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Abstract—Collaborative filtering (CF) is widely used in rec-
ommendation systems. A user can get good recommendations
only when both the user himself/herself and other users actively
participate, i.e. providing sufficient rating data. However, due to
the rating cost, rational users tend to provide as few ratings as
possible. Therefore, there exists a trade-off between the rating
cost and recommendation quality. In this paper, we model the
interactions among users as a game in satisfaction form and study
the corresponding equilibrium, namely satisfaction equilibrium
(SE). Considering that accumulated rating data are used for
recommendation, we design a behavior rule which allows users
to achieve a SE via iteratively rating items. Experimental results
based on real data demonstrate that, if all users have moderate
expectations for recommendation quality and satisfied users are
willing to provide more ratings, then all users can get satisfying
recommendations without providing too many ratings. The SE
analysis of the proposed game in this paper is helpful for
designing mechanisms to encourage user participation.

Index Terms—collaborative filtering, game theory, satisfaction
equilibrium, behavior rule.

I. INTRODUCTION

Recommendation system has been successfully applied in

a variety of applications. Among the approaches to building

recommendation systems, collaborative filtering (CF) [1] is

most widely adopted. The basic idea of CF is to utilize

the information provided by users to match users with sim-

ilar interests and to make corresponding recommendations.

Therefore, user participation is of vital importance for the

success of CF. Conventionally, information provided by users

is represented as a user-item rating matrix R = [rij ]N×M .

The value of the rating rij shows user i’s preference for item

j. The major task of the recommendation server is to predict

the missing values in the matrix where users did not give their

preferences for certain items.

Generally, a user assigns ratings to items after he/she has

obtained experience of the items. Since rating items incurs

some cost, such as time cost and privacy cost, the user may

only rate part of the items that he/she has experienced. As a

result, the rating matrix may be quite sparse, which inevitably

impairs the recommendation quality [2]. Moreover, as the

name collaborative filtering suggests, whether a user can get

accurate recommendations depends not only on the ratings

provided by the user himself/herself, but also on the ratings

provided by others. Therefore, interactions of individuals’ rat-

ing behaviors should be considered when one makes decisions

on rating. Furthermore, users are usually rational, in the sense

that a user wishes to obtain good recommendations by rating

only a few items. In such a case, it is natural to employ game

theory [3] to model the interactions among users in a CF

system.

In this paper, we build a game theoretical model to s-

tudy users’ rating behaviors in a CF-based recommendation

system. Halkidi et al. [4] also presented a game theoretical

approach to address the trade-off between privacy preservation

and recommendation quality. Chen and Liu [5] provided a

general game analysis of human behaviors in social networks.

Different from these studies, we model the interactions among

users as a satisfactory game with incomplete information, i.e.,

each user only has the knowledge of his/her own ratings and

recommendations, while others’ ratings cannot be observed.

Meanwhile, the CF algorithm adopted by the recommendation

server is also unknown to users. To analyze the game with

incomplete information, we apply the notion of satisfaction
equilibrium (SE) which was originally introduced by Ross

and Chaib-draa [6], [7]. To the best of our knowledge, this

is the first time that SE is applied to study of CF. A game

is said to be in SE when all players simultaneously satisfy

their individual constrains. In the context of CF, a user’s

expectation for recommendation quality is seen as his/her

constrain. Recommendation quality can also be seen as an

intrinsic motivation for users to rate items. Hence, different

from the work in [8], [9] where incentive mechanisms were

designed to encourage user participation, in this paper we

focus on the equilibrium of the proposed satisfactory game

and try to answer the following question: without external

incentives, whether and how all users can get satisfying

recommendations by rating the appropriate amount of items.

Based on the characteristics of recommendation system, we

design a behavior rule which allows users to achieve the SE

via iteratively choosing items to rate.

The rest of the paper is organized as follows. Section II

describes the system model, and Section III presents the satis-

factory game formulation. Section IV introduce the behavior

rule for learning satisfaction equilibrium. Experiment results

are shown in Section V and conclusion is drawn in Section VI.

II. SYSTEM MODEL

Consider a CF system where a set of users N =
{1, 2, · · · , N} interact with a recommendation server (RS).

The RS maintains information about a set of items S =
{s1, s2, · · · , sM}. Each user experiences a set of items and

assigns ratings to some of them. Let Si and S̃i denote the set

of items that user i has experienced and rated, respectively,

then we have S̃i ⊆ Si ⊆ S. From the perspective of the RS,
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a rating vector ri = (ri1, ri2, · · · , riM ) is provided by user i
when a set S̃i is chosen. We define rij ∈ (0, rmax] if sj ∈ S̃i,

rij = 0 if sj /∈ S̃i (j = 1, · · · ,M ). Usually, a high value of

rij implies user i has strong preference for item sj .
The ratings provided by all users form a rating matrix R =

[rij ]N×M . The RS applies some CF algorithm to R to predict

users’ preferences for those unrated items. A recommendation

vector r̂i = (r̂i1, · · · , r̂iM ) is returned to user i, where r̂ij is

defined as follows:

r̂ij =

{
rij , if rij �= 0

fCF
ij (R) , if rij = 0

, (1)

where fCF
ij (R) means that the predicted rating is determined

by both the CF algorithm and the whole ratings.
After receiving the recommendation vector, the user e-

valuates the recommendation quality by judging whether

the recommendation matches his/her interest. Let pi =
(pi1, · · · , piM ) denote user i’s interest, where pij represents

user i’s true preference for item sj (j = 1, · · · ,M ). We

assume 0 ≤ pij ≤ rmax and define pij = rij for sj ∈ S̃i.

The quality of r̂i is evaluated by a user-specific function

gi : R
M → R. For example, gi (r̂i) can be defined as follows:

gi (r̂i) = 1−

√
M∑
j=1

(r̂ij − pij)
2

rmax

√
M

. (2)

A large gi (r̂i) implies high similarity between ri and pi,

namely high recommendation quality. Recommendation of

high quality is the most important incentive for a user to

actively participate in the rating process. From (1) and (2),

we can see that the recommendation quality obtained by one

user is affected by other users’ ratings. Thus, users in a CF

system interact with each other via providing ratings to the RS.

In the following, we will use satisfactory game to formulate

the interaction among users.

III. SATISFACTORY GAME FORMULATION

A. Players and Actions
We consider all the users in N as players and the set S̃i as

user i’s action, i.e., ai = S̃i. Let Ai denote the action space of

user i. It is assumed that all users share the same action space,

i.e. for any i ∈ N , there is Ai =
(
A(1), · · · , A(K)

)
, where

K = 2|S| − 1 (|S| denotes the cardinality of S), A(k) ⊆ S
(k = 1, · · · ,K) and A(k) �= ∅. When choosing an action,

each user follows his/her own probability distribution over

the action space. We use πi =
(
π
(1)
i , · · · , π(K)

i

)
to denote

the distribution, where π
(k)
i � Pr

(
ai = A(k)

)
represents the

probability that user i chooses the action A(k).
Given an action profile a = (a1, · · · , aN ) ∈ A (A =

A1 × · · · × AN ), the rating matrix R obtained by the RS is

determined. Considering that the recommendation r̂i is fully

determined by R when the CF algorithm is specified, we

introduce a mapping hi : A → R to show the influence of

users’ actions on recommendation quality:

gi (r̂i) = hi (a) = hi (ai, a−i) , (3)

where a−i = (a1, · · · , ai−1, ai+1, · · · , aN ) ∈ A−i, A−i =
A1 × · · ·Ai−1 ×Ai+1 · · · × AN .

As mentioned in Section I, rating items incurs some cost.

The more items the user rates, the higher cost he/she has to

pay. Let ci (ai) denote the cost paid by user i when he/she

chooses the action ai, then for any a′i ∈ Ai, a′′i ∈ Ai, if

a′i ⊂ a′′i, there is ci (a
′
i) < ci (a

′′
i).

B. Satisfaction Form

Intuitively, if the user i himself/herself or other users rate

more items, the rating matrix will become less sparse, and user

i can get better recommendation. When every user has rated

all the items he/she has experienced, every user can obtain the

best recommendation quality Γmax
i :

Γmax
i = hi (S1, S2, · · · , SN )=max

a∈A
hi (a) . (4)

However, due to the rating cost, not every user would rate

all the items he/she has experienced, which means Γmax
i is

difficult to achieve. Suppose that each user i has a relatively

low expectation Γi (Γi < Γmax
i ) for the recommendation

quality. As long as hi (a) ≥ Γi, user i will be satisfied. Given

the actions of other users, user i may choose some action to

make himself/herself satisfied. We use fi (a−i) to denote the

set of such actions:

fi (a−i) = {ai ∈ Ai : hi (ai, a−i) ≥ Γi} , (5)

where the mapping fi : A−i → 2Ai is usually called

correspondence [10].

Based on above discussions, we can describe the proposed

game by the following triplet:

ĜCF =
(N , {Ai}i∈N , {fi}i∈N

)
. (6)

This formulation of game is called satisfaction form, which

was first introduced by Perlaza et al. [10] to model the QoS

(Quality-Of-Service) provisioning problem.

C. Satisfaction Equilibrium

An important outcome of a game in satisfaction form is the

one where all players are satisfied. This outcome is referred

to as satisfaction equilibrium (SE) [10]:

Definition 1 (Satisfaction Equilibrium): An action pro-

file a+ is an equilibrium for the game ĜCF =(N , {Ai}i∈N , {fi}i∈N
)
, if ∀i ∈ N , a+i ∈ fi

(
a+−i

)
.

We have assumed that for all i ∈ N , there is Γi < Γmax
i ,

hence the action profile amax � (S1, S2, · · · , SN ) is a SE of

the proposed game. However, amax requires every user to pay

the highest cost ci (Si), which may exceed the necessary cost

for achieving user’s expectation. It is more practical to find a

lower-cost SE a+ =
(
a+1 , · · · , a+N

)
which satisifies ∀i ∈ N ,

there is a+i ∈ fi
(
a+−i

)
and ci

(
a+i

) ≤ ci (Si).
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IV. LEARNING SATISFACTION EQUILIBRIUM

In this section, we study the behavior rule that allows

users to learn a satisfaction equilibrium. The learning process

is essentially an iterative process of information exchange

between users and the RS, during which each user chooses

his/her actions as follows.

Initially, user i chooses an action ai (0) based on the

probability distribution πi (0) =
(
π
(1)
i (0) , · · · , π(K)

i (0)
)

,

where for any k ∈ {1, · · · ,K}, π
(k)
i (0) is defined as follows:

π
(k)
i (0) =

{
βi (0)/α

ci(A(k)), if A(k) ⊆ Si

0, otherwise
. (7)

The above equation means that user prefers to choose the low-

cost action. The parameter α > 1 shows how much the user

cares about the cost. The normalization factor βi (0) is defined

as follows:

βi (0) =
1∑

k: A(k)⊆Si

α−ci(A(k))
. (8)

After every user has chosen his/her action, the RS computes

the recommendations based on the initial rating matrix R (0)
and returns r̂i (0) to user i.

At the beginning of iteration n (n = 1, 2, · · · ), user i
evaluates r̂i (n− 1) to see whether it is satisfying. We use

a binary variable vi (n− 1) to indicate the evaluation result:

vi (n− 1) =

{
1, if gi (r̂i (n− 1)) ≥ Γi

0, otherwise
. (9)

According to vi (n− 1), user i updates the probability distri-

bution πi (n) =
(
π
(1)
i (n) , · · · , π(K)

i (n)
)

and then chooses

an action ai (n). One thing should be pointed out is that the

RS utilizes all the historical ratings of a user to compute

recommendations. Even if the user does not rate any item in

this iteration, the server can still compute recommendations

for him/her based on the ratings that the user has provided

in previous iterations. Therefore, we use ai (n) to denote all

the items that user i has rated by the end of iteration n, and

naturally there is ai (n) ⊇ ai (n− 1).
If vi (n− 1) = 0, then user i may: (a) choose more items

to rate, if he/she thinks it is because he/she did not provide

enough ratings that the recommendation result is unsatisfying;

(b) keep previous action, i.e. rate no more items, if he/she

blames the result on other users. For any k ∈ {1, · · · ,K},

π
(k)
i (n) � Pr

(
ai (n) = A(k)

)
is computed as follows:

π
(k)
i (n) =

⎧⎨
⎩

σi (n− 1) , if A(k) = ai (n− 1)

βi (n)/α
ci(A(k)), if ai (n− 1) ⊂ A(k) ⊆ Si

0, otherwise

,

(10)

where σi (n− 1) is the rating completeness of user i:

σi (n− 1) =
|ai (n− 1)|

|Si| . (11)

A large σi (n− 1) means user i has already rated many

items in Si, thus the user possibly rates no more items even

if he/she is not satisfied with current recommendation. The

normalization factor βi (n) is defined as follows:

βi (n) =
1∑

k: ai(n−1)⊂A(k)⊆Si

α−ci(A(k))
. (12)

If vi (n− 1) = 1, then it is very likely that user i no longer

rates the rest items in Si. For any k ∈ {1, · · · ,K}, π
(k)
i (n)

is now defined as follows:

π
(k)
i (n) =

⎧⎨
⎩

μi, if A(k) = ai (n− 1)

βi (n)/α
ci(A(k)), if ai (n− 1) ⊂ A(k) ⊆ Si

0, otherwise

,

(13)

where the parameter μi denotes to what extent a satisfied user

would keep previous action, and usually there is 0.5 < μi ≤ 1.

The normalization factor βi (n) is defined as follows:

βi (n) =
1− μi∑

k: ai(n−1)⊂A(k)⊆Si

α−ci(A(k))
. (14)

After every user has chosen his/her action, the RS computes

the recommendations based on the rating matrix R (n) and

returns r̂i (n) to user i. Then the learning process then goes

to the next iteration. If after a finite number of iterations,

say ns, all users have been satisfied, then the process stop-

s. We say the behavior rules converges to a SE a+ =
(a1 (ns) , · · · , aN (ns)).

Regarding the convergence of the behavior rule, we provide

the following proposition.

Proposition 1: The proposed behavior rule converges to a

SE of the game ĜCF =
(N , {Ai}i∈N , {fi}i∈N

)
, if both the

following two conditions are satisfied:

(a) for any a = (a1, a2, · · · , aN ) ∈ A, a′ =
(a′1, a′2, · · · , a′N ) ∈ A, if ∀i ∈ N , there is ai ⊆ a′i,
and ∃j ∈ N , aj ⊂ a′j , then for all i ∈ N , there is

hi (ai, a−i) ≤ hi (a
′
i,a

′−i);

(b) 0 < μi < 1.

The first condition implies that, after one iteration, every

user gets closer to his/her expected result, as long as there is at

least one user provides new ratings in the iteration. The second

condition implies that during the learning process, whether a

user is satisfied or not, he/she may continue to rate items. The

two conditions together ensure that as the iterative process

proceeds, the recommendation quality perceived by each user

gradually improves, even though the improvement may tem-

porarily stagnate for one or more iterations. In other words, a

user who hasn’t got satisfying recommendation at this moment

will eventually be satisfied at some moment. Therefore, with

the two conditions, convergence of the behavior rule can be

guaranteed.
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TABLE I
EXPERIMENT RESULTS.

{ηi}500
i=1 run ID 1 2 3 4 5 6 7 8 9 10

ηi = 0.5
nstop 14 15 17 16 16 13 16 15 15 13
σ̄i 0.462 0.467 0.486 0.480 0.468 0.445 0.472 0.462 0.464 0.449

ηi = 0.8
nstop 452 556 447 418 450 395 462 483 391 373
σ̄i 0.824 0.848 0.829 0.825 0.825 0.820 0.832 0.832 0.819 0.823

10%: ηi = 0.8, 90%: ηi = 0.5
nstop 218 275 166 272 278 392 411 379 295 370
σ̄i 0.790 0.811 0.769 0.805 0.809 0.835 0.839 0.835 0.815 0.829

V. EXPERIMENT RESULTS

A. Dataset and Parameter Setting

To validate the SE learning method, we conduct experiments

by using the Jester dataset [11], which contains ratings of 100

jokes from 24983 users. We randomly choose 500 users from

the users who have rated all the 100 jokes and use their ratings

R = [rij ]500×100 to run simulations. Each row of R is deemed

as the corresponding user’s interest vector pi. For each user

i, we assume |Si| = 70 and randomly remove 30% of the

user’s ratings. The resulting matrix is denoted by Rfull. In all

experiments, we set α = 1.2, and define ci (ai) = |ai|, μi =
0.9 for each user. Based on R and Rfull, we compute Γmax

i by

employing a user-based collaborative filtering algorithm. Then

we set Γi = ηiΓ
max
i , where 0.5 ≤ ηi < 1 (we assume that

user’s expectation is no lower than half of the best). We have

tested 3 groups of {ηi}500i=1: (i) ηi = 0.5 for all users; (ii) ηi =
0.8 for all users; (iii) ηi = 0.8 for randomly chosen 50 users,

and ηi = 0.5 for the rest. Given a group of {ηi}500i=1, we run the

learning method for 10 times. During each run, the iterative

process stops when all users are satisfied or the number of

iterations reaches 10000. At the beginning of each iteration n,

we record the number of satisfied users NS (n). After each

run, we record the number of iterations nstop and the average

of the rating completeness σ̄i � 1
500

500∑
i=1

|ai (nstop)|/|Si| .

B. Resutls

Table I shows the experiment results. As we can see, when

all users have moderate expectations for the recommendation

quality (ηi = 0.5), a SE can be reached after about 15

iterations and each user only needs to rate less than half of the

items that he/she has experienced. When all users have high

expectations (ηi = 0.8), the learning process becomes much

longer. Usually more than 400 iterations are required, and a

user has to rate more than 80% of the items that he/she has

experienced. When most of the users have moderate expecta-

tions and only a few users (10%) expects recommendations of

high quality, the learning process is also much longer than the

case that all users have moderate expectations.

To better understand the learning results, we draw the set of

NS (n) in Fig. 1. As we can see, in the third setting (depicted

by green circles), after only 15 iterations, 90% of the users are

already satisfied. During the first 15 iterations, NS (n) grows

at almost the same rate with that of the first setting (depicted

by red circles). However, in the third setting, it takes much

longer time to achieve the high expectations of the rest users.

This is mainly because most of the users are satisfied and

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

400

450

500

X: 15
Y: 450

n

N
s(

n)

ηi=0.5

ηi=0.8

10%:ηi=0.8, 90%:ηi=0.5

Fig. 1. The change of the number of satisfied users. Red circles represent
the result of one run in a setting where ηi = 0.5 for all i ∈ N ; blue circles
represent the result of one run in a setting where ηi = 0.8 for all i ∈ N ;
green circles represent the result of one run in a setting where ηi = 0.8 for
10% of the users and ηi = 0.5 for the rest.

they prefer rating no more items, and for those unsatisfied

users, the recommendation results only improve a little after

one iteration.

From Table I we can also observe that in the third setting,

σ̄i generally exceeds 0.8, which is similar to the case when

all users have high expectations. This result implies that to

satisfy the high expectations of a small amount of users, even

users with moderate expectations have to pay high cost, i.e.

rating many items, but in return these users can also get

recommendations that are much better than they expected.

Based on the experiment results, we can conclude that when all

users have moderate expectations for recommendation quality,

users can achieve a SE with low cost.

VI. CONCLUSION

In this paper, we formulated the interaction among users

in a CF system as a game in satisfaction form. To learn the

satisfaction equilibrium of the game, we proposed a behavior

rule that a user iteratively updates the probability distribution

over his/her action space and gradually rate more items.

Experiment results demonstrate the feasibility of the proposed

behavior rule.
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