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Abstract—With the foreseeable large scale deployment of elec-
tric vehicles (EVs) and the development of vehicle-to-grid (V2G)
technologies, it is possible to provide ancillary services to the
power grid in a cost efficient way, i.e., through the bidirectional
power flow of EVs. A key issue in such kind of schemes is how to
stimulate a large number of EVs to act coordinately to achieve the
service request. This is challenging since EVs are self-interested
and generally have different preferences toward charging and
discharging based on their own constraints. In this paper, we
propose a contract-based mechanism to tackle this challenge.
Through the design of an optimal contract, the aggregator can
provide incentives for EVs to participate in ancillary services to
power grid, match the aggregated energy rate with the service
request and maximize its own profits. We prove that under
mild conditions, the optimal contract-based mechanism takes a
very simple form, i.e., the aggregator only needs to publish an
optimal unit price to EVs, which is determined based on the
statistical distribution of EVs’ preferences. We then consider
a more practical scenario where the aggregator has no prior
knowledge regarding the statistical distribution and study how
should the aggregator learn the optimal unit price from its
interactions with EVs. Simulation results are shown to verify the
effectiveness of the proposed contract-based mechanism.

I. INTRODUCTION

Due to the need of reducing oil dependence and improving

energy efficiency, many countries including United States have

set up plans to support electric vehicles (EVs) [1]. It is predi-

cated in [1] that by 2020, 25 percents of newly purchased light-

duty vehicles should be grid-enabled EVs. Such a widespread

adoption of EVs, together with the development of vehicle-to-

grid (V2G) technologies [2], will open new opportunities for

the power grid: using EVs’ batteries as distributed electricity

storage, it is possible to provide ancillary services to power grid,

such as spinning reserve and regulation, in a cost efficient way.

In current power grid, these services are accomplished primarily

by turning large generators on and off or ramping them up and

down, which are very costly, e.g., accounting for 5 − 10% of

electric cost in the US [3]. Alternatively, in V2G networks,

these services can be done by charging (or discharging) EVs’

batteries when the generation is greater (or less) than the load

in power grid. As the capacity of an individual EV is limited,

the aggregator is introduced to coordinate a large group of EVs

in providing ancillary services to the power grid [4].

The viability of EV-assisted ancillary services largely de-

pends on the willingness of EVs to participate and to act

coordinately. In practice, EVs are selfish in that they are

only interested in maximizing their own utilities regardless

of whether the ancillary services can be accomplished or not.

Moreover, with the development of smart grid technologies [5],

it is possible for EVs to make intelligent decisions representing

their own interests. Therefore, it is no longer valid to assume

that EVs will follow some controlling policies made by the

aggregator unconditionally. Instead, proper incentive schemes

must be designed to stimulate a large group of selfish and

intelligent EVs to act coordinately to accomplish the ancillary

service to the power grid. However, the design of effective

incentive schemes is challenging due to the possible informa-

tion asymmetry between the aggregator and EVs. In practice,

since EVs generally face different practical constraints, such

as arrival time, departure time, initial battery level and target

battery level, they will have different preferences toward charg-

ing/discharging at different time. Nevertheless, such preferences

are unknown to the aggregator, which makes the task of

designing effective incentive schemes even more challenging.

To tackle this challenge, we propose to use contract theory,

which studies, in the presence of asymmetric information,

how the principal (the aggregator) delegates an action (charg-

ing/discharing at a certain rate) to intelligent and selfish agents

(EVs) through a take-it-or-leave-it offer of a contract [6].

Through the optimal contract design, the aggregator not only

can stimulate self-interested EVs to act coordinately to provide

ancillary services to the power grid, but also maximize its own

profits. We show theoretically that, under mild conditions, the

optimal contract takes a very simple form where the aggregator

only needs to publish the optimal unit price to EVs. Such an

optimal contract-based mechanism has a distributed manner and

can be implemented very efficiently with nearly no additional

communication and control cost, compared with traditional

pricing schemes.

To determine the optimal unit price explicitly, the aggregator

needs to know the statistical distribution of EVs’ preferences.

We then extend our results to a more practical scenario where

the aggregator has no prior knowledge regarding the statistical

distributions and study how should the aggregator learn the
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optimal unit price from its interactions with EVs. In such a

case, the aggregator naturally faces an exploration-exploitation

tradeoff between choosing the unit price with the best predicted

performance to maximize immediate utility and trying different

unit prices to obtain improved estimates. Inspired by the well-

known UCB1 algorithm [7] in the machine learning literature,

we propose an algorithm for the aggregator to learn the optimal

unit price. To show the effectiveness of our algorithm, we

compare it with the benchmark case where the aggregator has

the prior knowledge and thus can choose the optimal unit price

at every time slot. We prove theoretically that the total perfor-

mance loss of our algorithm compared with the benchmark case

over t time slots can be upper bounded uniformly by O(log t).
In other words, the averaged performance loss will converge to

0 faster than O( log t
t ) uniformly.

The rest of the paper is organized as follows. Section II

presents the related work. In Section III, we introduce the

system model and problem formulation. The optimal contract

design is discussed in Section IV. Section V considers the

scenario where the statistical distributions of EVs’ preferences

are unknown. Finally, we show simulation results in Section VI

and draw conclusions in Section VII.

II. RELATED WORK

Recently, a growing body of literature has investigated differ-

ent charging control schemes for the aggregator. In [8], Xu and

Wong proposed a coordinated charging control method that uses

approximate dynamic programming to minimize the charging

cost and reduce the power losses. Wu et al. proposed algorithms

that help the aggregator to determine the purchase of energy

in the day-ahead market and to distribute the purchased energy

to EVs [9]. Among these works, many of them have studied

the use of EVs for ancillary services. Frequency regulation

has been considered in [10], where an optimal centralized

control strategy was proposed. In [11], the authors studied the

unidirectional V2G and developed an optimal algorithm for

unidirectional regulation. In [12], Sortomme et al. proposed an

optimal energy and ancillary service scheduling strategy that

maximizes profits to the aggregator. Different from the works

in [8] - [12] that assume implicitly that EVs are obedient to

aggregator’s policies, we consider selfish and intelligent EVs

and focus on designing an incentive scheme to stimulate a large

group of EVs to provide ancillary services to the power grid.

The incentive issue has been previously considered in work

that focuses on demand response in general power grid net-

works [13]-[15]. In [16], the authors proposed a game theoretic

demand response scheme that achieves the distributed load

prediction through the participation of customers. Our work

differs from the works in [13]-[16] primarily in that we focus

on the scenario of providing ancillary services to the power grid

through bidirectional power flows of EVs. In [17], Wu et al.
studied the problem of coordinating a large group of selfish and

intelligent EVs to provide frequency regulation to the power

gird and proposed a pricing scheme to accomplish the service

request at the equilibrium. However, one major drawback is

that they assume a homogeneous setting without taking into

Fig. 1. The vehicle-to-grid system model considered in this paper.

account different preferences of EVs. In this work, we consider

a heterogeneous setting and use contract theory to study the

interaction between the aggregator and EVs under the presence

of information asymmetry.

Another body of related literature is the work that studies

the multi-armed bandit problem from the machine learning

community. The multi-armed bandit problem is a simple yet

fundamental example of the classic exploration versus exploita-

tion tradeoff, which can be described as finding a balance

between learning the profitable actions (i.e., exploration) and

taking the empirically best action (i.e., exploitation). In their

seminal work [18], Lai and Robbins studied this tradeoff

and proved that under certain conditions the regret, i.e. the

performance loss due to the fact that the policy does not always

choose the best action, grows at least logarithmic in time. A

learning policy was also proposed to achieve logarithmic regret

asymptotically. Later in [7], Auer et al. proposed several index

based policies which not only have a simpler from but also can

achieve logarithmic regret uniformly over time. In this work,

when the aggregator needs to learn the optimal unit price from

the interactions with EVs, it naturally faces the exploration

versus exploitation tradeoff. However, our case is different from

the classic multi-armed bandit settings in that the optimal unit

price depends on the service request and therefore is changing

over time rather than static as in the classic multi-armed bandit

settings.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. V2G System Model

Consider a V2G system as shown in Fig. 1. There are a

group of N EVs interested in providing ancillary services to

the power grid by charging/discharging their batteries. One

aggregator is responsible for coordinating the participating

EVs. However, the aggregator has no direct control over the

charging/discharging behaviors of EVs, who are assumed to

be self-interested and will act selfishly to maximize their own

utilities.

We divide the daily operation of the power grid into multiple

time slots, each of which corresponds to one service period.

At each time slot, the grid sends a service request to the

aggregator indicating the aggregated energy rate needed from

the aggregator in order to accomplish the ancillary service.

Denote by Δ the service request sent to the aggregator. We

study the nontrivial case that Δ �= 0 in this paper. If Δ > 0, the

aggregator needs to consume power. If Δ < 0, the aggregator
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needs to inject power into the power grid. Such a service request

is accomplished by the aggregator through coordinating the N
associated EVs to charge/discharge their batteries. Moreover,

similar to [17], we assume that the aggregator is equipped with

a set of backup batteries to assure reaching the service request.

Since EVs generally have different constraints, such as

arrival time, departure time, initial battery level and target

battery level, they will have different preferences toward charg-

ing/discharging at each time slot, which we model by a

willingness to pay (WTP) parameter θ [19]. Let r denote the

charging/discharing rate of an EV and p denote the price paid

to the aggregator. Then the utility function of the EV with WTP

parameter θ can be written as

uθ(r, p) =

{
θr − p, if r ≥ 0,
(C + θ)r − p, otherwise,

(1)

where C > 0 is the unit cost associated with discharging.

Note that both r and p can take either positive or negative

values. In particular, r > 0 means the EV charges its battery

at current time slot while r < 0 means discharging. Based on

the utility function, the WTP parameter can be interpreted as

the unit gain that an EV can receive by charing/discharging its

battery. In this paper, we model the WTP parameter θ ∈ Θ =
[θ, θ] as a random variable, which is drawn independently and

identically for different EVs and for different time slots. We

represent by F (θ) the cumulative distribution function (CDF)

and by f(θ) the probability density function (PDF). Moreover,

we assume that −C < θ < 0 and θ > 0. The sign of θ indicates

whether the EV tends to charge or discharge: when θ > 0, the

EV prefers to charge; when θ < 0 the EV prefers to discharge

and when θ = 0 the EV wants to remain idle. Moreover, the

larger |θ| is, the more an EV wants to charge/discharge its

battery, respectively. As an independent decision-maker, each

EV will act to maximize its own utility function in (1) without

considering whether the aggregated load matches the service

request or not. Therefore, an inherent conflict exists in terms

of objectives between the aggregator and EVs.

We further assume that the WTP parameter is the private

information of each EV, which implies that the aggregator has

no access to the specific value of each EV’s WTP parameter. We

thus refer to the WTP parameter as each EV’s type following

the contract theory terminology. We first study the case where

the aggregator is aware of the distribution of EV’s type, i.e.,

f(θ) and F (θ). Then, in Section V, we extend our results to the

scenario that the aggregator has no prior knowledge regarding

f(θ) and F (θ). In both cases, there exists an information

asymmetry between the aggregator and EVs, which makes the

coordination at the aggregator even harder.

B. Contract-Theoretic Formulation

To resolve the conflicting objectives between the aggregator

and EVs in the presence of asymmetric information, we propose

to use a contract-theoretic approach. Through an optimal design

of contract, the aggregator can not only stimulate self-interested

EVs to act coordinately to accomplish the service request but

also maximize its own profits. In contract theory, a contract is

a collection of contract items. Particularly, in our case, each

contract item corresponds to a pair (r, p), which specifies the

EV’s charging/discharging rate and the resulted payment to the

aggregator. At each time slot, the aggregator will publish the

contract to all participating EVs. Then each EV will choose one

contract item that maximizes its utility defined in (1). According

to the revelation principle [20], it is sufficient to consider the

class of contracts that ensure each EV to truthfully choose the

contract item designed for its type. Therefore, we can design

our contract as a pair of functions as φ = {(r(θ), p(θ)), θ ∈ Θ}.
Throughout this paper, we restrict our attentions to functions

that are differentiable, including generalized functions. For

example, a unit step function is admissible since it yields a

delta function as its derivative. To be a feasible contract, φ
needs to satisfy the incentive compatibility (IC) constraint and

the individual rationality (IR) constraint, which we define as

follows.

Definition 1 (Incentive Compatibility). A contract φ =
{(r(θ), p(θ)), θ ∈ Θ} satisfies the incentive compatibility
constraint if it is the best response of each θ-type EV to choose
the contract item for type θ, i.e.,

uθ(r(θ), p(θ)) ≥ uθ(r(θ̃), p(θ̃)), ∀θ, θ̃ ∈ Θ. (2)

Definition 2 (Individual Rationality). A contract φ =
{(r(θ), p(θ)), θ ∈ Θ} satisfies the individual rationality con-
straint if each θ-type EV receives a non-negative utility by
accepting the contract item for type θ, i.e.,

uθ(r(θ), p(θ)) ≥ 0, ∀θ ∈ Θ. (3)

A contract that satisfies the IR constraint will provide non-

negative utilities to EVs of any types, and therefore ensures the

participation of self-interested EVs.

In addition to the IC and IR constraints, the aggregator will

design the contract such that the expected aggregated energy

rate of all EVs meets the service request, i.e.,

N

∫ θ̄

θ

r(θ)f(θ)dθ = Δ. (4)

Moreover, we place the following two constraints on the

design of contracts

r(θ)Δ ≥ 0, ∀θ ∈ Θ (5)

and

r(0) = 0. (6)

The first constraint indicates that charging and discharging

should not be performed simultaneously. Otherwise EVs cancel

out each other’s efforts in terms of providing ancillary services

to the power grid. The second constraint indicates that we

should not involve EVs that choose to remain idle into the

ancillary service.

The rate function must also satisfy

rmin ≤ r(θ) ≤ rmax, ∀θ ∈ Θ, (7)
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where rmax > 0 and rmin < 0 are the maximum charging and

discharging rates of EVs, respectively.

Denote by Φ the set of contracts that satisfy all constraints

in (2)-(7). Assume N is sufficiently large that Φ is not empty.

Among all contracts in Φ, the aggregator will choose the

optimal one, which maximizes its profit as

φ∗ = argmax
φ∈Φ

∫ θ̄

θ

p(θ)f(θ)dθ. (8)

The proposed contract-based mechanism in one time slot can

be summarized in the following four steps.

1) The aggregator receives the service request from the

power grid and calculates the optimal contract φ∗

2) The aggregator broadcasts φ∗ to all EVs

3) After receiving φ∗, each EV selects one contract item

that maximizes its utility and informs the aggregator its

decision

4) The aggregator coordinates the ancillary service and

records EVs’ payments given the selected contract items

IV. OPTIMAL CONTRACT DESIGN

To find the optimal contract, we need to solve the optimiza-

tion problem defined in (8), which is challenging because it op-

timizes over a class of functions specified by some complicated

constraints. In this section, we first simplify the optimization

problem to a certain extent by finding equivalent conditions

to the IC and IR constraints. Then, by rewriting the above

optimization problem into an equivalent but simpler form, we

show that, under some mild conditions, the optimal contract

takes a very simple form. In the rest of this paper, we assume

without loss of generality that Δ > 0 in our analysis. The case

with Δ < 0 can be analyzed similarly.

We present in the following two propositions that the IC and

IR constraints can be simplified under our problem settings.

Proposition 1. Suppose Δ > 0 and a contract φ =
{(r(θ), p(θ)), θ ∈ Θ} satisfies the efficiency constraint defined
in (5). Then φ satisfies the IC constraint if and only if, ∀θ ∈ Θ,

ṙ(θ) ≥ 0 (9)

and
θṙ(θ)− ṗ(θ) = 0. (10)

Proof: From Δ > 0 and (5), we have r(θ) ≥ 0, ∀θ ∈ Θ,

which implies uθ(r(θ), p(θ)) = θr(θ)− p(θ).
To prove Proposition 1, we first show that the two conditions

in (9) and (10) are necessary conditions for the IC constraint.

From Definition 1, we have ∀θ, θ̃ ∈ Θ,

θr(θ)− p(θ) ≥ θr(θ̃)− p(θ̃),

and

θ̃r(θ̃)− p(θ̃) ≥ θ̃r(θ)− p(θ).

Adding the above two inequalities, we have

(θ − θ̃)(r(θ)− r(θ̃)) ≥ 0, ∀θ, θ̃ ∈ Θ.

Therefore, we can conclude that ṙ(θ) ≥ 0, ∀θ ∈ Θ.

Moreover, let

gθ(θ̃) � θr(θ̃)− p(θ̃).

Then the IC constraint implies that

θ ∈ argmax
θ̃∈Θ

gθ(θ̃), ∀θ ∈ Θ.

Since gθ(θ̃) is differentiable, from the first-order optimality

condition [21], we have

∂gθ(θ̃)

∂θ̃

∣∣∣∣∣
θ̃=θ

= θ
d

dθ
r(θ)− d

dθ
p(θ) = 0, ∀θ ∈ (θ, θ).

Moreover, since boundary values of ṙ(θ) and ṗ(θ) will not

affect our results, we can extend the above equality to the

boundary points and establish (10).

Next, we prove conditions in (9) and (10) are also sufficient

conditions for the IC constraint. We have ∀θ, θ̃ ∈ Θ,

p(θ)− p(θ̃) =

∫ θ

θ̃

ṗ(τ)dτ =

∫ θ

θ̃

τ ṙ(τ)dτ

= θr(θ)− θ̃r(θ̃)−
∫ θ

θ̃

r(τ)dτ,

where the second equality follows from (10) and the last

equality is obtained through integration by parts.

After some manipulations, we have

θr(θ)− p(θ) = θr(θ̃)− p(θ̃) +

∫ θ

θ̃

[r(τ)− r(θ̃)]dτ

≥ θr(θ̃)− p(θ̃), ∀θ, θ̃ ∈ Θ,

where the inequality follows from (9).

Proposition 2. Suppose Δ > 0 and a contract φ =
{(r(θ), p(θ)), θ ∈ Θ} satisfies the IC constraint and the
efficiency constraint defined in (5). Then, φ satisfies the IR
constraint if and only if

θr(θ)− p(θ) ≥ 0. (11)

Proof: Let U(θ) � θr(θ)− p(θ). Since φ satisfies the IC

constraint, according to (10), we have

U̇(θ) =
d

dθ
U(θ) = r(θ)+θṙ(θ)− ṗ(θ) = r(θ), ∀θ ∈ Θ. (12)

Since Δ > 0, then (5) implies that r(θ) ≥ 0, ∀θ ∈ Θ.

Therefore, we have

θ ∈ argmin
θ∈Θ

U(θ).

The IR constraint in (3) is thus equivalent to U(θ) ≥ 0.

Based on the definition of U(θ), we can rewrite the objective

function in (8) as

G(φ) �
∫ θ̄

θ

θr(θ)f(θ)dθ −
∫ θ̄

θ

U(θ)f(θ)dθ.
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The last term can be expressed in terms of r(θ) as∫ θ̄

θ

U(θ)f(θ)dθ =

∫ θ̄

θ

f(θ)

∫ θ

θ

U̇(τ)dτdθ + U(θ)

=

∫ θ̄

θ

f(θ)

∫ θ

θ

r(τ)dτdθ + U(θ)

=

∫ θ

θ

r(θ)dθ −
∫ θ

θ

r(θ)F (θ)dθ + U(θ),

where the second equality follows from (12) and the last

equality is obtained through integration by parts.

Therefore, we have

G(φ) =

∫ θ

θ

r(θ)f(θ)

[
θ − 1− F (θ)

f(θ)

]
dθ − U(θ).

We can simplify G(φ) by the following two observations.

First, since r(θ) ≥ 0, ∀θ ∈ Θ, we can conclude from (6) and

(9) that r(θ) = 0 for θ ∈ [θ, 0]. Second, we can maximize

G(φ) while satisfying the IR constraint by setting U(θ) = 0,

i.e. p(θ) = 0.

Therefore, the optimal contract design problem in (8) can be

simplified to a constrained optimization problem with respect

to the rate function r(θ) over [0, θ] as

max
r(θ)

∫ θ

0

r(θ)f(θ)

[
θ − 1− F (θ)

f(θ)

]
dθ (13)

subject to

∫ θ

0

r(θ)f(θ)dθ =
Δ

N
,

r(0) = 0,

ṙ(θ) ≥ 0 and r(θ) ≤ rmax, ∀θ ∈ [0, θ].

Once we have found the optimal rate function r∗(θ), we can

determine the optimal pricing function p∗(θ) as

p∗(θ) =
∫ θ

θ

τ ṙ∗(τ)dτ. (14)

To characterize the optimal contract analytically, we intro-

duce below the concept of regular distribution.

Definition 3 (Regular Distribution [22]). We say that a distri-
bution is regular if

[
θ − 1−F (θ)

f(θ)

]
is non-decreasing.

Regular distribution is an assumption widely adopted in

mechanism design literature [20] [22], which compromises a

large class of practical distributions, such as uniform, expo-

nential and normal. We show in the following theorem that

the optimal contract takes a very simple form under this mild

condition.

Theorem 1. For regular distributions, the optimal contract can
be expressed as {

r∗(θ) = rmax1(θ ≥ α),
p∗(θ) = αrmax1(θ ≥ α),

(15)

where α is the solution to

Algorithm 1 : Implementation of The Optimal Contract
1: The aggregator receives the service request from the power

grid and calculates the optimal unit price α.

2: The aggregator publishes α to all EVs.

3: Each EV decides whether to participate or not as well as

the corresponding charging/discharging rate based on its

own utility.

4: The aggregator records the payments of participating EVs.

rmax

∫ θ

α

f(θ)dθ =
Δ

N
. (16)

Proof: It can be easily verified that r∗(θ) and p∗(θ) in (15)

satisfy (14). Therefore, to prove Theorem 1, it suffices to show

that r∗(θ) in (15) is the solution to the optimization problem

in (13).

We can check that r∗(θ) satisfies the constraints in (13) and

therefore is a valid candidate. To show its optimality, denote

by r̂(θ) an arbitrary rate function that satisfies the constraints

in (13). Let

δr(θ) = r∗(θ)− r̂(θ). (17)

Then we have δr(θ) ≤ 0 for θ ∈ [0, α], δr(θ) ≥ 0 for θ ∈ [α, θ]
and ∫ α

0

δr(θ)f(θ)dθ +

∫ θ

α

δr(θ)f(θ)dθ = 0. (18)

Moreover, since the distribution is regular, we have, ∀θ1 ∈
[0, α] and ∀θ2 ∈ [α, θ],

θ1 − 1− F (θ1)

f(θ1)
≤ α− 1− F (α)

f(α)
≤ θ2 − 1− F (θ2)

f(θ2)
. (19)

Therefore, we have∫ α

0

δr(θ)f(θ)

[
θ− 1−F (θ)

f(θ)

]
dθ≥

[
α− 1−F (α)

f(α)

]∫ α

0

δr(θ)f(θ)dθ,

and∫ θ

α

δr(θ)f(θ)

[
θ− 1−F (θ)

f(θ)

]
dθ≥

[
α− 1−F (α)

f(α)

]∫ θ

α

δr(θ)f(θ)dθ.

Adding the above two inequalities, we derive∫ θ

0

δr(θ)f(θ)

[
θ − 1− F (θ)

f(θ)

]
dθ ≥ 0, (20)

which implies that r∗(θ) is the solution to the optimization

problem in (13) and thus concludes the proof.

From Theorem 1, we can see that, under the assumption of

regular distributions, it is optimal to let EVs with preferences

higher than a certain threshold to charge with the maximum rate

while keeping others idle. The threshold can also be interpreted

as the optimal unit price which is determined by the service

request as well as the distribution of EV’s type. Such an optimal

contract-based mechanism can be implemented very efficiently

with nearly no additional communication and control cost, as

demonstrated in the following corollary.
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Corollary 1. The optimal contract in Theorem 1 can be
implemented through Algorithm 1.

Proof: Algorithm 1 differs from a direct implementation

of the contract-based mechanism in that it only requires the

aggregator to publish the optimal unit price rather than the

whole contract to EVs and let EVs decide their charging rates.

Due to the rationality assumption of EVs, they will choose

their charging rates so that their utilities can be maximized.

Therefore, it suffices to prove that

r∗(θ) = max
0≤r≤rmax

uθ(r, αr).

It can be easily verified that max0≤r≤rmax uθ(r, αr) =
rmax1(θ ≥ α), which is exactly the expression of r∗(θ) in

(15) and thus concludes the proof.

V. LEARNING THE OPTIMAL UNIT PRICE WITHOUT PRIORS

In Section III, we have shown that the optimal contract-

based mechanism for regular distributions takes a very simple

form where the aggregator only needs to design and publish

the optimal unit price. Nevertheless, such a simple scheme has

one drawback in that it requires the distributional knowledge

of EV’s WTP parameter in order to calculate the optimal unit

price. In practice, although it is reasonable to model EV’s

preference towards charging/discharging as a WTP parameter,

sometimes it is hard for the aggregator to know the distribution

of such a parameter. We tackle this challenge in this section. In

particular, we will stick with the simple structure of the optimal

contract and study how to learn the optimal unit price without

the prior knowledge of f(θ) and F (θ).

Consider a more practical setting where the unit price can on-

ly have discrete values. Let Υ = {αi|αi =
iθ
K , i = 0, 1, ...,K}

be the set of unit prices that the aggregator can choose from.

Although the aggregator will suffer some loss by restricting

the unit price to a set of discrete values, such a performance

loss decreases as K increases. Moreover, since the achieved

total energy rate at each time slot is just integer multiples of

the maximum charging rate rmax, we assume that the service

request takes value from the set Ω = {Δj |Δj = jrmax, j =
1, 2, ...,M} and the residue is handled by the backup batteries.

At time slot τ , choosing unit price αi will lead to a total

energy rate as

Xi,τ =
N∑

n=1

1(θn,τ ≥ αi)rmax, (21)

where θn,τ is the WTP parameter of EV n at time slot τ .

We would like to point out that independence holds for Xi,τ

in different time slots but does not hold across different unit

prices, i.e., Xi,s and Xi,τ are independent while Xi,τ and Xj,τ

are not for each 0 ≤ i ≤ j ≤ K and for each 1 ≤ s ≤ τ .

Assuming the service request at time slot τ is Δjτ , we can

define a new random variable that represents the normalized

square of the difference between the total energy rate and the

service request as

Yi,jτ =

(
Xi,τ −Δjτ

Mrmax

)2

. (22)

The mean of Yi,jτ is referred to as the normalized mean square

residue and can be calculated as

μi,jτ =
N2

M2

[
βi(1− βi)

N
+ (βi − jτ

N
)2
]
, (23)

where

βi =

∫ θ

αi

f(θ)dθ.

If the aggregator has the prior knowledge of the distribution,

she would choose the optimal unit price αi∗τ at every time slot.

Here, we adopt a slightly different yet more practical sense

of optimality such that the normalized mean square residue is

minimized, i.e.,

i∗τ ∈ min
0≤i≤K

(μi,jτ ). (24)

We denote μi∗τ ,jτ by μ∗jτ for notation simplicity.

Without the knowledge of f(θ), the aggregator needs to learn

the optimal unit price from the interactions with EVs. During

the learning procedure, the aggregator faces an exploration-

exploitation tradeoff between choosing the unit price with the

best predicted performance to maximize immediate utility and

trying different unit prices to obtain improved estimates. Find-

ing a learning algorithm that solves the exploration-exploitation

tradeoff is traditionally formulated as a multi-armed bandit

problem. However, results from multi-armed bandit literature

cannot be directly applied here since they assume the optimal

choice remains unchanged, whereas in our case, the optimal

unit price depends on the service request and is changing over

time.

Define by σ = {στ} the learning policy, where στ is a map

from the observation history up to time slot τ − 1 to the index

of unit price to be selected at time slot τ . To evaluate the

performance of σ, we adopt regret as our performance criterion

[7] [18], which is the total performance loss with respect to the

bench mark case of choosing the optimal unit price at every

time slot. A formal definition of regret is given as follows.

Definition 4 (Regret). The regret of policy σ after t time slots
is defined by

Rσ(t) = E

[
t∑

τ=1

(μστ ,jτ − μ∗jτ )

]
, (25)

where the expectation is taken over the possible randomness of
the policy.

Our objective is to find a policy that yields low regret. We

show the proposed policy in Algorithm 2, which modifies the

UCB1 algorithm in [7] to tackle the case with time-variant

optimal choices.

In Algorithm 2, we maintain two quantities for each unit

price, yi and ni, which represent the estimate of the normalized
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Algorithm 2 : Learning The Optimal Unit Price
1: // Initialization

2: for t = 1 to K + 1 do
3: σt = t− 1
4: Observe and record xσt,t

5: nσt ← 1
6: end for
7: // Main Loop

8: while t ≤ T do
9: for i = 0 to K do

10: yi ← 1
ni

t−1∑
τ=1

(
xi,τ−Δjt

Mrmax

)2
1(στ = i)

11: end for
12: σt ← argmin0≤i≤K yi −

√
2 ln t
ni

13: Observe and record xσt,t

14: nσt ← nσt + 1
15: t← t+ 1
16: end while

mean square residue of unit price αi and the number of times

αi has been chosen, respectively. The xi,τ is the realization of

Xi,τ , which can be observed if αi is chosen at time slot τ .

We record all observed xi,τ in the algorithm and use them to

calculate yi at each time slot based on the service request Δjτ .

After initialization, the unit price is chosen simply according to

an index policy that στ ∈ argmin0≤i≤K yi −
√

2 ln τ
ni

. Though

simple, such an index policy well captures the exploration-

exploitation tradeoff faced by the aggregator.

To show the effectiveness of the proposed policy, we prove in

the following that its regret Rσ(t) is upper bounded uniformly

by O(log t).

Lemma 1. Denote by Ti(t) the number of times that the unit
price αi is chosen but does not have the optimal mean square
residue after t rounds of the proposed policy, i.e.,

Ti(t) =
t∑

τ=1

1(στ = i, μi,jτ > μ∗jτ ). (26)

Then, we can upper bound the expectation of Ti(t) by

E [Ti(t)] ≤ 8 ln t

d2min

+ 1 +
π2

3
, (27)

where

dmin = min
0≤i≤K,1≤j≤M

(μi,j − μ∗j ), subject to μi,j �= μ∗j .

Proof: See Appendix A for the proof.

Theorem 2. The regret Rσ(t) of the proposed policy σ can be
upper bounded by

Rσ(t) ≤ dmax(K + 1)

(
8 ln t

d2min

+ 1 +
π2

3

)
,

where
dmax = max

0≤i≤K,1≤j≤M
(μi,j − μ∗j ).

Proof: Following the definition of Rσ(t), we have

Rσ(t) = E

[
t∑

τ=1

(μστ ,jτ − μ∗jτ )

]

= E

[
t∑

τ=1

K∑
i=0

(μi,jτ − μ∗jτ )1(στ = i, μi,jτ > μ∗jτ )

]

≤ E

[
t∑

τ=1

K∑
i=0

dmax1(στ = i, μi,jτ > μ∗jτ )

]

=

K∑
i=0

{
dmaxE

[
t∑

τ=1

1(στ = i, μi,jτ > μ∗jτ )

]}

=
K∑
i=0

{dmaxE [Ti(t)]}

≤
K∑
i=0

[
dmax

(
8 ln t

d2min

+ 1 +
π2

3

)]

= dmax(K + 1)

(
8 ln t

d2min

+ 1 +
π2

3

)
,

which concludes the proof.

VI. SIMULATION RESULTS

In this section, we conducted numerical simulations to e-

valuate the performance of the optimal contract-based mech-

anism. That is to say, the aggregator is assumed to know

the distribution of EV’s WTP parameter and can determine

the optimal unit price explicitly in every time slot. A V2G

system with N = 1000 EVs is considered. We assume EV’s

WTP parameters are independent and identically distributed

within [−1, 1] uniformly. The unit cost C is assumed to be

1.1. Moreover, we set rmax = 19.2kW and rmin = −19.2kW
according to the Level 2 charging standard in North America

[24].

We consider the scenario of regulation and assume Δ is

updated every 20 seconds by the power grid. The value of Δ
is assumed to follow a Gaussian distribution with zero mean

and the variance of 4× 106(MW 2), as shown in Fig. 2(a). We

show in Fig. 2(b) the difference between Δ and the aggregated

energy rate of all EVs by using the proposed mechanism. We

can see that with the proposed mechanism, the aggregator can

achieve over 95% of the service request. The differences are not

zeros due to the randomness of EV’s WTP parameter. Similar

to [17], we assume that the residue is further handled by a set

of backup batteries to assure reaching the service request.

We then compare the proposed mechanism with the pricing

scheme in [17] in terms of the total payment received by the ag-

gregator. In [17], to achieve the service request, the aggregator

randomly selects a certain number of EVs to charge/discharge

their batteries at a fixed rate. The aggregator will pay each

selected EV a base price ω, which is the same for all selected

EVs, and charge them penalty prices if the service request can

not be reached. Therefore, to avoid penalties, the selected EVs

will follow the aggregator’s instructions if they can receive non-

negative utilities at the equilibrium. Otherwise they will simply
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Fig. 2. Simulation results for frequency regulation: (a) The service request.
(b) The difference between service request and the aggregated energy rate of
all EVs. (c) The total payment received by the aggregator using the proposed
mechanism. (d) The total payment received by the aggregator using the flat
pricing scheme [17]. (e) Difference between the total payment to aggregator
using the proposed mechanism and that using the flat pricing scheme.

choose not to participate. Since the aggregator does not know

each EV’s preference, the base price should be large enough

so that every selected EV will have the incentive to participate.

In the simulation, we set the fixed charging/discharging rate

as rmax/rmin, respectively. To ensure participations, the base

price is set as ω = −min
θ∈Θ

θrmax = 19.2 when Δ > 0 and

ω = −min
θ∈Θ

(θ + C)rmin = 40.32 when Δ < 0. The total

payment received by the aggregator using the optimal contract-

based mechanism, P opt, is shown in Fig. 2(c) and that using the

flat pricing scheme in [17], P flat, is shown in Fig. 2(d). We also

show the difference between P opt and P flat in Fig. 2(e). From

the simulation results, we can see that the optimal contract-

based mechanism enables the aggregator to exploit different

preferences of EVs and therefore to extract more profit while

achieving the service request statistically. On the other hand, in

the pricing scheme in [17], the aggregator always has to overpay

the EVs, which results in a loss of profits to the aggregator.

VII. CONCLUSIONS

In this paper, we study the problem of stimulating self-

interested EVs in providing ancillary services to the power

grid. A heterogeneous setting is considered where EVs have

different preferences toward charging/discharging at different

time. We formulate the interactions between the aggregator and

EVs as an optimal contract design problem and characterize the

optimal contract for regular distributions. The derived optimal

contract takes a very simple form where the aggregator only

needs to publish an optimal unit price to EVs and therefore

can be implemented very efficiently. By using the optimal

contract-based mechanism, the aggregator can maximize its

profits while coordinating EVs to satisfy the service request.

Although calculating the optimal unit price explicitly requires

the statistical distribution of EVs’ preferences, the case without

knowing such statistical distributions has also been investigated.

In particular, we propose a learning algorithm for the aggregator

to learn the optimal unit price through its interactions with EVs,

which has a provably logarithmic upper bound on regret.

APPENDIX A

PROOF OF LEMMA 1

We introduce another random variable T̂i(t) to represent the

number of times αi is chosen after t rounds of the proposed

policy, i.e.,

T̂i(t) =
t∑

τ=1

1(στ = i). (28)

Clearly, we have Ti(t) ≤ T̂i(t) for every 0 ≤ i ≤ K and every

t ≥ 1.

Recall that, for any service request Δj and any unit price αi,

Yi,j is a random variable with mean μi,j which is independent

over time. If unit price αi has been chosen s times, we can have

s i.i.d. realizations of Yi,j for every 1 ≤ j ≤ N . Denote by

{Yi,j,k|k = 1, ..., s} the sequence of s i.i.d. random variables

corresponding to these realizations. Then we can write the

sample mean as

Y i,j,s =
1

s

s∑
k=1

Yi,j,k. (29)

Let h be an arbitrary positive integer. Then, for an arbitrary

sequence of service requests {Δjτ |τ = 1, ..., t}, We have

Ti(t) ≤ 1+

t∑
τ=K+2

1(στ = i, μi,jτ > μ∗jτ )

≤ h+

t∑
τ=K+2

1(στ = i, μi,jτ > μ∗jτ , Ti(τ−1) ≥ h) (30)

Based on (30) and after some manipulations, we can bound

Ti(t) by the inequality in (31).

Notice that Y i,jτ+1,si −
√

2 ln(τ)
si

≤ Y i∗τ+1,jτ+1,s −
√

2 ln(τ)
s

implies at least one of the following must hold

Y i,jτ+1,si ≤ μi,jτ+1 −
√

2 ln(τ)

si
, (32)

Y i∗τ+1,jτ+1,s ≥ μ∗jτ+1
+

√
2 ln(τ)

s
, (33)

μ∗jτ+1
> μi,jτ+1 − 2

√
2 ln(τ)

si
. (34)

We can bound the probability of events (32) and (33) using

the Chernoff-Hoeffding bound [23] as

Pr

⎛
⎝Y i,jτ+1,si ≤ μi,jτ+1 −

√
2 ln(τ)

si

⎞
⎠ ≤ e−4 ln τ = τ−4,

and

Pr

(
Y i∗τ+1,jτ+1,s ≥ μ∗jτ+1

+

√
2 ln(τ)

s

)
≤ e−4 ln τ = τ−4.
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Ti(t) ≤ h+
t∑

τ=K+2

1(Y i,jτ ,T̂i(τ−1) −
√

2 ln(τ − 1)

T̂i(τ − 1)
≤ Y i∗τ ,jτ ,T̂i∗τ (τ−1) −

√
2 ln(τ − 1)

T̂i∗τ (τ − 1)
, μi,jτ > μ∗jτ , Ti(τ − 1) ≥ h)

≤ h+
t∑

τ=K+1

1(Y i,jτ+1,T̂i(τ)
−
√

2 ln(τ)

T̂i(τ)
≤ Y i∗τ+1,jτ+1,T̂i∗

τ+1
(τ) −

√
2 ln(τ)

T̂i∗τ+1
(τ)

, μi,jτ+1 > μ∗jτ+1
, T̂i(τ) ≥ h)

≤ h+
t∑

τ=K+1

1( min
h≤si<τ

Y i,jτ+1,si −
√

2 ln(τ)

si
≤ max

1≤s<τ
Y i∗τ+1,jτ+1,s −

√
2 ln(τ)

s
, μi,jτ+1 > μ∗jτ+1

)

≤ h+
t∑

τ=K+1

τ∑
s=1

τ∑
si=h

1(Y i,jτ+1,si −
√

2 ln(τ)

si
≤ Y i∗τ+1,jτ+1,s −

√
2 ln(τ)

s
, μi,jτ+1 > μ∗jτ+1

). (31)

E [Ti(t)]≤
⌈
8 ln t

d2min

⌉
+

t∑
τ=K+1

τ∑
s=1

τ∑
si=� 8 ln t

d2
min

�

⎡
⎣Pr

⎛
⎝Y i,jτ+1,si≤μi,jτ+1−

√
2 ln(τ)

si

⎞
⎠+Pr

(
Y i∗τ+1,jτ+1,s≥μ∗jτ+1

+

√
2 ln(τ)

s

)⎤⎦ . (35)

Moreover, under the condition of μi,jτ+1 > μ∗jτ+1
, we have

μ∗jτ+1
− μi,jτ+1 + 2

√
2 ln(τ)

si
≤ μ∗jτ+1

− μi,jτ+1 + dmin ≤ 0

for si ≥ (8 ln t)/d2min, which implies that we can make event

(34) false by setting h = � 8 ln t
d2
min
�. Therefore, we derive an upper

bound for E [Ti(t)] as shown in (35). Then, from (35), we have

E [Ti(t)] ≤
⌈
8 ln t

d2min

⌉
+

t∑
τ=K+1

τ∑
s=1

τ∑
si=� 8 ln t

d2
min

�
2τ−4

≤ 8 ln t

d2min

+ 1 +

t∑
τ=1

τ∑
s=1

τ∑
si=1

2τ−4

≤ 8 ln t

d2min

+ 1 +
π2

3
.
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