the
best interest of a user is an essential problem to mobile comput-
ing. In this paper, we analyze a data set of wireless LAN traces
collected from campus networks, from which we observe that the
user arrival distribution is approximately Poisson distributed; the
session time and the waiting time to switch network can be approx-
imated by exponential distributions. Based on the data analysis,
we formulate a wireless access network association game as a
multidimensional Markov decision process with negative network
externality, where the best response strategy is an approximate
Nash equilibrium. A modified value iteration algorithm is pro-
posed to search the best response strategy profile. Applying the
proposed algorithm to the data-driven stochastic model, the best
response strategy is shown to achieve a better individual expected
utility while satisfying the individual rationality, and attain a near-
optimal social welfare performance compared to other strategies
such as the centralized method and the greedy algorithm.

Index Terms—Wireless network association, game theory,
statistical modeling, data set analysis, Markov decision process.

I. INTRODUCTION

N OWADAYS, with the recent proliferation of wireless
devices and the ubiquity of wireless networks, users

can connect to WiFi wireless networks through hot-spots or
access points (APs) in most public areas. As the macro-
cellular networks usually have a broader range of coverage,
the WiFi networks are smaller in its reachable range but more
densely deployed. Moreover, the development of femtocells
[1] also arouses more choices for cellular service subscribers.
Therefore, when a user attempts to access a wireless network,
oftentimes he/she may encounter a decision to choose one of
multiple wireless networks. In order to obtain a better perfor-
mance, a user sometimes needs to decide whether to switch to
another network during a session. From a user’s viewpoint, the
decision of network association can lead to different quality of
service during the session. From the perspective of a service
provider, better allocation of users can provide more efficient
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utilization of resources such as signal power, temporal and
spatial bandwidth. Hence, the wireless access network associ-
ation problem is becoming more and more important due to
its frequent occurrence in our daily life and the influence to
efficient resource utilization.

To tackle the wireless network association problem in a prac-
tical viewpoint, the model formulation has to take into account
empirical study of user behavior, which is not possible with-
out real-life data. The pattern and the statistical properties of
user behavior can be extracted from massive amount of wire-
less LAN traces of APs available in various environments such
as university campus, shopping malls, restaurants, coffee shops,
airports, etc. In most current practical systems, the network
association decision is often made based on the instantaneous
signal-to-interference-plus-noise ratio (SINR) criterion, i.e., a
user simply connects to the wireless network with the highest
SINR. Such a strategy may be a good heuristic by consider-
ing the instantaneous utility, but it may not be optimal since
SINR does not take into account the long term negative network
externality [2], [3] caused by subsequent users’ decisions. The
negative network externality refers to the negative effect on a
user caused by other users with the same strategy in a network.
For example, the traffic congestion caused by the vehicles that
choose the same route delays each vehicle’s traveling time. The
instantaneous information only reflects the current condition
without considering the future utility, which can be significantly
degraded if subsequent users make the same decision.

Recently, the wireless network association problem has
attracted significant attention in the literature [4]–[18]. The
tutorial in [6] provides a comprehensive survey on many exist-
ing methods in the literature, in which utility functions and
different attributes such as bandwidth, delay, packet loss, etc.,
are summarized and compared. In [16], a detailed state-of-
the-art of existing vertical handover decision mechanisms and
decision schemes for heterogeneous wireless networks are cat-
egorized and summarized. One category of network association
is based on centralized methods to optimize the system perfor-
mance metrics such as sum rate, minimum rate, or proportional
fairness [4], [5]. In [7], an analytic hierarchy process is applied
to decide the relative weights of evaluative criteria set accord-
ing to user preferences and service applications. In [8], Niyato
et al. study a network-selection algorithm based on population
evolution, which requires a centralized controller, and an algo-
rithm based on reinforcement-learning, where a user can learn
and adapt the decision on network selection to reach evolu-
tionary equilibrium without any interaction with other users. In
[5], the cell association and resource allocation are considered
jointly, and a distributed algorithm via dual decomposition is
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proposed to solve a logarithmic utility maximization problem.
Localized cooperation is introduced in [17], where the global
social welfare optimization is decomposed into sub-problems
by exploiting the spatial distribution of networks with user
demand awareness. In [18], an evolutionary game is formu-
lated to model and investigate the adaptive service selection
of users, and an evolutionary stable strategy is shown to be
an effective solution. Another category of network associa-
tion methods is characterized by game theory, which models
strategic interactions among users using formalized incentive
structures [19], [20]. In wireless communications and network-
ing, game theory has been widely studied in many applications
[20]–[24] including non-cooperative power control [22], coop-
eration stimulation [21], and spectrum allocation [23]. In [15],
Aryafar et al. investigate the dynamics of network selection
games in heterogeneous wireless networks and the convergence
properties of these games. In [11], the network selection is
modeled as a congestion game, where players make decisions
simultaneously to optimize the interference and throughput.
The network association problem in [10] is formulated as a
non-cooperative game in which users selfishly minimize an
association cost accounting for the path length and the path
interference to reach the gateway.

While most of the existing works study the scenario that
users make simultaneous decisions, in this paper, we consider
the network association problem under the scenario where users
make sequential decisions, and to obtain a better long term
utility, users have to consider the negative network externality,
i.e., the decisions of subsequent users, to determine his/her best
response strategy. Sequential decisions considering the nega-
tive network externality effect are investigated in the Chinese
Restaurant Game (CRG) [25]–[27], which studies the optimal
decision and social learning with negative network externality
but with a fixed number of users. In [27], [28], the dynamic
CRG is proposed to allow users arriving and leaving stochasti-
cally. In our previous work [28], the wireless network selection
problem is investigated without considering the strategy of
switching to another network, i.e., a user has to stay in a net-
work until departure once he/she associates with the network.
In addition, the proposed model in [28] is not justified based on
the real-life data set analysis.

In this paper, we further extend the dynamic CRG in [28] to
incorporate the behavior of switching to another network. We
also extract statistical properties of users’ behaviors in wireless
networks by analyzing a data set of wireless LAN traces col-
lected from Dartmouth campus networks in a span of 4 months
[29]. It is validated that the user arrivals in wireless access net-
works are approximately Poisson distributed. Previous work on
WLAN trace analysis [30]–[36] focus on different aspects, such
as uplink/downlink traffic modeling, user mobility patterns, and
geographic distribution of users. In [33], [34], the authors vali-
date the arrival processes of users as being time-varying Poisson
processes based on first applying a nonlinear transformation of
the arrival time, and then verifying the exponentiality of the
transformed values. However, it is only shown that the statisti-
cal test is a necessary condition for a Poisson process, but the
sufficiency may not be clear. In [35], Kullback-Leibler (KL)
divergence is used to perform a Poisson distribution test for the

Fig. 1. The empirical probability distribution of the number of user arrivals in
different durations measured from the data set.

arrival process of new sessions at each AP. In [36], the user
occupancy distribution of an AP is shown to be a Poisson dis-
tribution. However, a Poisson user occupancy distribution does
not imply a Poisson user arrival process. Based on the data set,
the empirical probability distribution functions of the number
of user arrivals are plotted in Figure 1, where different curves
represent the number of user arrivals in different durations. It
can be seen that the behavior of these probability distribution
curves is very similar to the Poisson distribution with differ-
ent mean values. Furthermore, the waiting time to departure,
i.e., the duration of a session, and the waiting time to switch to
another network appear to be exponential distributions.

With the statistical properties extracted from the wireless
LAN traces, we are able to construct a stochastic model for
the wireless access network system. Next, we show that the
problem of finding the best response strategy profile of network
association when arriving and the best response strategy of
switching during a session is a multi-dimensional Markov deci-
sion process (M-MDP). A modified value iteration algorithm is
proposed to obtain a solution of an ε-approximate Nash equilib-
rium. It is observed from numerical simulations that the strategy
profile obtained by the proposed algorithm has a threshold
structure, which allows a much smaller required space to store
the strategy profile. Note that no theoretical proof is provided
for the threshold structure. Simulation results demonstrate the
efficiency and effectiveness of the proposed algorithm, i.e.,
while achieving the best response strategy for the individual,
the proposed algorithm attains similar performance of social
welfare compared to the maximum social welfare strategy.

A more sophisticated probabilistic model, such as the mod-
ified Poisson distribution used in [37], may be used to fit the
data more accurately. However, a general process may not pos-
sess the Markovian property which plays a significant role in
the system model such that the wireless access network asso-
ciation problem can be reduced into the M-MDP formulation.
In this paper, since the empirical inter-arrival distribution can
be approximated by an exponential distribution, the simplest
Markovian arrival process, i.e., the Poisson process, is adopted
to model the user arrival behavior.
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We note that since the system model of the proposed wire-
less access network association game in this paper is quite
general and not restricted to any particular technology, the pro-
posed model and algorithms can be applied to many wireless
technologies including macro-cellular, femto-cellular and WiFi
WLANs given the assumptions such as the availability of the
information of arrival rates and utility functions. For example,
in a heterogeneous cellular system with macro and femto base-
stations available, a cellular user can calculate the best response
strategy profile in consideration of the strategies of other users,
and then associates to the base-station accordingly to obtain a
better long-term utility. WiFi WLANs are considered in this
paper as an example of wireless access network selection to
illustrate and validate the effectiveness of the proposed method.

The rest of the paper is organized as follows. In Section II,
the system model of the wireless network system is introduced.
Section III describes the formulation of the wireless access net-
work association game, the expression of the expected utility,
and the M-MDP. The analysis of the data set is contained in
Section IV, in which we evaluate the probability distribution
of user inter-arrival time, session time, and the waiting time to
switch to another network. In Section V, data-driven simula-
tion results are shown to demonstrate the performance of the
proposed value iteration algorithm. Finally, the conclusion is
drawn in Section VI.

II. SYSTEM MODEL

In this section, we describe the system model of the wire-
less access network association game. With the statistical model
of the user arrival being a Poisson process and the user depar-
ture following an exponential distribution, we can formulate the
wireless access network system as follows. The system con-
sists of K networks, and network k acts as a server of a finite
capacity Nk , i.e., the network is able to simultaneously serve at
most Nk users. For simplicity, it is assumed there is no buffer
or waiting room when a network is fully occupied by users.

A user type is defined by the network reachability. With
arrival rate λ̄K, users of user type K can choose a network
from K, where K is a non-empty subset of all networks
{1, . . . , K }. For example, if K = 2, then K can be {1}, {2},
or {1, 2}. The user departure rate is denoted as μ̄0 uniformly
for all networks. We also define uniformly for all networks the
network-switching rate μ̄1, which means the rate that a user
switches to another network from his current network.

We consider a discrete time Markov system, where the sys-
tem state s = (s1, . . . , sK ) takes its value from the state space
S = {(s1, . . . , sK )|sk = 0, 1, . . . , Nk, k = 1, . . . , K }, where sk

represents the number of users in network k, for k = 1, . . . , K .
The duration of a time unit is T (seconds). The arrival probabil-
ity of type K users, λK, can be approximated as 1 − e−λ̄KT ≈
λ̄KT . Similarly, the departure probability of a user is approx-
imated as μ0 = μ̄0T , and the network-switching probability
as μ1 = μ̄1T . To simplify the presentation, we consider Nk =
N ,∀k in the rest of the paper.

The arriving user’s strategy profile σK = {σK
s |∀s ∈ S} is a

mapping from the aggregate state space to the action space,
i.e., σK : {0, 1, . . . , N }K �→ {1, . . . , K }. The switching user’s

strategy profile γK = {γK
s |∀s ∈ S,∀K} is a mapping from S to

the action space, i.e., γK : {0, 1, . . . , N }K �→ {1, . . . , K }. The
system transition probability of an arrival event is given by

P sys(s + e j |s) =
∑
K

I j (σ
K
s )λK (1)

where e j denotes the vector with the j-th element as one and
zeros otherwise, σK

s denotes the strategy at state s and σK
s = j

means the strategy to enter network j . The indicator func-
tion I j (σ

K
s ) is defined as I j (σ

K
s ) = 1 if σK

s = j ; otherwise,
I j (σ

K
s ) = 0. At state s, since there are s j users in network k and

each user has an independent departure probability, the proba-
bility that one user leaves network j is s jμ0. Thus, the system
transition probability of a departure event is given by

P sys
(
s − e j |s

) = s jμ0, j = 1, . . . , K . (2)

The network-switching strategy for state s and user type K is
denoted by γK

s , and γK
s = j means the strategy to switch from

network k to network j . The system transition probability of a
network-switching event is then given by

P sys
(
s − ek + e j |s

) = I j (γ
K
s )skμ1, j, k = 1, . . . , K . (3)

As described in (1)–(3), it is feasible to consider all possible
types of users who can choose a subset of networks. However,
such a detailed description would be very complicated and diffi-
cult to illustrate the key idea. To focus on analyzing the intrinsic
effect between the system of network association and the strat-
egy profile of equilibrium, in the rest of the paper, we consider
the basic scenario where users belong to one of the two classes
such that the presentation can be more clear and understand-
able. The users of type I arrive with arrival rate λ̄0 and these
users are able to choose among one of the K networks. With
arrival rate λ̄k , the users of type II can only choose network k,
for k = 1, . . . , K . Then, equation (1) can be rewritten as

P sys
(
s + e j |s

) = λ j + I j (σs)λ0, j = 1, . . . , K , (4)

where σs denotes the strategy profile of type II users. Similarly,
equation (3) can be rewritten as

P sys
(
s − ek + e j |s

) = I j (γk,s)skμ1, j, k = 1, . . . , K , (5)

where γk,s denotes the network-switching strategy for state s
and network k. Figure 2 shows the state transition diagram of a
two-network system.

With (2), (4), and (5), the system transition probability of a
staying event is given by

P sys (s|s) = 1 −
K∑

j=0

λ j −
K∑

j=1

s j (μ0 + μ1). (6)

Note that the duration T of a time slot should be chosen such
that

∑K
j=0 λ j + ∑K

j=1 N j (μ0 + μ1) ≤ 1, i.e.,

T ≤
⎛
⎝ K∑

j=0

λ̄ j +
K∑

j=1

N j (μ̄0 + μ̄1)

⎞
⎠

−1

. (7)
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Fig. 2. State transition diagram of the wireless access network association
system.

In one time slot, the utility obtained by a user in network
k is defined by the function R(sk), which is a non-increasing
function in sk due to the negative network externality, i.e., the
negative effect to the users in a network caused by the increas-
ing number of users. For example, in a code division multiple
access (CDMA) system where the available frequency spec-
trum is used at the same time by all users, R(sk) can be defined

as the achievable data rate function, log
(

1 + SNRk
(sk−1)INRk+1

)
,

where SNRk is the signal-to-noise power ratio, and INRk is the
interference-to-noise power ratio in network k. The increase
of the number of users causes inter-user interference (IUI) to
each user in the network. Such IUI results in a lower signal-
to-interference-plus-noise power ratio (SINR) and thus a lower
achievable data rate for each user in the network. In other
scenarios where the available resource is allocated in an orthog-
onal way, e.g., time division multiple access (TDMA) for
time resource allocation, frequency division multiple access
(FDMA) for frequency resource allocation, or power control
for total transmit power allocation. In these scenarios, the utility
R(sk) can be defined by a simple fraction Ck

sk
, where Ck denotes

the total amount of the entire available resource and Ck
sk

is the
amount of resource obtained by one user in the network.

III. WIRELESS ACCESS NETWORK ASSOCIATION GAME

In this section, the wireless access network association game
is formulated by first defining the utility function and deriving
the expected utility function using the Bellman equation, based
on which, the best response strategy is given. The network
association problem is then shown to be a multi-dimensional
Markov decision process, for which a modified value iteration
algorithm is proposed.

A. Expected Utility

The expected utility of a user arriving and choosing network
k to enter when the system state is s is denoted by Vk(s), which
can be expressed by definition as follows.

Vk(s) = E

[ ∞∑
t=0

(1 − μ0)
t Rkt (st )

]
, (8)

where kt denotes the network the user stays in at time slot t ,
with the initial condition k0 = k. Since μ0 is the probability
that the user leaves the current network in one time slot, then
(1 − μ0) is the probability that the user stays in the network
in one time slot. Thus, the value (1 − μ0) can be regarded as
the discounting factor for the future utility as time increases.
The function Vk(s) denotes the long-term utility of a user arriv-
ing and choosing network k to enter when the system state is
s. Thus, the function V (·) accounts for the decisions of subse-
quent users and thus the future number of users associated to
the networks.

The expression in (8) can be simplified into a set of Bellman
equations [38], i.e., for k = 1, . . . , K ,

Vk(s) = Rk(s) + (1 − μ0)
∑
k′,s′

P(k′, s′|k, s)Vk′(s′), (9)

where the transition probability P(k′, s′|k, s) denotes the prob-
ability that in the current time slot, a user is in network k
and the system state is at s, and in the next time slot, the
system state becomes s′ and the user switches to network k′
if k′ 
= k, or the user keeps staying in the same network if
k′ = k. Considering different events as in the system transition
probability, the conditional transition probability is given by

P
(
k′, s′|k, s

) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ j + I j (σs)λ0, if k′ = k, s′ = s + e j ,∀ j,

s jμ0, if k′ = k, s′ = s − e j ,∀ j 
= k,

(sk − 1)μ0, if k′ = k, s′ = s − ek,

I j (γk,s)(sk − 1)μ1, if k′ = k, s′ = s − ek + e j ,∀ j 
= k,

I j (γk,s)μ1, if k′ = j, s′ = s − ek + e j ,∀ j 
= k,

1 − ∑K
j=0 λ j − ∑K

j=1 s j (μ0 + μ1) + μ0, if k′ = k, s′ = s,

0, otherwise.
(10)

Notice that there are slight differences in the departure probabil-
ity and the switching probability between the system transition
probability (2), (5) and the conditional transition probabil-
ity (10).

B. Best Response Strategy

In the wireless access network association game, users adopt
the best response strategy to maximize his own expected utility
due to the selfish nature. A user makes a decision after he arrives
and observes the system state s. The strategy leads the user into
certain network k and results in an expected utility Vk(s + ek).
In subsequent time slots, the user may change from network k
to another network based on γk,s. When observing the state s,
the best response arriving strategy σs has to satisfy

σs = arg max
j

V j (s + e j ),∀s ∈ S. (11)
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Similarly, when observing the state s, a switching user will
choose the best response strategy γk,s, which has to satisfy

γk,s = arg max
j

V j (s − ek + e j ),∀s ∈ S,∀k. (12)

It can be seen that with the arriving user’s strategy profile
satisfying (11) and the switching user’s strategy profile (12),
no user can obtain a higher expected utility by unilateral devi-
ation to any other strategy [19]. Therefore, the strategy profile
satisfying (9)–(12) is a Nash equilibrium of the stochastic game.

From (11) and (12), it can be observed that

γk,s = σs−ek ,∀s ∈ S,∀k. (13)

Thus, the best response switching strategy in network k at state
s can be interpreted as the best response arriving strategy at state
s − ek , i.e., the state without the switching user in network k. In
other words, the switching behavior can be equivalently consid-
ered as leaving the current network and arriving as an arriving
user. From this perspective, the two best response strategy pro-
files are exactly the same, and the switching user’s strategy γk,s
in (10) can be replaced by σs−ek .

C. Modified Value Iteration Algorithm

The problem of solving the strategy profile satisfying (9)–
(12) is a Multi-dimensional Markov Decision Process (M-
MDP) problem, in which multiple potential functions are asso-
ciated with each system state. For a conventional MDP problem
[38], there is only one single potential function, by directly opti-
mizing which using the theory of dynamic programming (DP)
[39], the optimal strategy can be found with a low complex-
ity. In an M-MDP, the entanglement of the multiple potential
functions makes the structure of the problem very complicated.
Such a dependency can be expressed in a vector form:⎡
⎢⎢⎢⎣

V1(s)
V2(s)

...

VK (s)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

R1(s1)

R2(s2)
...

RK (sK )

⎤
⎥⎥⎥⎦ + (1 − μ0)

⎡
⎢⎢⎢⎣

pT
1 (s)

pT
2 (s)
...

pT
K (s)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v1
v2
...

vK

⎤
⎥⎥⎥⎦ ,

(14)

where pk(s) and vk denote vectors comprising P(k′, s′|k, s) and
Vk(s′) as elements, ∀k, ∀s. The transpose operator is denoted
by (·)T . For given k and s, the vector pk(s) consists of K × |S|
elements for different combinations of (k′, s′). (14) is formed
by stacking (9) of different k’s in a vector form for a given
s. DP cannot be directly applied in solving such a problem
since the arriving strategy σs and the switching strategy γk,s
are determined by comparing Vk(s + ek) for all k as in (11)
and (12) instead of optimizing a single potential function. Note
that different from the vector form given in [27], [28], the
probability matrix in (14) is more general since it allows non-
block-diagonal terms due to the switching behavior, while the
probability matrix in [27], [28] only has block-diagonal terms.

As described in Section III-B, the best response strategy pro-
file σ has to satisfy (11) given the expected utilities {Vk}K

k=1.
Given a strategy profile σ , the expected utilities {Vk}K

k=1 can

be obtained using (9) or (14), where the conditional transition
probability P(k′, s′|k, s) is a function of the arriving strategy
σs and the switching strategy σs−ek . The expected utility of a
user is influenced by other users’ strategies through the transi-
tion probabilities as can be seen in the vector form (14). To find
the best response strategy profile σ satisfying (9)–(12), we pro-
pose a modified value iteration algorithm to solve the problem
by iteratively update the strategy profile and the expected util-
ities, i.e., at the n-th iteration, given the expected utilities, the
strategy profile is updated as

σ (n+1)
s = arg max

k
V (n)

k (s + ek),∀s ∈ S. (15)

The expected utility functions can be obtained by solving

V (n+1)
k (s) =Rk(sk) + (1 − μ0)

∑
k′,s′

P(n+1)
(
k′, s′|k, s

) ·

V (n+1)

k′ (s′),∀s ∈ S,∀k ∈ {1, . . . , K }, (16)

where the transition probability P(n+1)
k (s′|s) is updated using

the strategies obtained from (15), i.e.,

P(n+1)
(
k′, s′|k, s

) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ j + I j (σ
(n+1)
s )λ0, if k′ = k, s′ = s + e j ,∀ j,

s jμ0, if k′ = k, s′ = s − e j ,∀ j 
= k,

(sk − 1)μ0, if k′ = k, s′ = s − ek,

I j (σ
(n+1)
s−ek

)(sk − 1)μ1, if k′ = k, s′ = s − ek + e j ,∀ j 
= k,

I j (σ
(n+1)
s−ek

)μ1, if k′ = j, s′ = s − ek + e j ,∀ j 
= k,

1 − ∑K
j=0 λ j − ∑K

j=1 s j (μ0 + μ1) + μ0, if k′ = k, s′ = s,

0, otherwise.
(17)

In (16), the problem of the expected utilities involves a set of
linear system, which consists of K N 2 unknown variables cor-
responding to {V (n+1)

k (s),∀s,∀k} and K N 2 equations, which
can be solved by either matrix inversion or linear programming.
Another approach is the value iteration algorithm [38], which
first initializes V (n+1)

k (s) as an arbitrary value such as zero and
iteratively updates itself using (16). Since the iteration func-
tion is a contraction mapping, it is guaranteed to converge to a
unique fixed point. However, the convergence may be slow if
the system space is large since it takes longer for the effect of a
strategy to propagate through the whole system.

The proposed algorithm iteratively updates the strategy pro-
file σ and the expected utilities Vk(s) until converged. When the
proposed algorithm converges, it is observed that there exists a
threshold structure of the strategy profile. In [28], a theoreti-
cal proof of the threshold structure is given for the special case
of K = 2 and μ1 = 0, i.e., in a two-network scenario with no
switching strategy allowed. Although it is difficult to theoret-
ically prove the threshold structure for the general cases, in
Section V, by numerical simulations we have always observed
a threshold structure of the strategy profile for all cases.

However, the strategy profile may not converge but oscil-
lates due to the hard decision rule in (15). The non-convergence
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TABLE I
MODIFIED VALUE ITERATION ALGORITHM

occurs when the strategy of a state near a threshold of strat-
egy change oscillates between different choices each time when
the expected utility is updated. When such a situation happens,
the expected utilities corresponding to different strategies are
very close to each other. Hence, to tackle the problem, we relax
the hard decision rule by allowing a small region of tolerance
for switching among the strategies [40], which leads to the soft
decision rule as follows.

σ (n+1)
s =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ
(n)
s ,

if V (n)

σ
(n)
s

(s + e
σ

(n)
s

) ≥ maxk V (n)
k (s + ek) − ε,

arg maxk V (n)
k (s + ek),

if V (n)

σ
(n)
s

(s + e
σ

(n)
s

) < maxk V (n)
k (s + ek) − ε,

(18)

where ε > 0 is a small constant. Table I summarizes the pro-
posed modified value iteration algorithm for the M-MDP, where
�n refers to the set of strategy profiles that have been examined
at the n-th iteration, and �̄n denotes the complement set of �n ,
i.e., the set of strategy profiles that have not been examined.

The convergence of the modified value iteration algorithm
can be easily shown by the monotonicity of {�n}, i.e.,

Lemma 1: |�n| is strictly increasing in n, where | · | denotes
the cardinality.

Proof: It can be seen from Table I that in each intermedi-
ate iteration, the line �n+1 = �n ∪ {σ (n+1)

s } must be executed,
where the {σ (n+1)

s } is not in �n since {σ (n+1)
s } ∈ �̄n . Thus,

{σ (n+1)
s } is distinct from all the elements in �n . Therefore, the

number of elements in the set �n is strictly increasing in n. �
Theorem 1: The proposed modified value iteration algorithm

converges.

Proof: From Lemma 1, {|�n|} is a strictly increasing
sequence, and |�n| has an upper bound since the number of
strategy profiles is finite. Thus, the convergence of the sequence
{|�n|} follows. �

The algorithm stops when an equilibrium is found or all the
strategy profiles are searched. By definition, when the algo-
rithm obtains a solution, the resulting strategy profile is an

ε-approximate NE [19], in which the strategy at each state has
an expected utility that is at most ε less than that of any other
strategy. If the algorithm stops because all the strategies have
been explored and none of them is an ε-approximate NE, then
there exists no feasible solution. However, the existence of an
ε-approximate NE solution can be guaranteed by first applying
the mechanism design algorithm discussed in Section III-D to
design a set of appropriate parameters, and then the iterative
algorithm will find a feasible solution. Note that there may be
multiple ε-approximate NEs especially for a larger ε when a
larger region of tolerance is allowed for switching among the
strategies.

The iterative algorithm is executed by each user to calculate
the optimal strategy profile, i.e., the optimal strategy of each
state. The calculation can be offline and stored as a table. When
a user is in a system of networks, he/she can look up the table
to make a decision by following the strategy profile. Since the
strategy profile is computed by each user but not informed by
a centralized server, the proposed algorithm is distributed. To
perform the iterative algorithm, the users need to have the infor-
mation such as the arrival and departure rates and the utility
function.

As to the parameter measurement, the network system oper-
ator can perform the measurement continually, and update the
arrival rate or switching rate averaged over a certain time
period. Then the operator announces the parameters and each
user can calculate the decision table when the rates are updated.
We have observed in numerical simulations that if two sets of
parameters are close to each other in their values, the resulting
decision tables are also close to each other. This suggests that
the previous decision table can be served as the initial decision
table to start the proposed algorithm. Since the new decision
table is close to the initial one, the convergence speed should
be reasonably fast.

The number of system states as well as the computational
complexity increase exponentially as the number of networks
increases. For conventional MDP problems, the curse of dimen-
sionality may be relieved by using re-enforcement learning
techniques [41], [42] such as Q-learning [43] to approximate
the optimal strategy. Similar approximation approach can be
applied to alleviate the computational complexity in a higher-
order M-MDP problem.

For more general cases (considering all possible types of
users who can choose a particular subset of networks), the
proposed algorithm can be extended by defining an appro-
priate strategy profile for all types of users and deriving the
expected utility of each system state given a particular strat-
egy profile. We can still apply the main idea of the proposed
algorithm, which is to iteratively update the strategy profile and
the expected utility.

D. Mechanism Design

In the previous subsection, the presented algorithm is per-
formed by the users to search for the best response strategy
profile given the system parameters, including the immediate
utility function Rk(sk), the user arrival rate λk , the user depar-
ture rate μ0, and the network-switching rate μ1. On the other
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hand, for a network system operator, it is desirable to design a
set of system parameters such that the resulting best response
strategy profile is preferred to the overall network system. In the
literature of game theory, such a scenario is called mechanism
design, in which the system operator constructs an environment
or a system setting by taking into account users’ rationality and
incentives to achieve the system’s objective.

In this subsection, we introduce a mechanism design for
the network association game. The network system operator
performs the mechanism design to determine a set of system
parameters, given which the users play the network association
game and use the proposed modified value iteration algorithm
to solve the game. The operator knows how the users will
play the game and what the outcome will be. That is, when
the system parameters are given, the resulting decision table is
deterministic. Therefore, in the mechanism design, the opera-
tor can choose a set of system parameters in his own interest,
which may be a certain objective such as network utilization or
total throughput. Based on the objective, the mechanism design
problem can be formulated to find out the adjustable system
parameters, e.g., the network resource/capacity Ck , by means
of resource allocation. In the following, we provide an exam-
ple to demonstrate how to design a mechanism in the network
system such that the resulting strategy profile is as desired.

Consider a network system with orthogonal resource allo-
cation such as TDMA or FDMA, the utility can be modeled
as a linear function Rk(sk) = Ck

sk
, where Ck denotes the avail-

able resource in network k, and each of the sk users in network
k can obtain Ck

sk
per unit time. Given the strategy profile σ =

{σs,∀s}, the problem of designing Ck , i.e., managing appro-
priate resource to different networks, can be formulated as the
following feasibility problem with variables C1, . . . , CK and
Vk(s), ∀k, ∀s.

P MD : Find (C1, . . . , CK ) (19)

s.t. Vk(s) = Rk(sk) + (1 − μ0)·∑
k′,s′

P(k′, s′|k, s)Vk′(s′),∀k,∀s, (20)

Vσs(s + eσs) ≥ max
k

Vk(s + ek) − ε,∀s. (21)

Note that given the strategy profile, the conditional probabil-
ity P(k′, s′|k, s) is a constant in the above feasibility problem.
Therefore, the constraints of the feasibility problem PMD com-
prise K�K

k=1 Nk equalities and �K
k=1 Nk inequalities linear in

the variables, and thus the problem is a linear programming
problem, which can be solved in polynomial time using an
interior-point algorithm.

For nonlinear utility functions such as Rk(sk) =
log

(
1 + SNRk

(sk−1)INRk+1

)
, it is possible to similarly formu-

late the feasibility problem with variables SNRk and INRk

instead of Ck in (19). However, the resulting feasibility
problem has non-convex constraints and hence it is difficult to
solve. Optimization techniques such as convex approximation
or global search may be applied but it is beyond the scope of
this paper.

The formulation of PMD is simply an example to illustrate
the mechanism design and more sophisticated constraints or

certain objective function can be added into the formulation
to reflect the system requirement. For example, if the network
system has a constraint of sum capacity, e.g.,

∑
k Ck ≤ Csum,

then such a constraint can be incorporated into the optimiza-
tion problem PMD. The objective function of the optimization
problem can be chosen based on a system goal, e.g., the
social welfare (total throughput). The system parameters Ck

can then be chosen to optimize the objective within the feasible
region. The obtained solution can guarantee the existence of an
ε-approximate NE, and users can apply the proposed algorithm
to find out the best response strategy profile.

For ε big enough, every strategy profile could be an
ε-approximate equilibrium. However, it is more desirable to
find a small and feasible ε. One possible approach is to use
bisection search. Since a larger ε makes the constraints in (21)
less stringent, the feasibility solution of problem PMD is mono-
tonic with ε. Thus, the bisection search of ε along with the
mechanism design algorithm can be used to find the smallest
ε such that PMD is feasible.

IV. DATA SET ANALYSIS

Previous work on WLAN trace analysis [30]–[33], [36] focus
on different aspects, such as uplink/downlink traffic modeling,
user mobility patterns, and geographic distribution of users.
In this work, we are interested in the statistical modeling for
the events related to the association between users and APs.
Specifically, we aim to validate the probability distribution
of the user arrival, the waiting time to departure, the waiting
time to switch network. We adopt actual wireless network data
drawn from CRAWDAD [29], a well known publicly available
archive of wireless data resource for the research community,
and analyze the probability distribution of user inter-arrivals,
session time, and the switching frequency. In the following,
we first introduce the basic information of the data set, our
methodology, and the results of the analysis.

A. Data Set Description

The data set we use is the CRAWDAD Dartmouth campus
WLAN trace [29], [32], [44], which includes syslog (system
message log), SNMP (Simple Network Management Protocol
polls), and tcpdump (TCP/IP packet analysis) during Fall term
2003 and Winter term 2004 in Dartmouth College. Both sys-
log and SNMP traces recorded the user association information
with a timestamp, the user’s MAC address, and the AP’s name.
However, we observe that sometimes a user’s association record
in the syslog traces is repeated for several times in a short
period, and very often a user leaves without showing the record
of a disassociation. As also noted in [32], most disassociation
messages do not show a successful disassociate, but report an
error that it attempts to disassociate with a wrong AP. Thus,
it is rather difficult to uncover the true information of users’
behavior by analyzing the syslog traces.

On the contrary, the SNMP traces, which collected the
Simple Network Management Protocol (SNMP) polling every
AP every 5 minutes, are more reliable for our purpose since
each poll contains the instantaneous information of which user
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Fig. 3. The upper part shows the average number of user arrivals per hour in a
weekday and in a weekend day; the lower part shows the number of user arrivals
per day during the 4-month period.

is currently connected to the AP. Although the 5 minutes period
may be coarse at first sight, from our statistical analysis below,
we find it sufficient for estimating the relevant parameters of
the M-MDP system model. The traces were recorded by a cen-
tral server using the Simple Network Management Protocol
to poll each of the 560 APs in 6 different types of buildings
(Academic, Administrative, Residential, Social, Library, and
Athletic) on campus from November 1st, 2003 to February
28th, 2004. The SNMP query collected the AP-related infor-
mation including the number of inbound and outbound bytes,
packets and errors, and the users currently or recently associ-
ated with a given AP, and the user-related information including
MAC and IP addresses, signal strength and quality, the number
of inbound and outbound bytes, packets and errors.

B. Statistical Analysis

We plot the number of user arrivals during the 4-month
period in the lower part of Figure 3, in which we can see that
relatively fewer users arrive during weekends and holidays. The
upper part of Figure 3 shows the average number of arrivals
per hour in a weekday and a weekend day. As expected, the
user arrivals occur more in the afternoon on weekdays than on
weekends. Based on the above observation, in the following
analysis, we only consider the abundant traces on weekdays
to have richer and consistent data. Only traces between 9AM
and 5PM are extracted so that the typical behavior during the
daytime can be captured.

We define a user arrival by the event that a user is associated
with an AP in a type of network and the user is not associated
with any AP in the network in the past 2 time slots to take into
account of the scenario that there may be a time slot when the
user is not recorded by any AP but the user is switching from
an AP to another AP. Similarly, a user departure is defined by
the event that a user associated with an AP in a type of network
becomes not associated with any AP in the network in the next 2
time slots. If a user is associated with multiple APs in one time
slot, a switching event is defined to occur with a duration of 0.

Fig. 4. The probability density function of the inter-arrival time versus the
exponential distribution with the same mean value.

A switching event also occurs if the associated AP of a user
has changed after k time slots to another AP before a departure
event occurs. A session is then defined by the time between a
user arrival and a departure with only switching events allowed
in between.

Figure 4 shows the empirical probability density function
(pdf) of the inter-arrival duration versus the theoretical expo-
nential distribution with the same mean as the data set. It can
be observed that the exponential distribution can provide a
very good approximation to the empirical pdf for all 6 types
of buildings. Compared to the theoretical exponential distribu-
tion, the empirical pdf tends to decrease faster in the middle
range of the inter-arrival time, but when the inter-arrival time
becomes larger, the tail of the empirical pdf stays longer. Such
a tendency is especially prominent for Academic Buildings. We
speculate that this may be due to the regular pattern of the activ-
ities on campus, where the durations of classes and break time
are usually fixed. Hence, such a pattern may cause the user
arrival event not as random than expected. Except this minor
discrepancy, from Figure 4, the exponential distribution is still
a satisfactory approximation.

In Figure 5, we plot the quantile-quantile plot [45] of the
empirical probability mass function (pmf) of the number of user
arrivals in 3 hours versus the theoretical Poisson distribution
with the same mean value of the data set. The quantile-quantile
(Q-Q) plot is a graphical method for comparing two probabil-
ity distributions. If the two distribution are similar or linearly
related, the points will approximately lie on a straight line. If
the two distributions are exactly identical, the points on the
Q-Q plot should lie on the line x = y. From the figure, we can
see that the empirical pmf has a high similarity to a Poisson
distribution. The distributions of Administrative Buildings and
Academic Buildings are less similar to the Poisson distribu-
tion compared to the other types of buildings. We speculate
that there might be more stationary users such as administrative
staff in these two types of buildings while in the other types
of buildings, most users might be students who usually stay in
a particular type of buildings for a relatively short period of
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Fig. 5. The quantile-quantile plot of the probability mass function of the num-
ber of user arrivals in 3 hours versus the Poisson distribution with the same
mean value.

Fig. 6. The probability density functions of a session time and the waiting time
to switch to another network.

time. Those stationary users might exhibit very different net-
work association behavior, e.g., periodically leaving and joining
the same network. Thus, the distributions of Administrative
Buildings and Academic Buildings appear to be less similar to
the Poisson distribution.

Figure 6 shows the pdfs of a session time and the waiting time
to switch to another network. In each plot, we also compare the
empirical curve with the exponential distribution with the same
mean value. We can see that for the session time distribution,
there are a few peaks which may indicate some fixed patterns
of activities on campus. As discussed above, there may be a
relatively high probability that the session time is equal to the
duration of a class or break time between classes, e.g., 50 or 15
minutes. Except those peaks, the general trend of a session time
still approximately follows an exponential distribution with the
same mean value.

From the analysis of these statistical properties, we can
model the realistic user arrivals as a Poisson distribution, and
thus the inter-arrival time as an exponential distribution; the
session time and the waiting time to switch network can be
modeled as exponential distributions. Therefore, we have the

TABLE II
AVERAGED EMPIRICAL PARAMETERS FOR DIFFERENT TYPES

OF CAMPUS NETWORKS

Markov state model as described in Section II, in which a state
in the wireless network system can be represented by the num-
bers of users in different networks without knowing the history
of user arrivals due to the Markovian property. The departure
probability μ0 for a user can be approximated by the inverse of
the mean session time, i.e., μ̄0T ; the switching probability μ1
can also be approximated by the inverse of the mean waiting
time to switch network, i.e., μ̄1T .

The approximation error of the arrival and departure proba-
bilities is affected by the practical duration of a time slot. The
approximation is more accurate as the duration of a time slot is
smaller. This can be seen by evaluating the approximation error
of the probability, i.e,

∣∣∣(1 − e−λT
)

− λT
∣∣∣ =

∣∣∣∣∣
∞∑

n=2

(−λT )n

n!

∣∣∣∣∣ (22)

However, due to constraints such as the resolution of the data
set, in practice, the duration of a time slot cannot be too
small. In this paper, the data set collected the Simple Network
Management Protocol (SNMP) polling APs in every 5 minutes,
which is used as the duration of a time slot in the system model.

Table II summarizes the empirical average values of the
parameters for the M-MDP model, including the mean inter-
arrival time λ̄−1, mean session time μ̄−1

0 , and the mean switch-
ing time μ̄−1

1 , for different types of campus networks and the
overall, that is, the average of all types of networks. Note that
a unit time slot is 5 minutes. Thus, we may interpret the ’over-
all’ row as: on average, every 26 minutes there is a user arrival
event; each arrival stays for a session of 70 minutes in the net-
work before departure; during a session, every 33 minutes the
user switches to another AP.

V. DATA-DRIVEN SIMULATION

In this section, a data-driven numerical simulation is con-
ducted for the wireless access association game described in
Section III. Based on the data set analysis in Section IV, we
adopt the system parameters such as users’ arrival, departure,
and switching rates from Table II. We note that practically λk ,
μ0 and μ1 can vary over time, and the optimal strategy should
take into account all the instantaneous parameters. However,
such time-varying system model is difficult to formulate and
may result in computational intractability. Therefore, we con-
sider the data-driven simulation with time-invariant parameters
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Fig. 7. The individual expected utility versus probability of deviation with the
proposed best response strategy and the maximum social welfare strategy.

obtained by averaging over daytime in weekdays to capture the
typical behavior. The resulting solution in practical systems can
be considered as an approximation of the optimal strategy con-
sidering time-varying parameters. Unless otherwise stated, in
the following simulation, the parameters are chosen as K = 2,
μ̄−1

0 = 13.9891, μ̄−1
1 = 6.5283, λ̄−1

0 = 6.763, λ̄−1
1 = 67.3669,

λ̄−1
2 = 5.1096, T = 1, N = 4, ε = 0.05, where λ̄−1

1 is chosen
such that (λ̄1 + λ̄0)

−1 = 6.1460 to model that some users fol-
low the strategy profile and the some users always enter one
certain network. The utility function Rk(sk) is defined to be the

achievable data rate log
(

1 + SNRk
(sk−1)INRk+1

)
, where SNRk =

50, k = 1, 2, and INRk = 10, k = 1, 2. In the following, we
will compare the proposed best response strategy with other
possible strategies including the random strategy, the myopic
strategy, and the centralized strategy. The random strategy is to
randomly (with uniform probability) select a network among all
networks. The greedy strategy is to choose the network with the
best immediate utility instead of the long term expected utility,
i.e., σ

myopic
s = arg maxk Rk(sk). The maximum social welfare

strategy is the social welfare optimizer, i.e., the strategy profile
that results in the globally maximum system throughput, the
maximum amount of total achievable data rate from the entire
network system, i.e.,

∑
s π(s)

∑
k sk Rk(sk), where π(s) denotes

the stationary probability at system state s. In the simulation, the
maximum social welfare strategy profile is found by exhaustive
searching all possible strategy profiles. Since the complexity is
in the order of O(K N K

), which is very high even for K = 2, we
only simulate small N to demonstrate the comparison between
different strategies.

In Figure 7, we verify the individual rationality by examining
the relation between the deviation probability and the individ-
ual expected utility. It can be seen that if a user deviates from
the proposed best response strategy profile, he/she can only
obtain a worse individual expected utility; while for the max-
imum social welfare strategy profile, a user may be able to earn
a better payoff by unilateral deviation to another strategy, since
the objective of the maximum social welfare strategy is to opti-
mize the social welfare without consideration of the individual
rationality.

Fig. 8. Individual expected utility comparison in a 2-network system with
different strategies including the greedy method, the proposed best response
strategy, the centralized maximum social welfare strategy, and the random
strategy.

The individual expected utilities using different strategies are
compared in Figures 8 by varying λ̄0. Using the greedy method
as the baseline, the performance of each strategy is normal-
ized with the corresponding value of the greedy method. Since
each user optimizes his/her own expected utility, the proposed
best response strategy as expected performs the best among
all other strategies in terms of the individual expected utility.
When λ̄0 is higher, i.e., more users who are able to choose
among the networks, the maximum social welfare strategy pro-
vides worse individual expected utility due to the crowdedness
of users and thus the conflict between maximizing the social
welfare and the individual performance. Without taking into
account any information, the random strategy is inferior to all
others.

In the system model, two types of users are considered: type I
users that can choose among all networks, and type II users that
can only choose one network. The influence of the users of type
II (that can choose only one network) is the crowdedness of that
particular network. When there are more type II users, we can
expect the proposed method outperforms relatively less than the
myopic strategy in the individual expected utility compared to
in the scenario where there are fewer type II users since the
crowdedness of users in that network can hardly be changed
by the type I users’ decisions and this may make the proposed
method to choose a network similar to the myopic strategy. As
a result, the overall strategy profile of the proposed method and
the myopic method may be very similar to each other.

In Figure 9, the social welfare performance (the system
throughput, i.e., the sum of the expected utility of each user) of
different strategies is compared by varying λ̄0. Since the max-
imum social welfare strategy is the global maximizer among
all the strategy profiles, it attains the best performance with
certainty. We can see that the proposed best response strat-
egy is able to achieve a similar performance to the maximum
social welfare strategy when λ̄0 is small, i.e., when the system
is less crowded. When λ̄0 is higher, the performance becomes
a bit worse but it is still better than the greedy strategy and
the random strategy. It is interesting that although the proposed
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Fig. 9. Social welfare (sum expected utility) comparison in a 2-network sys-
tem with different strategies including the greedy method, the proposed best
response strategy, the centralized maximum social welfare strategy, and the
random strategy.

Fig. 10. Fairness comparison with different strategy including greedy method,
the proposed best response strategy and the centralized maximum social welfare
strategy.

best response aims to optimize each user’s own expected util-
ity by considering other users’ strategies, it has a similar social
welfare performance to the global optimum.

In Figure 10, the fairness of different approaches are com-
pared in terms of Jain’s fairness index [46], which is defined as

J(σ ) =
∣∣∣∑s π(s)

∑K
k=1 sk Rk(sk)

∣∣∣2

∑
s π(s)

∣∣∣∑K
k=1 sk Rk(sk)

∣∣∣2
, (23)

where π(s) denotes the stationary probability at system state s.
If the throughput distribution is more homogeneous, the result-
ing index is more close to 1. From the figure, the maximum
social welfare strategy achieves the best fairness than the oth-
ers. The proposed algorithm has better fairness compared to the
greedy method when λ̄0 is low. When λ̄0 is higher, i.e., there
are more type I users (users who can choose among the two net-
works), the proposed algorithm performs worse in fairness. The

Fig. 11. The impact of ε on the social welfare performance of the proposed
best response strategy.

relation between strategy and the distribution is quite compli-
cated and is difficult to analyze. Intuitively, since the proposed
algorithm is derived based on maximizing a user’s long term
utility due to the selfish nature and some states may have better
inherent advantages than other states, the users at the advan-
tageous states may be able to obtain better throughput, and
consequently the distribution becomes less homogeneous. The
greedy method is similar but just concerns only the immediate
utility. On the other hand, the maximum social welfare strategy
is defined to maximize the total achievable data rate from the
entire network system and thus all the states are taken into con-
sideration. Another observation is that the objective function
of maximum social welfare strategy,

∑
s π(s)

∑
k sk Rk(sk), is

exactly the numerator of the Jain’s fairness index in (23), so the
maximization of the two objectives may be closely related.

Figure 11 demonstrates how the social welfare of the pro-
posed best response strategy varies with respect to ε. We can
observe that when ε increases, the social welfare performance
of the proposed method becomes worse since a larger region
of tolerance is allowed for switching between different strate-
gies, and the resulting strategy profile is only guaranteed that
the strategy at each state has an expected utility that is at most ε

less than that of any other strategy. Figure 12 shows the impact
of ε on the number of iterations for the strategy profile to con-
verge using the proposed algorithm in Table I. It can be seen
that in general a larger ε allows a smaller number of iterations to
converge since the region of tolerance for changing the strategy
profile is larger.

Figure 13 shows the feasible region of (C1, C2) in the mech-
anism design problem in (19), where the strategy profile {σs} is
given as

σ =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
2 1 1 1 1
2 2 2 1 1
2 2 2 2 1
2 2 2 2 2

⎤
⎥⎥⎥⎥⎦ , (24)

where [σ ]i, j = σ(i, j) denotes the strategy at state s = (i, j).
Since the constraints are all linear in C1 and C2, the resulting
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Fig. 12. The impact of ε on the number of iterations for the strategy profile to
converge.

Fig. 13. The feasible region of (C1, C2) in the mechanism design problem
PMD in (19).

feasible region is a 2-dimensional convex region with piece-
wise linear boundaries. The system operator can then manage
the available resource to design C1 and C2 such that the desired
strategy profile is a best response for the users. Note that the
feasible set may not always be non-empty. Thus, the mecha-
nism design for the wireless network association can be used to
check the existence of the best response strategy profile.

VI. CONCLUSIONS

In this paper, we first used the four months trace of 560
APs at Dartmouth College to validate the statistical charac-
teristics of the user arrival process being Poisson, the session
time, and the waiting time to switch network being exponential.
Based on these observations, we constructed a Markov sys-
tem model to investigate the relation between users’ strategies
and their expected utilities. It has been shown that finding the
best response strategy, i.e., the approximate Nash equilibrium,
requires solving a multi-dimensional Markov decison process.
We proposed a modified value iteration algorithm to iteratively
search for the solution.

Data-driven simulations were conducted to verify the indi-
vidual rationality, i.e., unilateral deviation from the best
response strategy only leads to a decrease of the individual
expected utility. Compared with other strategies, the proposed
best response strategy can achieve better individual expected
utility while also has a similar performance in the social welfare
(the sum of the individual expected utilities) to the maximum
social welfare strategy.
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