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Abstract—With the foreseeable large scale deployment of elec-
tric vehicles (EVs) and the development of vehicle-to-grid (V2G)
technologies, it is possible to provide ancillary services to the
power grid in a cost efficient way, i.e., through the bidirectional
power flow of EVs. A key issue in such kind of schemes is how to
stimulate a large number of EVs to act coordinately to achieve the
service request. This is challenging since EVs are self-interested
and generally have different preferences toward charging and
discharging based on their own constraints. In this paper, we
propose a contract-based mechanism to tackle this challenge.
Through the design of an optimal contract, the aggregator can
provide incentives for EVs to participate in ancillary services to
power grid, match the aggregated energy rate with the service
request and maximize its own utility. Simulation results are
shown to verify the effectiveness of the proposed contract-based
mechanism.

I. INTRODUCTION

Due to the need of reducing oil dependence and improving
energy efficiency, many countries including United States have
set up plans to support electric vehicles (EVs) [1]. It is
predicated in [1] that by 2020, 25% of newly purchased light-
duty vehicles should be grid-enabled EVs. Such a widespread
adoption of EVs, together with the development of vehicle-to-
grid (V2G) technologies [2], will open new opportunities for
the power grid: using EVs’ batteries as distributed electricity
storage, it is possible to provide ancillary services to power
grid, such as spinning reserve and regulation, in a cost efficient
way. In current power grid, these services are accomplished
primarily by turning large generators on and off or ramping
them up and down, which are very costly, e.g., accounting
for 5 − 10% of electric cost in the US [3]. Alternatively, in
V2G networks, these services can be done by charging (or
discharging) EVs’ batteries when the generation is greater (or
less) than the load in power grid. Due to the limited capacity of
an individual EV, the aggregator is introduced to coordinate
a large group of EVs in providing ancillary services to the
power grid [4].

Recently, a growing body of literature has investigated
different charging control schemes for the aggregator. In [5],
Xu and Wong proposed a coordinated charging control method
that uses approximate dynamic programming to minimize
the charging cost and reduce the power losses. Wu et al.
proposed algorithms that help the aggregator to determine the
purchase of energy in the day-ahead market and to distribute
the purchased energy to EVs [6]. Among these works, many of

them have studied the use of EVs for ancillary services. Fre-
quency regulation has been considered in [7], where an optimal
centralized control strategy was proposed. In [8], Sortomme
et al. demonstrated an optimal energy and ancillary service
scheduling strategy that maximizes profits to the aggregator.

Most of existing works assume implicitly that EVs are
obedient to aggregator’s policies. Nevertheless, with the de-
velopment of smart grid technologies [9], EVs are capable of
making intelligent decisions to maximize their own utilities.
Therefore, a key issue in enabling ancillary services in V2G
networks is to provide incentives for EVs to participate.
In [10], Wu et al. modeled the interaction between the
aggregator and EVs as a game and proposed a flat price
scheme to accomplish the ancillary service request at the
equilibrium. However, one major drawback is that they assume
a homogeneous setting without taking into account different
preferences of EVs. In practice, since EVs generally have
different constraints, such as arrival time, departure time,
initial battery level and target battery level, they will have
different preferences toward charging/discharging at different
time. Moreover, such preferences are generally unknown to
the aggregator, which results in an information asymmetry
between the aggregator and EVs.

To tackle this challenge, we first model EV’s preference as
a willingness to pay (WTP) parameter [11] that reflects the
private and subjective valuation of each EV towards charg-
ing/discharging its battery. Then, based on this heterogeneous
model, we solve the incentive issue in EV-assisted ancillary
services using contract theory, which studies, in the presence
of asymmetric information, how the principal (the aggregator)
delegates an action (charging/discharing at a certain rate) to
intelligent and selfish agents (EVs) through a take-it-or-leave-it
offer of a contract [12]. With the design of an optimal contract,
the aggregator not only can stimulate self-interested EVs to act
coordinately to provide ancillary services to power grid, but
also maximizes its own utility.

The rest of the paper is organized as follows. In Section
II, we introduce the system model and problem formulation.
Then, the optimal contract design is discussed in Section III. In
Section IV, we develop an algorithm that finds discrete optimal
contracts efficiently. Finally, we show simulation results in
Section V and draw conclusions in Section VI.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. V2G System Model

Consider a V2G network where a group of N EVs are
interested in providing ancillary services to the power grid by
charging or discharging their batteries. One aggregator is re-
sponsible for coordinating the participating EVs. However, the
aggregator has no direct control over the charging/discharging
behaviors of EVs, who are assumed to be self-interested and
will act selfishly to maximize their own utilities.

We divide the daily operation of the power grid into multiple
time slots, each of which corresponds to one service period.
At each time slot, the grid sends a service request to the
aggregator indicating the aggregated energy rate needed from
the aggregator in order to accomplish the ancillary service.
Denote by ∆ the service request sent to the aggregator. We
study the nontrivial case that ∆ ̸= 0 in this paper. If ∆ > 0,
the aggregator needs to consume power. If ∆ < 0, the
aggregator needs to inject power into the power grid. Such
a service request is accomplished by the aggregator through
coordinating the N associated EVs to charge or discharge
their batteries. Moreover, similar to [10], we assume that the
aggregator is equipped with a set of backup batteries to assure
reaching the service request.

We consider a heterogeneous setting where EVs have dif-
ferent preferences toward charging/discharging at each time
slot, which are modeled by a WTP parameter θ [11]. Let r
denote the charging/discharging rate of an EV and p denote
the price paid to the aggregator. Then the utility function of
the EV with WTP parameter θ can be written as

uθ(r, p) =

{
θr − p, if r ≥ 0,
(C + θ)r − p, otherwise, (1)

where C > 0 is the unit cost associated with discharging.
Note that both r and p can take either positive or negative

values. In particular, r > 0 means the EV charges its battery
at current time slot while r < 0 means discharging. Based on
the utility function, the WTP parameter can be interpreted as
the unit gain that an EV can receive by charing or discharging
its battery. In this paper, we model the WTP parameter θ ∈
Θ = [θ, θ] as a random variable, with a cumulative distribution
function (CDF) F (θ) and a probability density function (PDF)
f(θ) on Θ. We assume that −C < θ < 0 and θ > 0. The sign
of θ indicates whether the EV tends to charge or discharge:
when θ > 0, the EV prefers to charge; when θ < 0 the EV
prefers to discharge and when θ = 0 the EV wants to remain
idle. Moreover, the larger |θ| is, the more an EV wants to
charge or discharge its battery, respectively. As an independent
decision-maker, each EV will act to maximize its own utility
function in (1) without considering whether the aggregated
load matches the service request or not. Therefore, an inherent
conflict exists in terms of objectives between the aggregator
and EVs.

We further assume that the WTP parameter is the private
information of each EV, which we call as the EV’s type. In
other words, instead of knowing the specific value of each
EV’s type, the aggregator only has the knowledge of f(θ) and

F (θ). As a result, there exists an information asymmetry be-
tween the aggregator and EVs, which makes the coordination
at the aggregator even harder.

B. Contract-Theoretic Formulation

To resolve the conflicting objectives between the aggregator
and EVs in the presence of asymmetric information, we pro-
pose to use a contract-theoretic approach. Through an optimal
design of contract, the aggregator can not only stimulate self-
interested EVs to act coordinately to accomplish the service
request but also maximize its own utility. In contract theory, a
contract is a collection of contract items. Particularly, in our
case, each contract item corresponds to a pair (r, p), which
specifies the EV’s charging/discharging rate and the resulted
payment to the aggregator. At each time slot, the aggregator
will publish the contract to all participating EVs. Then each
EV will choose one contract item that maximizes its utility
defined in (1). According to the revelation principle [13], it is
sufficient to consider the class of contracts that ensure each
EV to truthfully choose the contract item designed for its type.
Therefore, we can design our contract as a pair of functions
as ϕ = {(r(θ), p(θ)), θ ∈ Θ}. Throughout this paper, we
assume both the rate function r(θ) and the price function
p(θ) are continuously differentiable, while our analysis results
can be extended to the piecewise continuously differentiable
case. To be a feasible contract, ϕ needs to satisfy the incentive
compatibility (IC) constraint and the individual rationality (IR)
constraint, which we define as follows.

Definition 1 (Incentive Compatibility). A contract ϕ =
{(r(θ), p(θ)), θ ∈ Θ} satisfies the incentive compatibility
constraint if it is the best response of each θ-type EV to choose
the contract item for type θ, i.e.,

uθ(r(θ), p(θ)) ≥ uθ(r(θ̃), p(θ̃)), ∀θ, θ̃ ∈ Θ. (2)

Definition 2 (Individual Rationality). A contract ϕ =
{(r(θ), p(θ)), θ ∈ Θ} satisfies the individual rationality con-
straint if each θ-type EV receives a non-negative utility by
accepting the contract item for type θ, i.e.,

uθ(r(θ), p(θ)) ≥ 0, ∀θ ∈ Θ. (3)

A contract that satisfies the IR constraint will provide non-
negative utilities to EVs of any types, and therefore ensures
the participation of self-interested EVs.

In addition to the IC and IR constraints, the aggregator will
design the contract such that the expected aggregated energy
rate of all EVs meets the service request, i.e.,

N

∫ θ̄

θ

r(θ)f(θ)dθ = ∆. (4)

Moreover, we place the following two constraints on the
design of contracts

r(θ)∆ ≥ 0, ∀θ ∈ Θ (5)
and

r(0) = 0. (6)
The first constraint indicates that charging and discharging
should not be performed simultaneously. Otherwise EVs can-
cel out each other’s efforts in terms of providing ancillary
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services to the power grid. The second constraint indicates
that we should not involve EVs that choose to remain idle
into the ancillary service.

The rate function must also satisfy
rmin ≤ r(θ) ≤ rmax, ∀θ ∈ Θ, (7)

where rmax > 0 and rmin < 0 are the maximum rates of EVs
to charge and discharge, respectively.

Denote by Φ the set of contracts that satisfy all constraints
in (2)-(7). Assume N is sufficiently large that Φ is not empty.
Among all contracts in Φ, the aggregator will choose the
optimal one, which maximizes its utility as

ϕ∗ = max
ϕ∈Φ

∫ θ̄

θ

[
p(θ)− λṙ2(θ)

]
f(θ)dθ, (8)

where ṙ(θ) = d
dθ r(θ) is the derivative of r(θ).

The utility of an aggregator is defined as the total profit
plus a regularization term, whose weight is controlled by a
parameter λ > 0. The regularization term is introduced to
prevent the charging/discharging rate from varying too quickly
among neighboring types, which may cause instability due
to estimation errors of types. From another point of view,
we know in a simple scheme where EVs are assumed to be
homogeneous, the aggregator offers a flat charging/discharging
rate to all EVs, i.e. with ṙ(θ) = 0. Therefore, through the
introduction of the regularization term, the aggregator can
choose how far it would like to deviate from the simple scheme
by adjusting λ.

The proposed contract-based mechanism in one time slot
can be summarized in the following four steps.

1) The aggregator receives the service request from the
power grid and calculates the optimal contract ϕ∗

2) The aggregator broadcasts ϕ∗ to all EVs
3) After receiving ϕ∗, each EV selects one contract item

that maximizes its utility and informs the aggregator its
decision

4) The aggregator coordinates the ancillary service and
records EVs’ payments given the selected contract items

III. OPTIMAL CONTRACT DESIGN

To find the optimal contract, we need to solve the opti-
mization problem defined in (8), which is challenging because
it optimizes over a class of functions specified by some
complicated constraints. In this section, we first simplify the
optimization problem to a certain extent by finding equivalent
conditions to the IC and IR constraints. Then, by using the
optimal control theory, we characterize the necessary and
sufficient conditions of the optimal contract. In the rest of this
paper, we assume without loss of generality that ∆ > 0 in our
analysis. The case with ∆ < 0 can be analyzed similarly.

We show in the following two propositions that the IC and
IR constraints can be simplified in our problem settings.

Proposition 1. Suppose ∆ > 0 and a contract ϕ =
{(r(θ), p(θ)), θ ∈ Θ} satisfies the efficiency constraint defined
in (5). Then ϕ satisfies the IC constraint if and only if, ∀θ ∈ Θ,

ṙ(θ) ≥ 0 (9)

and
θṙ(θ)− ṗ(θ) = 0. (10)

Proof: From ∆ > 0 and (5), we have r(θ) ≥ 0, ∀θ ∈ Θ,
which implies uθ(r(θ), p(θ)) = θr(θ)− p(θ).

To prove Proposition 1, we first show that the two conditions
in (9) and (10) are necessary conditions for the IC constraint.
From Definition 1, we have ∀θ, θ̃ ∈ Θ,

θr(θ)− p(θ) ≥ θr(θ̃)− p(θ̃), (11)
and

θ̃r(θ̃)− p(θ̃) ≥ θ̃r(θ)− p(θ). (12)

Adding the above two inequalities, we have
(θ − θ̃)(r(θ)− r(θ̃)) ≥ 0, ∀θ, θ̃ ∈ Θ. (13)

Therefore, we can conclude that ṙ(θ) ≥ 0, ∀θ ∈ Θ.
Moreover, let

gθ(θ̃) , θr(θ̃)− p(θ̃). (14)

Then the IC constraint implies that

θ ∈ argmax
θ̃∈Θ

gθ(θ̃), ∀θ ∈ Θ. (15)

Since gθ(θ̃) is continuously differentiable, from the first-order
optimality condition [14], we have

∂gθ(θ̃)

∂θ̃

∣∣∣∣∣
θ̃=θ

= θ
d

dθ
r(θ)− d

dθ
p(θ) = 0, ∀θ ∈ (θ, θ). (16)

Then, by continuity of ṙ(θ) and ṗ(θ), we can establish (10).
Next, we prove conditions in (9) and (10) are also sufficient

conditions for the IC constraint. We have ∀θ, θ̃ ∈ Θ,

p(θ)− p(θ̃) =

∫ θ

θ̃

ṗ(τ)dτ =

∫ θ

θ̃

τ ṙ(τ)dτ

= θr(θ)− θ̃r(θ̃)−
∫ θ

θ̃

r(τ)dτ, (17)

where the second equality follows from (10) and the last
equality is obtained through integration by parts.

After some manipulations, we have

θr(θ)− p(θ) = θr(θ̃)− p(θ̃) +

∫ θ

θ̃

[r(τ)− r(θ̃)]dτ

≥ θr(θ̃)− p(θ̃), ∀θ, θ̃ ∈ Θ, (18)

where the inequality follows from (9).

Proposition 2. Suppose ∆ > 0 and a contract ϕ =
{(r(θ), p(θ)), θ ∈ Θ} satisfies the IC constraint and the
efficiency constraint defined in (5). Then, ϕ satisfies the IR
constraint if and only if

θr(θ)− p(θ) ≥ 0. (19)

Proof: Let U(θ) , θr(θ)− p(θ). Since ϕ satisfies the IC
constraint, according to (10), we have

U̇(θ) =
d

dθ
U(θ) = r(θ)+θṙ(θ)−ṗ(θ) = r(θ), ∀θ ∈ Θ. (20)

Since ∆ > 0, then (5) implies that r(θ) ≥ 0, ∀θ ∈ Θ.
Therefore, we have

θ ∈ argmin
θ∈Θ

U(θ). (21)

The IR constraint in (3) is thus equivalent to U(θ) ≥ 0.
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Based on the definition of U(θ), we can rewrite the objective
function in (8) as

G(ϕ) ,
∫ θ̄

θ

[
θr(θ)− λṙ2(θ)

]
f(θ)dθ −

∫ θ̄

θ

U(θ)f(θ)dθ.

The last term can be expressed in terms of r(θ) as∫ θ̄

θ

U(θ)f(θ)dθ =

∫ θ̄

θ

f(θ)

∫ θ

θ

U̇(τ)dτdθ + U(θ)

=

∫ θ̄

θ

f(θ)

∫ θ

θ

r(τ)dτdθ + U(θ)

=

∫ θ

θ

r(θ)dθ −
∫ θ

θ

r(θ)F (θ)dθ + U(θ),

where the second equality follows (20) and the last equality
is obtained through integration by parts.

Therefore, we have

G(ϕ) =

∫ θ

θ

r(θ)[θf(θ) + F (θ)− 1]− λṙ2(θ)f(θ)dθ − U(θ).

We can simplify G(ϕ) by the following two observations.
First, since r(θ) ≥ 0, ∀θ ∈ Θ, we can conclude from (6) and
(9) that r(θ) = 0 and ṙ(θ) = 0 for θ ∈ [θ, 0]. Second, we can
maximize G(ϕ) while satisfying the IR constraint by setting
U(θ) = 0, i.e. p(θ) = 0.

Therefore, the optimal contract design problem in (8) can be
simplified to a constrained optimization problem with respect
to the rate function r(θ) over [0, θ] as

max
r(θ)

∫ θ

0

r(θ)[θf(θ)+F (θ)− 1]− λṙ2(θ)f(θ)dθ (22)

subject to
∫ θ

0

r(θ)f(θ)dθ =
∆

N
,

r(0) = 0,

ṙ(θ) ≥ 0 and r(θ) ≤ rmax, ∀θ ∈ [0, θ].

Once we have found the optimal rate function r∗(θ), we
can determine the optimal pricing function p∗(θ) as

p∗(θ) =

∫ θ

θ

τ ṙ∗(τ)dτ. (23)

To solve (22), we employ the Pontryagin’s maximum prin-
ciple [15] in optimal control theory to obtain a set of necessary
conditions for the optimal rate function r∗(θ). Our results are
summarized in the following theorem.

Theorem 1. If r∗(θ) is a solution to (22), then there must exist
x∗
1(θ), x

∗
2(θ), x

∗
3(θ) and y∗1(θ), which are defined on [0, θ] and

are solutions to the following differential equations, such that
r∗(θ) = x∗

1(θ).

ẋ∗
1(θ)=

y∗1(θ)

2λf(θ)
1(y∗1(θ) ≥ 0),

ẋ∗
2(θ)=f(θ)x∗

1(θ),

ẋ∗
3(θ)=[rmax − x∗

1(θ)]
21(x∗

1(θ) > rmax),

ẏ∗1(θ)=1−F (θ)−(α1+θ)f(θ)−2α2[x
∗
1(θ)−rmax]1(x

∗
1(θ)>rmax),

where α1 and α2 are two constants to be determined. The
associated boundary conditions are x∗

1(0) = x∗
2(0) = x∗

3(0) =
x∗
3(θ) = y∗1(θ) = 0 and x∗

2(θ) = ∆/N .

Proof: The optimization problem in (22) can be viewed
as an optimal control problem if we treat r(θ) as the state
variable, ṙ(θ) as the control and θ as the time variable. Let
x1(θ) = r(θ) and u(θ) = ṙ(θ). To re-write (22) in a standard
form, we need to get rid of the isoperimetric constraint∫ θ

0
r(θ)f(θ)dθ = ∆

N and the state constraint r(θ) ≤ rmax.
Towards this end, we define two new state variables x2(θ)
and x3(θ), such that

ẋ2(θ) = f(θ)x1(θ) (24)
and

ẋ3(θ) = [rmax − x1(θ)]
21(x1(θ) > rmax). (25)

Then, by specifying the boundary conditions x2(0) = 0 and
x2(θ) = ∆/N , we guarantee that

∫ θ

0
r(θ)f(θ)dθ = ∆

N .
Similarly, by setting x3(0) = x3(θ) = 0, we ensure that
r(θ) ≤ rmax.

Let x(θ) = [x1(θ), x2(θ), x3(θ)]
T . We can write the Hamil-

tonian [15] of the problem as

H(x(θ), u(θ),y(θ), θ) , x1(θ)[θf(θ) + F (θ)− 1]− λu2(θ)f(θ)

+ y1(θ)u(θ) + y2(θ)f(θ)x1(θ)

+ y3(θ)[rmax − x1(θ)]
21(x1(θ) > rmax),

where y(θ) = [y1(θ), y2(θ), y3(θ)]
T is the vector of Lagrange

multipliers.
Then, according to the Pontryagin’s maximum principle

[15], we can write the necessary conditions of the optimal
control and states in terms of the Hamiltonian as
H(x∗(θ),u∗(θ),y∗(θ),θ)≥H(x∗(θ),u(θ),y∗(θ),θ),∀u(θ)≥0,
ẋ∗(θ) = ∂H

∂y (x
∗(θ), u∗(θ),y∗(θ), θ),

ẏ∗(θ) = −∂H
∂x (x

∗(θ), u∗(θ),y∗(θ), θ),
(26)

with the boundary condition y∗1(θ) = 0.
Since the Hamiltonian does not depend on x2(θ) and x3(θ),

we have from (26) that ẏ2(θ) = ẏ3(θ) = 0. This implies
that the Lagrange multipliers y2(θ) and y3(θ) are constants,
which we denote by α1 and α2, respectively. From (26) and the
boundary conditions, we can derive the necessary conditions
in Theorem 1.

In Theorem 1, we have characterized the necessary con-
ditions of r∗(θ) in terms of a set of differential equations
with split boundary conditions, which is also called as a
two-point boundary-value problem [15]. In general, this two-
point boundary-value problem can be solved numerically by
some iterative techniques [15]. Instead of solving the above
necessary conditions numerically, we show in the following
theorem that when the maximum rate rmax is sufficiently
large, we can obtain an analytical expression for r∗(θ) that
is also sufficient.

Theorem 2. If rmax is sufficiently large, then the solution of
(22) is given by

r∗(θ) =

∫ θ

0

y∗1(τ)

2λf(τ)
1(y∗1(τ) ≥ 0)dτ, (27)
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where

y∗1(θ) =

∫ θ

θ

[1− F (τ)− (α+ τ)f(τ)]dτ (28)

and the constant α can be determined by∫ θ

0

1− F (τ)

f(τ)
y∗1(τ)1(y

∗
1(τ) ≥ 0)dτ =

2λ∆

N
. (29)

Proof: When rmax is sufficiently large, the state con-
straint r(θ) ≤ rmax will not be binding. Therefore, we no
longer need the state variable x3(θ) as in the proof of Theorem
1. Then, applying the Pontryagin’s maximum principle and
after some manipulations, we can derive the conditions in
Theorem 2 as necessary conditions for r∗(θ).

Next, we show that the conditions we obtained are also
sufficient for the optimal rate function. As in the proof of
Theorem 1, we can write the Hamiltonian as

H(x(θ), u(θ),y(θ), θ) , x1(θ)[θf(θ)+F (θ)−1]−λu2(θ)f(θ)

+ y1(θ)u(θ) + y2(θ)f(θ)x1(θ).

Since
H∗(x,y, θ) , max

u≥0
H(x, u,y, θ)

= [θf(θ)+F (θ)−1+y2f(θ)]x1+y1u
∗−λf(θ)u∗

is concave in x, the conditions obtained from the Pontryagin’s
maximum principle are also sufficient [16].

Therefore, the conditions in Theorem 2 are complete char-
acterizations of r∗(θ).

Example 1. Consider an illustrating example, where θ is
uniform within [−1, 1], i.e., f(θ) = 1/2 and F (θ) = (1+θ)/2.
Then, applying Theorem 2, we can obtain the optimal rate
function on [0, θ] as follows.

• If 48λ∆
N ≥ 1,

r∗(θ) =
1

2λ

[
−θ3

3
+

1− α

2
θ2 + αθ

]
,

where α = 12λ∆
N − 1

4 .
• If 48λ∆

N < 1,

r∗(θ)=
1

2λ

[
−θ3

3
+
1− α

2
θ2+αθ+

α3+3α2

6

]
1(θ≥−α),

where α is the unique solution in the interval (−1, 0) to

α4 + 4α3 + 6α2 + 4α+ 1 =
48λ∆

N
.

IV. DISCRETE OPTIMAL CONTRACT DESIGN

In previous section, we provide necessary and sufficient
conditions for the optimal contract. Nevertheless, these con-
ditions are hard to evaluate when the EV’s type follows a
complicated distribution or when the maximum rate rmax is
relatively small. To overcome these difficulties, we present in
this section a numerical algorithm that finds a discrete optimal
contract by approximating the optimization problem in (22)
with a discrete problem. Towards this end, let{

rk , r(kδ), k = 0, 1, ...,K,

uk , ṙ(kδ), k = 0, 1, ...,K,
(30)

where δ = θ
K+1 . Since r(kδ + δ) ≈ r(kδ) + ṙ(kδ)δ, we can

approximate rk by rk = δ
k−1∑
i=0

ui. Note that we have r0 = 0

as indicated by the constraint of (22).
Then, by approximating the integrals with summations and

after some manipulations, we derive a discrete approximation
of (22) as

min
u0,u1,...,uK−1

K−1∑
k=0

(
Bku

2
k −Akuk

)
, (31)

subject to
K−1∑
k=0

Dkuk − ∆

N
= 0,

−uk ≤ 0, k = 0, 1, ...,K − 1,

δ
K−1∑
k=0

uk − rmax ≤ 0,

where Ak = δ
K∑

i=k+1

[iδf(iδ) + F (iδ)− 1], Bk = λf(kδ) and

Dk = δ2
K∑

i=k+1

f(iδ).

The (31) is a constrained quadratic programming problem
that can be solved efficiently by the primal-dual inner-point
method [14]. We skip the details of the algorithm due to page
limitation. Denote the solution to (31) by u∗

1, ..., u
∗
K−1. Then,

after solving (31), we can design a discrete optimal contract
ϕdis = {(rdis(θ), pdis(θ)), θ ∈ Θ} as

rdis(θ) =
K∑

k=1

δu∗
k−11(θ ≥ kδ)

pdis(θ) =
K∑

k=1

(k − 1)δ2u∗
k−11(θ ≥ kδ).

(32)

V. SIMULATION RESULTS

In this section, we conducted numerical simulations to
evaluate the proposed contract-based mechanism. A V2G
system with N = 1000 EVs is considered. We assume EV’s
WTP parameters are independent and identically distributed
within [−1, 1] uniformly. The unit cost C is assumed to be
1.1. Moreover, we set rmax = 7.68kW and rmin = −7.68kW
based on the Level 2 charging standard in North America [10].

In the first simulation, we compare the discrete optimal rate
function obtained by solving (31) with the theoretic results
in Theorem 2. Simulation results for two cases, where ∆ =
2(MW ) and ∆ = 0.5(MW ), are shown in Fig. 1. In both
cases, we set λ = 0.02. We can see that as K increases, the
discrete optimal rate functions are getting closer to theoretic
results. Moreover, the two curves almost coincide when K =
100, which verifies that ϕdis is a good approximation for ϕ∗

with large Ks.
Next, we evaluate the performance of the proposed contract-

based mechanism under the scenario of frequency regulation.
Simulation results are shown in Fig. 2. We assume ∆ is
updated every 1 minute by the power grid and its value
follows a Gaussian distribution with zero mean and variance
of 1(MW 2), as shown in Fig. 2(a). Moreover, λ is set as
0.001 for the aggregator. We show in Fig. 2(b) the difference

83



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

WTP parameter

R
a
te

 

 

Theoretic results

Discrete approximations with K = 10

Discrete approximations with K = 100

∆ = 2(MW)

∆ = 0.5(MW)

Fig. 1. The rate function versus the WTP parameter values.

between ∆ and the aggregated energy rate of all EVs by
using the proposed mechanism. We can see that with the
proposed mechanism, the aggregator can achieve over 95%
of the service request. The differences are not zeros due to
the randomness of EV’s WTP parameter.

We then compare the proposed mechanism with a flat
price scheme [10] in terms of the total payment received
by the aggregator. In [10], to achieve the service request,
the aggregator randomly selects a certain number of EVs to
charge/discharge their batteries at a fixed rate. The aggregator
will pay each selected EV a base price ω, which is the same for
all selected EVs, and charge them penalty prices if the service
request can not be reached. Therefore, to avoid penalties, the
selected EVs will follow the aggregator’s instructions if they
can receive non-negative utilities. Otherwise they will simply
choose to remain idle. Since the aggregator does not know
each EV’s preference, the base price should be large enough
so that every selected EV will have the incentive to participate.
In the simulation, we set the fixed charging/discharging rate
as rmax/rmin and the base price as ω = max

θ∈Θ
θrmax = 7.68

when ∆ > 0 and ω = max
θ∈Θ

(θ + C)rmin = 16.128 when
∆ < 0. The total payment received by the aggregator using
the proposed mechanism, P opt, is shown in Fig. 2(c) and
that using the flat price scheme, P flat, is shown in Fig. 2(d).
We also show the difference between P opt and P flat in Fig.
2(e). From the simulation results, we can see that the optimal
contract enables the aggregator to exploit different preferences
of EVs and therefore to extract more profit while achieving
the service request statistically. On the other hand, in the flat
price scheme, the aggregator always has to overpay the EVs,
which results in a loss of profit for the aggregator.

VI. CONCLUSIONS

In this paper, we study the problem of stimulating self-
interested EVs in providing ancillary services to the power
grid. A heterogeneous setting is considered where EVs have
different preferences toward charging/discharging at different
time. We propose a contract-based mechanism and charac-
terize the necessary and sufficient conditions of the optimal
contract. By using the optimal contract, aggregator can max-
imize its utility while coordinating EVs to satisfy the service
request. We also develop a numerical algorithm to find discrete
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Fig. 2. Simulation results for frequency regulation: (a) The service request.
(b) The difference between service request and the aggregated energy rate of
all EVs. (c) The total payment received by the aggregator using the proposed
mechanism. (d) The total payment received by the aggregator using the flat
price scheme. (e) Difference between the total payment to aggregator using
the proposed mechanism and that using the flat price scheme.

optimal contracts that are shown to be good approximations
to the theoretically optimal results.
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